
Modeling Time from a Conceptual Perspective
Stefano Spaccapietra

Database Laboratory
Swiss Federal Institute of Technology

1015 Lausanne, Switzerland
Tel :+41 21 693 52 10

Stefano.Spaccapietra@epfl.ch

Christine Parent
HEC/INFORGE

Université de Lausanne
1015 Lausanne, Switzerland

christine@lbdsun.epfl.ch

Esteban Zimanyi
INFODOC CP 175/02

Université Libre de Bruxelles
1050 Bruxelles, Belgique

Tel :+32 2 650 39 50

ezimanyi@ulb.ac.be

1. ABSTRACT
Although many temporal models have been
proposed in the literature, there is still need
for a conceptual model capturing the essential
semantics of time-varying information that is
free of implementation concerns. This paper
first discusses important criteria to be
considered when assessing the “ conceptual”
quality of a temporal model. Then, it presents
the main temporal features of MADS, a spatio-
temporal conceptual model. The focus is on
identifying issues that are either open or
controversial, and discussing alternatives, if
any. Finally, it is shown how the model may be
implemented on top of either TSQL2 or a
traditional, non-temporal data model.
1.1 Keywords
Temporal databases, conceptual modeling, data semantics

2. INTRODUCTION
In many application domains complex decision

making involves analysis of spatial and temporal data.
Thus, there is an increasing demand for strong computer
support in spatio-temporal data management. In particular,
the capability to plan for the future based on past
experiences is essential. This calls for powerful temporal
data modeling and temporal reasoning facilities. Many
examples of desirable facilities may be found in the rich
body of literature devoted to temporal databases.
Bibliographies (e.g., [25]), surveys (e.g., [19]), and books

[7][23] gathered more than a thousand papers. However,
very little of the outcome had an impact on software
providers, and current commercial DBMSs are only
beginning to offer time-related functions, e.g., the
temporal datablades of ILLUSTRA.

In [18] are identified some of the reasons behind this
apparent failure in know-how transfer. The most evident
drawback is the high number of approaches, making no
single one emerge from the heap. It is also noted that
“there seems to be a gap between the goals assumed by the
temporal database community and the needs...” , and “users
could not say what a temporal database is, nor even begin
to comprehend how it could be of service to their
applications” . A major conclusion was that “ ... the time-
varying semantics is obscured in the representation
schemes by other considerations of presentation and
implementation” , which lead the authors to “advocate a
separation of concerns, i.e., adopting a very simple
conceptual data model...” .

One reason for this mismatch is that temporal
research has mainly investigated issues at the logical or
implementation levels, while user requirements are at the
conceptual level. Focusing on conceptual models is indeed
the right move towards a better dissemination of temporal
databases.

Conceptual modeling offers two significant
advantages with respect to relational or object-oriented
design: (1) it allows to focus on the representation of
application data and processes with minimal concern for
technical constraints, and (2) its result (a conceptual
schema of data and processes) is more stable than
implementation-oriented schemas, which must be changed
whenever the target platform changes.

Conceptual models also provide better support for
visual user interfaces. Entity-relationship (ER) models, for
instance, have been very successful with users. Recent
work has shown that conceptual models also support direct
manipulation techniques (e.g., point, click, and drag
elements on a screen) to browse the database, and to
express queries and updates without the burden of the
complex syntax of a textual language [4][8]. Finally,
conceptual modeling facilitates information exchange over

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the Internet and within heterogeneous distributed or
federated databases. In such contexts, a conceptual model
provides the best vehicle for a common understanding
among partners with different technical and application
backgrounds.

Several ER and object-oriented (OO) temporal models
have been reviewed in [10][18][19], and other models have
been proposed since (e.g., [2][22]). All of these models
show weaknesses with respect to the goals of conceptual
modeling. This paper proposes an approach focusing on
well-known conceptual modeling principles, and where
semantic criteria are used as a sound basis for comparing
temporal models. Then, we propose a model, called MADS
(for Modeling of Applications with Spatio-temporal
features), which explicitly meets these criteria. The current
version of MADS supports basic spatio-temporal features
needed by the applications we have been involved with,
mainly related to land management or utility networks. A
case study allowed to quantify the benefits of using MADS
with respect to a traditional ER model. Implementation of
MADS in operational environments has shown that it can
be used as a front-end to existing systems. A visual schema
editor has been implemented allowing designers to define
their MADS schemas through direct manipulation on a
screen. A visual query language is planned to complement
data definition with data manipulation facilities based on
the same modeling paradigm.

