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ABSTRACT 
In this paper, we propose a new integration approach for 
simulation and behaviour in the learning context that is able to 
coherently manage the shared virtual environment for the 
simulation of autonomous virtual agents. Our low-level learning 
technique has proved fast, simple and robust. It is also able to 
automatically learn behavioural models for difficult tasks. Thus, 
we believe it will be more useful to the computer graphics 
community than a technique based on the classical Q-learning 
approach. The results are illustrated in two case studies that 
require effective coordination of behaviours. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning; I.3.6 [Computer 
Graphics]: Methodology and Techniques – Interaction 
techniques; I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism - Animation. 

General Terms 
Algorithms, Human Factors, Performance. 

Keywords 
Computer animation, character animation, reinforcement learning, 
behavioural modelling, AI-based animation, machine learning. 

1. INTRODUCTION 
Autonomous Virtual Agents (AVAs) play an important role in 
computer graphics. Animating them is one of the fundamental 
challenges. 
In this paper we are presenting research in the domain of 
behavioural animation using a low-level learning technique. This 
is accomplished with a behavioural model defining how an AVA  

 
reacts to stimuli from its environment. 
Human-like behaviour is achieved through the use of a complex 
“cognitive map” and the application of a hierarchy of behavioural 
strategies [1]. The overall cognitive mapping process involves 
acquisition, coding, storage, recall and decoding of environmental 
information [2]. In fact, an individual “cognitive map” will often 
contain numerous inaccuracies or distortions [3]. Many of these 
anomalies result from the fact that humans use a predominantly 
visual perception system and are not capable of processing 
everything they see due to the tremendous amount of incoming 
information. Other errors result from the way the information is 
processed and stored within the “cognitive map” structure itself 
[4]. 
Previously, [5] have proposed new methodologies to carry out the 
mapping of all information coming from virtual sensors of vision, 
audition and touch as well as from the Virtual Environment (VE) 
in the form of a “cognitive map”. The approach enables the partial 
re-mapping of cognitive and semantic information at a 
behavioural level. For example, when spatial attention is primed 
with tactile stimulation, the location of the attention spotlight is 
only partially remapped in visual coordinates. This framework 
will generate the multi-sensory information necessary for our 
behavioural learning. 
In summary, this paper presents an original contribution with a 
novel approach allowing an AVA to independently learn a 
behavioural model. 
This paper is organized as follows: Section 2 – State of the Art; 
Section 3 – Methodology; Section 4 - Integration; Section 5 – 
Experimental Results with two Case Studies; Section 6 – 
Discussion. 

2. STATE OF THE ART 
A great deal of research has been performed on the control of 
animated autonomous characters by [6], [7], [8] and [9]. The 
various techniques have produced impressive results, but they are 
limited. They have no learning ability and are therefore limited to 
explicit pre-specified behaviours. 
On-line behavioural learning has begun to be explored in 
computer graphics [10] and [11]. A notable example is in [12], 
where a virtual dog can be interactively taught by the user to 
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exhibit a desired behaviour. This technique is based on 
Reinforcement Learning (RL) and it has been shown to work well 
in [13]. Also, since all these learning techniques are designed to 
be used on-line, they have, for the sake of interactive speed, a 
limited learning capacity. 
In RL, the machine learning of an input-output mapping is 
performed through continued interaction with an environment in 
order to maximize a scalar index of performance. This 
performance index is called a fitness function. Some of the 
earliest research in computer graphics involving RL sought to 
make AVAs automatically learn how to walk, swim, or jump [14] 
and [15]. However, whilst interesting and useful, this type of 
learning does not provide AVAs with decision-making abilities. 
On-line behavioural (reactionary) learning in computer graphics 
is a new field of exploration. 
The goal of RL is to automatically learn an optimal policy. 
Optimal implies that the policy always maps the current state to 
the best possible action according to the fitness function. Since it 
is impractical to store a large Q-factor table explicitly, it must be 
approximated. We have performed several experiments using Q-
learning for AVA learning, where the only information available 
to an AVA was a fitness function. Previously, [13] have 
demonstrated the difficulty of this approach. Firstly, to obtain 
stable results, the Q-factor table must be approximated to a high 
degree of accuracy. Secondly, Q-learning is harder to perform if 
there are no terminal states. Also, as discussed in [16], Q-learning 
can be challenging to successfully use, especially since it requires 
the animator to visit every state-action many times. 
The technique presented in this paper is built on the success of 
traditional behavioural modelling with the goal of alleviating two 
of its major weaknesses: performance and time-consuming 
construction. In our opinion, the difficulties associated with Q-
learning make it an undesirable approach for our application. For 
this reason, we have developed an alternative technique for AVA 
low-level learning. The objective is to allow an AVA to explore 
its unknown VE and to build structures, in the form of cognitive 
models or maps, based on this exploration. Once its representation 
has been constructed, the AVA could then easily communicate its 
knowledge to, for example, other naive AVAs. 