Section 3 introduces the generic criteria on which we
built the MADS model. We show that, although obvious,
these criteria are not always satisfied in other proposals.
The following sections discuss issues for defining a
temporal conceptual model. Section 4 discusses
timestamping of objects, attributes, and relationships.
Section 5 develops dynamic temporal relationships.
Section 6 relates on the implementation of our conceptual
model. Finally, section 7 concludes by pointing at work in
progress within a global spatio-temporal framework. In the
paper we only consider valid time as this is the primary
goal of the users we are working with.

3. CRITERIA FOR CONCEPTUAL
MODELS AND RELATED WORK

This section recalls some overall goals that a
conceptual model (CM) should satisfy. Such goals, which
guided our design of the MADS model, may also serve to
assess the conceptual quality of a given proposal. In [10]
are identified other 19 design criteria, but these served a
different, classification purpose.

Conceptual. A CM must provide a direct mapping
between the perceived real world and its computer
representation. Thus, it should be free from
implementation-based limitations and from modeling
tricks. This criterion alone eliminates a number of
proposals. Unnecessary limitations include restraining

relationships to be binary and attributes to be monovalued.
Modeling tricks typically consist in introducing artificial
object types (i.e., those not representing a real-world
element) to cope with some modeling limitation. Known
examples include liaison records, intersection classes, and
objectified attributes. A spatio-temporal modeling trick is
representing spatial or temporal features of application
object types by linking them, using a relationship type, to
an artificial space or time object type (e.g., Point, Line,...,
Date, Timestamp,...). Some temporal proposals follow this
approach and are therefore inadequate. It is worthwhile
noting that showing these space and time object types on
schemas induces an explosion in the number of links that
will obscure any diagram representing a real application.

Power ful. How much expressive power a data model
should support is a subject for an ever-lasting debate.
Relying on general consensus seems therefore an adequate
pragmatic rule. The current level of consensus (as
illustrated by, e.g., ODMG’s ODL [5] or UML [3])
includes support of object types, explicit relationship types,
multivalued attributes, complex attributes (i.e., attributes
composed of other attributes), is-a links, aggregation (part-
of) links, and the associated integrity constraints.
Although many more features have been proposed, past
experience has shown that striving for the highest
expressive power leads to unbearable complexity and
eventually results in rejection of the model.

Simple. One of the major advantages of a CM is to allow
users to get involved in the design of the application,
which is known to be an essential success factor. Studies
by ergonomists have assessed that for a model to be
understandable by users with only minimal training, the
number of concepts has to be kept small. Further, they
have to have a clean definition, as close as possible to the
real-world concepts they represent. Models with too
sophisticated constructs or constructs whose semantics
deviates from well-established ones are likely to be
discarded by users.

Visual. Because most of the design work is based on
schema diagrams, a CM has to be supported by clean,
intuitive, visual notations. Few existing proposals adhere
to this obvious principle. Some use abstract, unintuitive
notations, others offer only a textual syntax, while in
others the same semantics is conveyed by different
notations depending on the context. In our proposal we
simply use a clock icon to denote timestamping of
constructs, whatever they are. A visual schema editor is
also a must [10].

Formal. For specifications to be unambiguous, they have
to rely on a sound formal definition. As pointed out in
[10], several proposals lack such a sound background.

Associated data manipulation language. While in the
past users have been trained to a schizophrenic approach

(ER diagrams for schema definition and relational SQL for
data manipulation), there is no reason for this to continue.
Users should be entitled to use a single paradigm for both
the DDL and the DML. An example of associated DML is
provided in [9]. Comparisons of temporal languages may
be found in [6][19].

Temporality. A temporal CM should fulfill the above
criteria, while providing temporal support. The
comprehensiveness of the model (i.e., how many features it
supports) is a matter of how rich the model is, but not
necessarily how good it is. Required features vary from an
application domain to the next. Basic temporal features
include timestamping of attributes, objects, and
relationships, based on a discrete time scale. At least valid
time should be supported, as well as timestamping with
periods and with instants. Other important features
identified in [18] are: multiple time granularities, future
time, imprecise time, relative time, branching time,
coexistence of temporal and non-temporal data,
transaction time, support for temporal reasoners. Recent
developments in video databases call for support of
continuous time.