3. METHODOLOGY 
In this section we introduce our low-level learning methodology. 
This means that an AVA can automatically learn a behavioural 
model. We have developed a new technique to perform AVA 
learning, using a tree search with Inverse Reinforcement Learning 
(IRL). 

3.1 Planning-based Reinforcement Learning 
(RL) with Subagents 
Given the shortcomings of Q-learning discussed above, we have 
developed an alternative approach to AVA low-level learning by 
computing discrete examples of a policy. 
A planning-based RL technique will only learn a sub-optimal 
policy, the quality of which depends on the search depth limit 
used [17] and [18]. To ensure that on the whole an AVA's 
behaviour is optimal, we utilize the Q-decomposition approach 
proposed by [19], where only the sum of the subagent Q-values 
for a particular state determines the optimal action. This requires 
each subagent to indicate, from its perspective, a value for every 

action. Subagent j reports its action values Qj (s, a) for the current 
state s to the arbitror. Then, the arbitror chooses an action 
maximizing the sum of the Q-values (see Figure 1). In our 
proposed methodology we use pseudo values – instead of Q-
values – for vision (Pvvision), avoidance (Pvavoidance) and navigation 
(Pvnavigation) to trade-off different features of virtual sensors. 
 
 
 
 
 
 
 
 
 
 
Figure 1: (left) Planning is performed with a tree search 
algorithm A* of all proposed actions throughout the time 
limit. (right) The arbitror chooses an action maximizing the 
sum of the pseudo values (Action5). 

3.2 Apprenticeship Learning via Inverse 
Reinforcement Learning (IRL) 
It may be impossible to use straightforward RL since an AVA 
may only have an approximate idea of the reward function which, 
when optimised, should generate a “desirable” behaviour. We 
believe that the difficulty of manually specifying a reward 
function represents a barrier to the broader applicability of RL 
and the optimal control of the algorithms.  

As the entire field of RL is founded on the supposition that the 
reward function, rather than the policy or the value function, 
constitutes the most succinct, robust and transferable definition of 
the task, it seems natural to consider an apprenticeship learning 
approach via IRL [20] to learn the reward function. 

In the learning process, one source of information consists of 
observing the behaviour of other “expert” AVAs as in imitation 
and apprenticeship learning. In this context, it is commonly 
assumed that the purpose of observation is to learn a policy which 
is represented by the mapping of states to actions. 

 

 

 

 

 

 

 

 
 
Figure 2: Apprenticeship learning via IRL is performed after 
m trajectories generated by the expert. 
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In our methodology, IRL is used in apprenticeship learning to 
acquire a skilled behaviour and to ascertain the optimisation of a 
reward function through a natural system. Yet, in using IRL, it is 
difficult to extract an observed reward function [21]. This is a 
fundamental challenge in theoretical biology, econometrics and 
other fields. 

Using this method, an AVA can automatically learn a behavioural 
model. For the animator, this alleviates the workload of 
programming an explicit behavioural model (see Figure 2). 

4. INTEGRATION 
The integration of our low-level learning technique combined 
with different machine-learning techniques – but with several 
greatly improved – will be more useful to the computer graphics 
community than techniques based on a purely machine-learning 
approach (see Figure 3). 

 
 

 
 
 
 
 
 

Figure 3: Comprehensive UML design of AVA low-level 
Learning (AVAlowLEARN). (left) State and action space. 
(right) Multi-sensory information necessary for our 
behavioural learning. 
 