Having stated the goals, how to achieve them, in
particular the apparently contradictory goals of being
powerful and simple? Experience in conceptual modeling
has shown that there is one golden rule to get power at a
minimal cost: or thogonality. Orthogonality among
different modeling dimensions (data structures, time,
space) means that: (1) each dimension is defined
independently of the others (achieving simplicity), and (2)
concepts from different dimensions can be combined in
any meaningful way (giving expressive power). Most
temporal models are rather orthogonal, as time can be
associated with objects, relationships, and attributes, and
their behavior is relatively clear (but temporality is seldom
applied to methods or integrity constraints). The setting is
different for spatial databases, where proposed solutions
clearly ignore orthogonality [17]. Orthogonality is also the
key for being able to customize the comprehensiveness of
the model to different application domains without having
to redesign the entire model.

In summary, none of the models we have examined
satisfies all of the above goals. This actually prompted the
development of MADS, an object+relationship conceptual
model. The major originality of MADS lies in that it is a
purely conceptual model, although translators of MADS to
operational database models are also defined. In the
structural dimension it includes multivalued and complex
attributes, derived attributes, methods, integrity
constraints, n-ary relationships, is-a links, and aggregation
links. Space and time dimensions have been orthogonally
added to the existing structural dimension. In this paper
we describe the temporal features of MADS, the spatial
features are described in a companion paper [17].

MADS currently supports valid time and user-defined
time at different granularities, and is being extended for
transaction time. Temporality can be attached to object and
relationship types, to attributes, methods, and integrity
constraints. An original contribution of MADS is to
highlight that some commonly accepted constraints in
existing models do not always fit application requirements,
e.g., allowing non-temporal object types related by
temporal relationships and vice versa. Moreover, MADS
includes dynamic relationships for describing inter -object
dynamics in which time plays an important role: e.g., this
land parcel was created by merging those land parcels, this
town represents a further development stage of that
village, this storm preceded that landslide. To the best of
our knowledge previous temporal models do not support
these dynamic relationships.

 MADS is supported by a visual schema editor. The
spatial and temporal characteristics of an application can
be immediately apprehended thanks to appropriate icons
visualized on schema diagrams.

4. ISSUES IN THE DESIGN OF A
TEMPORAL CONCEPTUAL MODEL

Timestamping is the traditional way of modeling
temporal information. Applied to values, timestamping
allows expressing when a value was, is, or will be holding
in the real world (valid time) or when it was known in the
database (transaction time). Timestamping also applies to
objects and relationships to express information on their
life cycle: when an object or relationship was created,
suspended, reactivated, or deleted. Object and relationship
timestamps are also based on either valid time or
transaction time. As these mechanisms are well known,
this section focuses on open issues deserving discussion.

4.1 Timestamping Attr ibutes

Figure 1: Timestamped attr ibutes.

Timestamped attributes record the evolution of their
values. We use the term evolution (instead of history) since
past, present, and future values are recorded. Conceptually,
a timestamped attribute is a set of partial functions linking
a validity period of the attribute to its value domain. There
are one such function and its associated validity period for
each instance of the owner of the attribute (entity,
relationship instance, object attribute). The validity periods

(0,1)

(1,1)

(0,n)

(1,n)

Employee
empNo
salary

dependents

project

hoursprojName

are sets of disjoint intervals defined according to the
granularity specified by the designer for the attribute. As
shown in Figure 1, any attribute may be timestamped,
whether simple or complex, mono- or multivalued. For the
complex attribute project, composed of projName and
hours three alternative design decisions are possible.

1) If project is timestamped and its components not (as
in Figure 1), this allows keeping the evolution of
projects an employee works for. Values of the attribute
are (projName, hours) pairs with associated
timestamp.

2) If hours is timestamped and project not, this allows
keeping the evolution of hours spent by an employee
on the project s/he is currently working. Notice that
when an employee is moved to another project, the
evolution of hours in the previous project is lost, as
only the current project is recorded (project is a non-
temporal attribute). This stresses that timestamping an
attribute does not necessarily mean that its values are
kept forever in the database.

3) If both hours and project are timestamped this allows
keeping the evolution of both projects and hours in a
project. Thus, it can be represented that an employee
works on project MADS from January 97 until
December 1998, at 35 hours per week in 97, then at
20 hours per week in 98.

Attribute cardinalities are interpreted as static, i.e.,
they define the number of attribute values at any point in
time. Temporal cardinalities, written h(min,max), allow
to constrain the minimum and the maximum number of
values that a timestamped attribute can take over the life
cycle (or validity period) of its owner. In case of a non-
timestamped owner, this life cyle is assumed to be]-∞
,+∞[. For example, a temporal cardinality h(1,3) on
project states that an employee is attached to at least one
and at most 3 projects altogether during his/her life cycle.

Existing temporal models impose constraints among
timestamps in composition structures. The latter include a
timestamped attribute of a timestamped object (or
relationship) type, or a timestamped component of a
timestamped complex attribute. Examples of such
constraints are:

• the validity period of an attribute must be within the
life cycle of the object it belongs to (e.g., [26]), and

• the validity period of a complex attribute is the union
of the validity periods of its components (e.g., [9]).

Although both rules rely on the intuitive idea that the
lifespan of a component is included in the lifespan of the
composite, this is not necessarily the case. For example,
employee records (where an employee’s life cycle
represents the period when s/he is working for the
company) may keep track of positions occupied by the

employee before joining the company. Similarly, in Figure
1 an employee may work on a project before it comes into
existence (as is the case for ESPRIT projects), or continue
working on a project after it has officially ended.

MADS does not enforce any a priori constraint on
timestamps. However, constraints may be explicitly
defined either using temporal expressions based on a
calculus that includes Allen's operators [1], or referring to
predefined constraint types, such as inclusion, covering,
and equality. For example, if in Figure 1 both project and
hours are timestamped, an inclusion of hours into project
enforces that the temporal elements of values of hours are
included in the temporal element of the associated project.
A cover ing of project by hours enforces that at any
instant included in the temporal element of a project,
there is an associated value of hours. Finally, an equality
constraint on hours and project states that the unions of
the temporal elements of the values for both attributes are
equal.

MADS approach (i.e., no inherent constraint)
achieves orthogonality, as timestamping of an attribute
does not depend on where the attribute is located in the
data structure.

4.2 Timestamping object types

Figure 2: Timestamped object type.

Timestamping an object type allows to keep the life
cycle of its instances: when they are created, suspended,
reactivated, or deleted. In many temporal models the life
cycle of an object is assumed to be a single, continuous
time interval, to avoid “ the problem of maintaining
identity across disjoint periods of existence” [26], i.e., an
implementation concern. MADS allows the membership of
an object in an object type to be suspended and reactivated.
This allows describing situations like a professor leaving
for a sabbatical. Consequently, a life cycle is a function
linking the time domain]-∞,+∞[to the four possible status
“up to now does not exist” , “active” , “suspended” , or
“dead” .

Defining an object type as timestamped is independent
of defining some of its attributes as timestamped. As
already said, although MADS does not impose any
restriction on the timestamp of an object and those of its
attributes, temporal integrity constraints may be defined if
needed by the application.

empNo
firstName
lastName

project

hoursprojName

address
salary
dependents

Employee

The notion of identifier must be revisited for
timestamped object types. If in Figure 2 empNo is an
identifier of Employee, two interpretations are possible:
(1) an empNo value designates one employee at any point
in time, but the same empNo may designate different
employees at different points in time; (2) an empNo value
will only ever be associated with one employee. MADS
adopts the latter interpretation as default.

4.3 Timestamping and generalization
It is worthwhile exploring how generalization and

timestamping interact. MADS supports is-a links with the
usual semantics of extension inclusion, substitutability,
and property inheritance (where refinement and
redefinition are possible for properties). Inheritance also
applies to timestamps.

Figure 3: Timestamped object types and generalization.

Classification of objects in a generalization hierarchy
may be of two kinds. A cluster of sub-types is static if an
object cannot change its sub-type; it is dynamic otherwise.

 In a static cluster the life cycle of an object in a sub-
type is the same as its life cycle in the super-type. In
Figure 3 (a) persons are classified by gender and there is
no expectation that a person changes his/her gender.

The case is different in a dynamic cluster. Figure 3 (b)
shows a typical example related to roles a person may play.
Clearly, the life cycle of Mary as a student is different from
her life cycle as a person or as a faculty. As shown in the
figure by the repetition of the clock icon, a redefinition of
the timestamp is needed for keeping track of the life cycle
specific to a sub-type. Obviously, the timestamp in a sub-
type must be included in the timestamp of the super-type.
This is the only case where a timestamp is inherently
constrained by another.

A sub-type may be timestamped while its super-type is
not. Figure 3 (c) shows a design decision to keep track of
past, present, and future managers, while being interested
in only current employees. This requires inheritance of
properties to be materialized in manager objects so that,
when an employee object is deleted the inherited
information is kept within the dead manager object.

Constraints applicable to generalization hierarchies
(e.g., partitioning, covering, disjunction) naturally extend
to timestamps. Migration of objects in a dynamic
generalization hierarchy is discussed in Section 4.

4.4 Timestamping relationship types

Figure 4: Timestamped relationship.