Firstly, we used a tree search algorithm A* [22] to observe the 
trajectories (state sequences) generated by the user (expert) and 
which take actions according to πE (πexpert).  
Secondly, we integrated the same Q-decomposition approach as 
[19], which uses all pseudo value function components (vision, 
avoidance and navigation) to choose the actions. Q-decomposition 
allows for multiple value functions, with each of these residing in 
a subagent, but it still requires each subagent to report its value 
estimates to an arbitror and to receive in turn the action chosen 
by the arbitror. 
Thirdly, we took the apprenticeship learning via IRL with the 
projection algorithm proposed by [20] and adapted it to our 
behavioural animation. 

A policy π is a mapping from states to probability distributions 
over actions. Given that the reward R is expressible as a linear 
combination of the features φ, the expectation values of the 
features for a given policy π completely determine the expected 
sum of discounted rewards for acting according to that policy (see 
Figure 4).  
Given a MDP\R (denotes a Markov Decision Process without a 
reward function), a feature mapping φ and the expert’s feature 
expectations µE, the problem is to find a policy whose 
performance is close to that of the expert’s, on the unknown 
reward function R* = ω*. φ. 
 

 
Figure 4: Reinforcement Learning (RL) description with a 
finite-state Markov Decision Process (MDP). 
 
The apprenticeship learning projection algorithm proposed by 
[20] for finding a policy is as follows (pseudo-code): 

1. Randomly we pick some policy π(0), µ(0) = µ(π(0)), and 
set i = 1. 
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3. If t(i) ≤ ε, then terminate. 

4. Using the RL algorithm, compute the optimal policy π(i) 
for the MDP using rewards R = (ω(i))T φ. 

5. Estimate µ(i) = µ(π(i)). 
6. Set i = i + 1, and go back to step 2. 

 Upon termination, the algorithm returns {π(i): i = 0 … n}. 
The performance of this algorithm only depends on 
(approximately) matching the feature expectations, not on 
recovering the true underlying reward function. 

5. EXPERIMENTAL RESULTS WITH 
TWO CASE STUDIES 
To test whether our low-level learning model was qualitatively 
able to learn the demonstrated AVA's behaviour, we created two 
environments requiring effective coordination of behaviours: a 
virtual apartment and a more complex situation with a car driving 
simulation inside a virtual city. 

5.1 Case Study No. 1: an AVA learning to 
avoid obstacles and to navigate inside a virtual 
apartment 
We chose to simulate an AVA in an apartment where he can 
“live” autonomously by perceiving his VE and generating a few 
behaviours at specific locations. 
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We can test our behavioural model applied to an AVA by 
implementing the model in C++ and Python [23] thanks to the 
Python module of the real time framework [24] for advanced 
virtual human simulations. 
As depicted in Figure 5, an interface has been designed to monitor 
and change, if necessary, the evolution of the AVA’s states and 
actions in real-time inside the virtual apartment. The path 
planning module [25] is applied for obstacle avoidance when the 
AVA walks to a specific location (see Figure 6). It is also utilized 
to the decisions the AVA makes. Its 3D viewer shows, in real-
time, what the AVA decides to do at each moment and can play 
keyframes for the learned actions using the walk engine [26]. 

 

 
Figure 5: Top view of the virtual apartment. 

 
 

 
Figure 6: (upper left corner) Top view of the virtual 
apartment with path planning after low-level learning 
process. The AVA is now inside the kitchen. 

 
Figure 7 shows the inputs and outputs of the behavioural model 
for the navigation inside a virtual apartment. The input for Vision 
(r, φ) is the spherical coordinates of the AVA's head. Our 
Artificial Life Environment (ALifeE) [5] gives multi-sensory 
information to the AVA's sensors of vision, audition and touch 
(see Figure 3). 
 

 
 

 
 
 
 
Figure 7: Behavioural model for the navigation inside a 
virtual apartment with inputs and outputs. The MDP has two 
different actions: walk and orientation. 
 
In the first scenario (see Figures 8 a), b) and c)), an AVA learns 
the behaviour of taking a CD box from the kitchen table. Then, 
the AVA walks around inside the different rooms whilst taking 
care to observe and avoid virtual objects and also navigates with a 
path planning between doors. Finally, the AVA puts the CD box 
on the desk in the office. 
 