Timestamping a relationship type involves keeping
track of the life cycle of its instances. Relationships can be
created, suspended, reactivated, and deleted. In Figure 4,
past, present, and future instances of relationship
WorksOn are kept in the database.

As for object types, timestamped relationships can
have attributes (timestamped or not). As for attributes,
static cardinalities, linking object types to relationship
types, may be complemented with temporal cardinalities
[24].

To prevent dangling references (i.e., a relationship
linking nonexistent objects), most temporal models impose
that a timestamped relationship type can only link
timestamped object types. Moreover, they also constrain
the life cycle of relationship instances so that a
relationship can only exist if the linked objects also exist at
the same time. In MADS there are no such implicit
constraints, although they can be explicitly stated if needed
through predefined temporal integrity constraints.

MADS allows a timestamped relationship type to link
non-timestamped object types. If WorksOn is timestamped
and Employee and Project not, the effect is to keep all
past, present, and future instances of WorksOn
concerning currently valid employees and projects. As
usual, deleting an employee or a project induces the
deletion of the WorksOn instances in which it
participates. Also, a non-timestamped relationship type
may link timestamped object types. This would allow
keeping track of all past, present, and future employees
and projects, while only keeping currently valid WorksOn
assignments.

Finally, MADS does not constrain the life cycle of
relationships. They may link objects that do not exist
simultaneously, e.g., in a relationship linking the author of
a biography to the personality the biography is about.

Figure 5: Timestamped aggregation.

MADS also supports aggregation relationships. Figure
5 shows an example of a timestamped aggregation,
modeling the administrative partitioning of a country (e.g.,
Switzerland) as a set of counties, each one decomposed
into municipalities. The object types and the aggregation
link are timestamped to keep track of evolution: e.g., new
counties or municipalities are created, while other ones

(a) (b) (c)

Person

Man Woman

Person

Student Faculty

Employee

Manager

County ComposedOf Municipality

Employee ProjectWorksOnh(1,3)

disappear; also the membership of municipalities in
counties varies with time, e.g., as a result of a referendum.

5. MODELING DYNAMIC ASPECTS
MADS provides four dynamic relationship types

allowing the description of inter-object dynamics where
time plays an essential role. They are described in the
following sections. As every relationship type, they may be
named, timestamped, have attributes and methods
(timestamped or not), and participate in derivation
formulas and integrity constraints. Some of these links
have been discussed in [11][12][15].

5.1 Transition relationship

Figure 6: Transition relationship.

A transition relationship models the migration of
objects from a source to a target object type. It conveys a
becomes-a semantics. Since it is a dynamic link between
objects sharing the same identity, the source and the target
object types must be members of the same dynamic
generalization hierarchy. Transitions are most frequently
timestamped and they can link non-timestamped objects.

There are two types of transition: evolution, when the
transition object ceases to be an instance of the source
object type, and extension otherwise. In both cases, an
instance of the transition relationship is created either
explicitly by the user, or whenever it can be deduced
automatically. An example of the latter is the case of a
specialization defined by predicates on attribute values.

Figure 6 shows two examples: an evolution from
Student to Alumnus (symbolized by the minus sign), and
an extension from Alumnus to Student, meaning that an
alumnus may become a student while still belonging to the
Alumnus class. Since both transitions are timestamped,
the time at which a transition takes place is also kept.

5.2 Generation relationship
Generation relationships represent processes that lead

to the emergence of new objects: an instance (or a set of
instances) of a source object type(s) generate(s) an instance
(or a set of instances) of a target object type(s).
Generations are n-ary relationships conveying a yields
semantics. They are useful for modeling causal and

temporal relationships involved in the appearance and
disappearance of real-world objects.

The source objects of a generation can be preserved or
consumed. A transformation occurs when all the
instances of the source object types are consumed in the
generation process. A production takes place when all the
source instances survive the generation process. Notice
that it is also possible that some source objects are
preserved while others are consumed.

Figure 7: Generation relationship.

In a cadastral application, a parcel may be split
generating several smaller parcels, or on the contrary,
several parcels may be merged and generate a bigger one.
In Figure 7, the transformation relationship (symbolized
by the minus sign) keeps track of which parcels give rise to
other parcels as well as the period at which the generation
takes place (since the generation is timestamped).

Like transitions, generations are most likely
timestamped, and also apply to non-timestamped objects.
As shown in Figure 7, they bear cardinalities on both sides
of the roles, expressing: (1) how many generation
instances can be linked to an object (i.e., the standard
definition of relationships cardinalities) and (2) how many
objects can be linked to a generation instance.

5.3 Coalescence

Figure 8: Coalescence.

Coalescence is a special case of aggregation with the
meaning that the component objects are snapshots of the
composite object. Derivation formulas may specify how the
life cycle and/or attributes of the composite object are
derived from the component. In Figure 8 the life cycle and
attributes annualSalary and position of an instance e of
Employee are derived from the instances s of
SnapshotEmployee related to e by the coalescence
Versions.

Student AlumnusPromoted

Person

Request

T

T

empNo
annualSalary
position

Employee

Snapshot
Employee

Versions
empNo
salary
position
date year

month

C

Parcel Generates

(1,n)(0,1)

(1,n)(0,n)

G

5.4 Timing relationship
Timing relationships allow specifying constraints on

the life cycles of the participating objects. They convey
useful information even if the related objects are not
timestamped. They allow in particular to express
constraints on schedules of processes. Figure 9 shows a
timing relationship Produces between Project and
Deliverable. A temporal operator during qualifies the
relationship to state that the life cycle of any instance of
Deliverable has to be included in the life cycle of the
related instance of Project.

Figure 9: Timing relationship.

Any formula built on Allen’s temporal operators may
qualify a timing relationship. Allen’s operators are
extended to the comparison of complex life cycles (i.e.,
temporal elements for the four status) in two main ways:
comparing the entire life cycle (i.e., timestamps of birth
and death) or comparing only active periods.

6. IMPLEMENTATION
MADS has been implemented by mapping its

specifications into those of operational database models.
This section describes two typical mappings: the first one
is onto a non-temporal model, ERC+ [21], to show how
time-related aspects are turned into classical structures; the
second one is on the temporal language TSQL2 [20].
Other mappings that have been realized are to the IE
Composer tool [13], and to the Swiss Interlis standard [14]
for GIS data interchange.

6.1 Mapping into ERC+
ERC+ and MADS data structures are equivalent; in

particular both support complex and multivalued
attributes, n-ary relationships, is-a and aggregation links.
Choosing ERC+ as target classical data model allows
focusing on representation issues for temporal
specifications. Moreover, algorithms mapping ERC+ or a
similar model into an object-oriented model (e.g.,
ODMG’s ODL) or a relational model are well known.

Figure 10: Mapping timesamped attr ibutes in ERC+.

Figure 10 shows the mapping of the timestamped
attributes of Figure 1. A timestamped attribute a at any
level, with cardinalities (i,j) and h(c,d), is replaced by a

complex attribute a with cardinality (x,d), composed of
attributes value(1,j) and valid(1,n), where x=0 if c=0, else
x=1. The valid attribute represents the temporal element
associated to the value. It is a complex multivalued
attribute composed of from and to, which are defined
according to the granularity of the original a attribute.

Constraints on values of from and to cannot be
represented in the corresponding ERC+ schema and
should be enforced separately. Such constraints include:

• the values of valid.from and valid.to define disjoint
intervals;

• the intervals specified for mandatory attributes, such
as address and projects, should be contiguous; and

• temporal constraints (e.g., inclusion or covering) over
complex timestamped attributes composed of other
timestamped attributes.

Figure 11: Mapping timestamped object and
relationship types in ERC+.

Figure 11 shows the mapping of the timestamped
object and relationship types of Figure 4. In both cases, a
complex multivalued attribute lifecycle is added with
components status (of domain { does not exist, active,
suspended, dead}) and valid. The valid attribute
represents the temporal element associated to the status.

Notice that cardinalities (0,1) and (1,1) of
timestamped relationships become (0,n) and (1,n),
respectively, in the corresponding ERC+ schema. For
example, in Figure 11, Employee participates in
WorksOn with cardinality (1,3). Indeed, since WorksOn
is a timestamped relationship with temporal cardinality
h(1,3), up to three past, present, and future instances of the
relationship are kept. Thus, an additional constraint
stating that “ for any employee the active periods of all his
WorksOn relationships must be disjoint” is needed in
Figure 11 to express the static (1,1) cardinality in the
original MADS schema of Figure 4.

Dynamic relationships are translated into regular
relationships, with a system attribute TYPE defining the
type of the relationship: transition, generation,
coalescence, or one of the predefined timing relationships
(or the formula given by the designer to define his own
timing relationship). Constraints implement the semantics
of the relationships. For example, a during relationship
generates a temporal integrity constraint specifying that

value

from

valid

toprojName

project

EmployeeempNo
salary dependents

value

from

valid

to

valid

from

value

to

hours

toto

Employee ProjectWorksOn

status

from

lifecycle

validstatus

from

lifecycle

valid status

from

lifecycle

valid

to

(1,3)

Project DeliverableProduces

the temporal element associated to the active status of the
first object is included in that of the second object.