       

     
Figures 8 a), b) and c): Snapshots of the AVA learning 
(through seeing, avoiding and navigating) to take a CD box 
from the kitchen table and to put in on the office desk. 
 
In the second scenario (see Figures 9 a), b) and c)), an AVA 
learns to take a glass from the living room table or from the 
bedroom shelf and to bring it to the kitchen. 
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Figures 9 a), b) and c): Snapshots of the AVA learning 
(through seeing, avoiding and navigating) to take a glass from 
the living room table and to bring it to the kitchen. 
 
The two scenarios were reported in Table 1 to illustrate the 
performance of our low-level learning methodology. Using our 
methodology, only a few sample trajectories were needed to attain 
a performance mimicking that of the expert. Thus, by learning a 
compact representation of the reward function, our methodology 
outperformed. 
 
Table 1. Plot of performances obtained with our low-level 
learning methodology. All animations were rendered in real 
time using OpenGL on a 3.0 GHz PC with an nVIDIA 
GeForce FX Go5350 video card. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
   

5.2 Case Study No. 2: an AVA learning to 
drive a car inside a virtual city 
We implemented our approach to learn the behavioural model 
applied to a car driving simulation inside a virtual city. An AVA 
is the driver and has dual control over the acceleration and the 
wheel of the car (see Figure 10). The controls are real-value (e.g., 

the action space is continuous) and the car can move to any 
location or take any orientation. 
 
 
 
 
 
 
Figure 10: Behavioural model for the car driving simulation 
inside a virtual city with inputs and outputs. The MDP has 
two different actions: gas and wheel. 
 
Figure 10 shows the inputs and outputs of the behavioural model 
for the car driving simulation inside a virtual city. The input for 
Distance (x) is the distance between the driver and the traffic 
signal. 
The continuous action space was quantified to achieve real-time 
performance. The simulation ran at 15 [frames/s] and the expert's 
features were estimated from a single trajectory of 2'700 samples, 
corresponding to 3 minutes of driving time. 
Our approach communicates the semantic information required 
for the "right way" behaviour of our low-level learning method in 
two ways: 

 adding semantics to dynamic objects, and 
 adding tools to sound, pedestrians and semantic objects 

(e.g., road signals). 
 
Adding Semantics to Dynamic Objects 

The appropriate description of tools for autonomous cars and 
pedestrians is available inside our simulation application. We use 
scripts to configure the VE application and to determine the 
behaviour of the autonomous cars in each different situation. The 
behaviour of the autonomous cars is controlled with Python 
scripts [23]. To simulate the life of a virtual city in a realistic 
manner, the VE also integrates some semantic notions about 
specific areas.  
 
 Adding Tools to Sound, Pedestrians and Semantic Objects 
 We have defined three types of plug-ins: 

1. The plug-in for sound permits the definition of the 
properties of the sound environment in 3Ds max® (3D 
render software). To achieve a realistic illusion, it is 
important to generate a 3D spatialization in sound. The 
geometry of each object is transformed into a list of 
points outlining the sound obstacle. We define four types 
of sound primitives: environment, obstacle, listener and 
sound source. Inside the VE, we can have several sound 
sources with the following essential parameters: position, 
orientation (e.g., the direction of propagation) and ray 
configuration of the two cones of propagation. A sound 
source can be attenuated, absorbed or reflected 
depending on when the sound strikes an obstacle. The 
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obstacles are characterized by a two dimensional 
contour. 

2. The plug-in for pedestrians covers a crowd composed of 
two types of people: those who walk in the virtual city 
with a precise goal and those who stroll. 

3. The plug-in for semantic objects, inspired by the smart 
objects concept [27], gives significance to the road 
signals and traffic lights so that the sensory module of 
vision [5] can recognize them. 

Figure 11: AVA learning to drive a car inside a virtual city 
with visual pseudo-perception. 

 
Using our plug-ins along with 3Ds max®, designers have the 
information necessary to construct all types of VEs. We are now 
able to create the semantic information for our simulation but it 
will have a static character. However, we wish to obtain dynamic 
semantic information and we will use pseudo-perception (see 
Figure 11) or virtual perception [5] to achieve this goal.  