6.2 Mapping onto TSLQ2
Since TSQL2 [20] is based on the relational model,

well-known problems of representing richer conceptual
schemas into relational schemas also apply for TSQL2. In
particular, TSQL2 has no support for complex or
multivalued attributes. Also, both object and relationship
types should be mapped into a single concept, the table.
Further, since TSQL2 is a tuple-timestamped temporal
model, there is no direct way to represent in the same table
several timestamped attributes. The general approach for
mapping a timestamped object or relationship type into
TSQL2 is as follows:

• A main table stores the life cycle of the object or
relationship. This table also stores non-timestamped
monovalued simple attributes (or simple monovalued
components of complex monovalued attributes).

• One additional table for each timestamped
monovalued attribute. For timestamped complex
attributes having timestamped components, one table
is needed for each timestamped level.

• One additional table for each multivalued attribute,
whether timestamped or not. Notice that timestamped
multivalued attribute values are represented by nesting
on the atomic values.

For example, the object type of Figure 2 can be
mapped in TSQL2 in the following set of tables

Employee(empNo,firstName,lastName,address)

EmpSalary(empNo,salary)

EmpDependents(empNo,depend)

EmpProject(empNo,projName)

EmpProjHours(empNo,projName,hours)

where all tables are valid state tables with the appropriate
granularity. Table Employee stores the life cycle of
employees, table EmpProject stores the validity of project
while EmpProjHours keeps the validity of hours. A value
for dependents such as {{John,Mary}@[9/97,12/97],
{John,Mary,Peter}@[1/98,now]}} is represented by 3
tuples in EmpDependents: John and Mary with validity
[9/97, now] and Peter with validity [1/98,now].

The above TSQL2 schema may be optimized if
additional temporal constraints are known. For example, if
there is an equality on project and hours, meaning that at
every point in time that the employee was attached to the
project there is a corresponding value for hours and vice
versa, then tables EmpProject and EmpProjHours in the
above schema could be replaced by

EmpProjHours1(empNo,projName,hours)

where the table keeps the validity of hours and the validity
of the project can be obtained by the restructuring operator
(i.e., temporal projection) in TSQL2 queries.

7. CONCLUSION
Although impressive research efforts have been done

in the field of temporal databases, current results have
produced little impact both on commercial DBMSs and in
the users’ world. We agree with [18] that the main reason
for this situation is the lack of a temporal conceptual
model free of implementation concerns. In this paper we
discussed important issues for defining a temporal
conceptual model. We have shown how the temporal
models proposed so far fail to match all of the criteria for a
conceptual model, although such criteria basically state
general and well-known principles. We have also shown
that existing models tend to impose unnecessary
constraints on temporal features. The MADS model,
whose temporal component is presented here, has been
specifically designed as a conceptual model for spatio-
temporal data. It meets the criteria that have been
identified, and imposes almost no constraint on the usage
of temporal constructs. Moreover, it includes facilities for
explicit modeling of various types of relationships
expressing temporal inter-object dynamics.

MADS was developed in an application framework
and has been used for modeling several real-world
applications: oil management in Colombia, management
of the networks of clear and used waters of the Geneva
city, study of the evolution of the watershed of the upper
part of the Sarine river, and the management of water
resources of the Vaud county. The users’ feedback received
from using MADS in these applications is very
encouraging. In the water management case we were able
to measure the benefit of using MADS instead of a
traditional ER model, in terms of simplicity of the schema:
MADS remodeling reduced the number of object and
relationship types by a factor of 23% [16]. Moreover, using
MADS lead the application designers to discover the
importance of temporal information within their
application.

Ongoing work to further extend the temporal features
of MADS includes:

• Supporting imprecise time, future time, relative time,
and branching time.

• Bridging the gap to legacy applications. This is crucial
since most applications already manage temporal
information in an informal and ad hoc manner.

• Integration of databases with different time
granularities, as well as coexistence of temporal and
non-temporal data. Solving such heterogeneity issues
is important in particular for geographical databases,
where reuse is a must due to the cost of acquiring
spatial information.

• Definition of a visual data manipulation language for
expressing temporal queries in the conceptual
paradigm, as well as a language for expressing
temporal integrity constraints. Although there is an
abundant literature in temporal languages and
temporal logics, there is still an important need for
more user-oriented languages.

All of these will be validated by handing over our results to
users and getting their feedback from experimentation in
real applications.

8. ACKNOWLEDGMENTS
This work has been supported by the Swiss

Commission for Technology and Innovation. It benefited
from cooperation with the Administration Cantonale
Vaudoise and Texas Instruments Software.

9. REFERENCES
[1] J. Allen. Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11): 832-
843, 1983.

[2] E. Bertino, E. Ferrari, and G. Guerrini. T_Chimera: A
temporal object-oriented data model. Theory and
Practice of Object Systems, 3(2):103-125, 1997.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. Unified
Modeling Language: User Guide. Addison-Wesley,
1998. To appear.

[4] T. Catarci and M.F. Costabile. Visual Query Systems.
Journal of Visual Languages and Computing, 7(3):
243-245, 1996.

[5] R.G.G. Cattell and D.K. Barry (Eds.). The Object
Database Standard: ODMG 2.0. Morgan Kaufmann
Publishers, 1997.

[6] J. Chomicki. Temporal query languages: A survey. In
Proc. of the 1st Int. Conf. on Temporal Logic, 506-
534. Springer-Verlag, LNAI 827, 1994.

[7] J. Clifford and A. Tuzhilin. Recent Advances in
Temporal Databases. Proc. of the Int. Workshop on
Temporal Databases. Springer-Verlag, Zurich,
Switzerland, 1995.

[8] Y. Dennebouy et al. SUPER: Visual interfaces for
object + relationship data models. Journal of Visual
Languages and Computing, 6(1):73-99, 1995.

[9] R. Elmasri, G. Wuu, and V. Kouramajian. A temporal
model and query language for EER databases. In [23],
212-229.

[10] H. Gregersen, C.S. Jensen, and L. Mark. Evaluating
Temporally Extended ER Models. In Proc. of the 2nd
CAiSE97 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design,
Barcelona, Spain, 1997.

[11] R. Gupta and G. Hall. An abstraction mechanism for
modeling generation. In Proc. of ICDE’92, 650-658,
Tempe, Arizona, 1992.

[12] G. Hall and R. Gupta. Modeling transition. In Proc. of
ICDE’91, 540-549, Kobe, Japan, 1991. IEEE
Computer Society.

[13] IEF Information Engineering Facility, A Guide to
Information Engineering Using the IEF, Texas
Instruments, 1988.

[14] S.F. Keller. A presentation model and a mapping
language for INTERLIS. Document RFC-1101e,
Federal Directorate of Cadastral Surveying,
Switzerland, September 1997.

[15] J.L. de Oliveira, F. Pires, and C. Bauzer Medeiros. An
Environment for Modeling and Design of Geographic
Applications. Geoinformatica, 1(1):29-58, 1997.

[16] C. Parent. Modélisation de Gesreau en MADS, EPFL-
DI-LBD Project Report, Lausanne, Switzerland, 1995.

[17] C. Parent et al. Modeling Spatial Data in the MADS
conceptual model. In Proc. of SDH’98, 138-150,
Vancouver, Canada, 1998.

[18] N. Pissinou et al. Towards an Infrastructure for
Temporal Databases, SIGMOD Record, 23(1):35-51,
1994.

[19] R. Snodgrass. Temporal object oriented databases: A
critical comparison. In Modern Database Systems:
The Object Model, Interoperability, and Beyond, 386-
408. Addison-Wesley, 1995.

[20] R. Snodgrass (Ed.). The TSQL2 Temporal Query
Language. Kluwer Academic Publishers, 1995.

[21] S. Spaccapietra and C. Parent. ERC+: An Object
based Entity Relationship Approach. In Conceptual
modeling, databases, and CASE, 69-86. John Wiley &
Sons, 1992.

[22] A. Steiner and M.C. Norrie. Temporal object role
modeling. In Proc. of CAiSE’97, 245-258, Barcelona,
Spain, 1997.

[23] A. U. Tansel et al.. Temporal databases. Theory,
design, and implementation. Benjamin/Cummings,
1993.

[24] B. Tauzovich. Towards Temporal Extensions of the
Entity-Relationship Model. In Proc. of ER’91, pages
163-179, San Mateo, California, 1991

[25] Y. Wu, S. Jajodia, and X. S. Wang. Temporal
Database Bibliography Update,
http://www.isse.gmu.edu/~csis/tdb/bib97/bib97.html

[26] G.T.J. Wuu and U. Dayal: A Uniform Model for
Temporal and Versioned Object-oriented Databases,
in [23], 230-247.