In our car driving simulation, φ is the vector of the features 
indicating the different driving desiderata that need to be 
accounted for, such as a collision with another car, a pedestrian or 
a virtual object, or driving on the sidewalk, for example. The 
unknown vector ω* specifies the relative weight of these various 
desiderata. 
Blindly following the expert’s trajectory would not work, because 
the pattern of traffic encountered is different each time. 
We applied apprenticeship learning to try to learn behaviours to 
avoid pedestrians and to take traffic lights into account (e.g., stop 
at a red light, decelerate at an orange light and keep driving at a 
green light). 
The final result was a good driving behaviour, since the driver 
could plan far enough ahead to manoeuvre the car adequately 
around the virtual city, avoiding pedestrians and reacting 
correctly to traffic lights (see Figures 12 a) and b)). 
 
 

 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
Figure 12 a): The car "sees" the traffic lights and the 
pedestrian inside a circular zone. The panel informs the 
driver that he/she must brake (B – in red at bottom right 
corner). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12 b): A pedestrian wishes to cross the road according 
to the rules defined.  
 
We achieved our best results by performing the low-level learning 
method for 40 iterations and a policy was selected by inspection 
(see Table 2). 

 
Table 2. Results obtained with our low-level learning 
methodology and one driving style (as estimated from 3 
minutes of driver demonstration). All animations were 
rendered in real time using OpenGL on a 3.0 GHz PC with an 
nVIDIA GeForce FX Go5350 video card. 
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Our method was qualitatively able to mimic the demonstrated 
driving style. Table 2 shows the feature expectations of the expert 
(driver) µe, the feature expectations learned µ(π) and the weights 
ω used to generate the policy. 
 Although our technique performed well in our two case studies, 
there is no guarantee that it will work for every imaginable AVA 
and simulated VE. 

6. DISCUSSION 
Our low-level learning technique has proved to be fast, simple 
and robust. It has also succeeded in automatically learning 
behavioural models for difficult tasks. Thus, we believe it will be 
more useful to the computer graphics community than a technique 
based on the classical Q-learning approach. Unlike explicit Q-
learning, our technique is not guaranteed to find an optimal 
policy. But Q-learning is usually impractical because of a large 
Q-factor table 
Our AVA low-level learning technique will only learn a sub-
optimal policy, whose quality depends on the selected search 
depth limit. However, optimality is probably not necessary to 
achieve the appearance of intelligent behaviour in an AVA. 
Indeed, good behaviour usually looks just as, if not more, realistic 
than perfect behaviour 
With our method, an AVA can automatically learn a behavioural 
model. For the animator, this relieves the workload of designing 
an explicit model. Moreover, it allows to model tasks for which it 
would be difficult or virtually impossible, to develop an explicit 
model. 
Our work needs to be distinguished from that of [28]. In fact, 
when they performed off-line AVA learning, it could be difficult 
to design a fitness function that resulted exactly in the desired 
behavioural model. Our contribution in this paper is important 
because we present a solution for this previously unsolved 
problem and also we perform on-line AVA low-level learning.  
In the robotics field, various methods like teaching by imitation, 
imitation learning or learning by observation are effective. 
However, since they are not automatic, they cannot be used for 
on-line adaptation. The technique presented by [29] for teaching a 
robot simple navigational behaviours is too limited for AVA 
behavioural learning. By comparison, our mimicking method is 
less general, but is fully automatic, learns quickly and can easily 
encapsulate very complex behaviours. One of its most original 
aspects is indeed to detect automatically novel behaviours. 
However, there are some weaknesses in our approach. When 
performing AVA low-level learning, it can be difficult to find a 
policy that exactly corresponds to the desired behavioural model. 
Also, the reward function should be expressible as a linear 
combination of known features. 
The methodology behind automatic learning behaviour is difficult 
but interesting. This could take interactive computer graphics, 
especially in the entertainment market, to a completely new level. 
It could also be interesting if an animator could interactively train 
an AVA for behavioural learning, rather than using a reward 
value. 
The approach presented here is part of a more complex model that 
is the object of our research. The goal is to realize an Artificial 

Life environment for an AVA including different interfaces and 
sensorial modalities coupled with various evolving learning 
methodologies. 
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