
Learnable Behavioural Model for Autonomous Virtual
Agents: Low-Level Learning

Toni Conde

Ecole Polytechnique Fédérale de
Lausanne (EPFL)

Virtual Reality Lab (VRLab)
CH-1015 Lausanne, Switzerland

toni.conde@epfl.ch

 Daniel Thalmann
Ecole Polytechnique Fédérale de

Lausanne (EPFL)
Virtual Reality Lab (VRLab)

CH-1015 Lausanne, Switzerland

daniel.thalmann@epfl.ch

ABSTRACT
In this paper, we propose a new integration approach for
simulation and behaviour in the learning context that is able to
coherently manage the shared virtual environment for the
simulation of autonomous virtual agents. Our low-level learning
technique has proved fast, simple and robust. It is also able to
automatically learn behavioural models for difficult tasks. Thus,
we believe it will be more useful to the computer graphics
community than a technique based on the classical Q-learning
approach. The results are illustrated in two case studies that
require effective coordination of behaviours.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.3.6 [Computer
Graphics]: Methodology and Techniques – Interaction
techniques; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation.

General Terms
Algorithms, Human Factors, Performance.

Keywords
Computer animation, character animation, reinforcement learning,
behavioural modelling, AI-based animation, machine learning.

1. INTRODUCTION
Autonomous Virtual Agents (AVAs) play an important role in
computer graphics. Animating them is one of the fundamental
challenges.
In this paper we are presenting research in the domain of
behavioural animation using a low-level learning technique. This
is accomplished with a behavioural model defining how an AVA

reacts to stimuli from its environment.
Human-like behaviour is achieved through the use of a complex
“cognitive map” and the application of a hierarchy of behavioural
strategies [1]. The overall cognitive mapping process involves
acquisition, coding, storage, recall and decoding of environmental
information [2]. In fact, an individual “cognitive map” will often
contain numerous inaccuracies or distortions [3]. Many of these
anomalies result from the fact that humans use a predominantly
visual perception system and are not capable of processing
everything they see due to the tremendous amount of incoming
information. Other errors result from the way the information is
processed and stored within the “cognitive map” structure itself
[4].
Previously, [5] have proposed new methodologies to carry out the
mapping of all information coming from virtual sensors of vision,
audition and touch as well as from the Virtual Environment (VE)
in the form of a “cognitive map”. The approach enables the partial
re-mapping of cognitive and semantic information at a
behavioural level. For example, when spatial attention is primed
with tactile stimulation, the location of the attention spotlight is
only partially remapped in visual coordinates. This framework
will generate the multi-sensory information necessary for our
behavioural learning.
In summary, this paper presents an original contribution with a
novel approach allowing an AVA to independently learn a
behavioural model.
This paper is organized as follows: Section 2 – State of the Art;
Section 3 – Methodology; Section 4 - Integration; Section 5 –
Experimental Results with two Case Studies; Section 6 –
Discussion.

2. STATE OF THE ART
A great deal of research has been performed on the control of
animated autonomous characters by [6], [7], [8] and [9]. The
various techniques have produced impressive results, but they are
limited. They have no learning ability and are therefore limited to
explicit pre-specified behaviours.
On-line behavioural learning has begun to be explored in
computer graphics [10] and [11]. A notable example is in [12],
where a virtual dog can be interactively taught by the user to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’06, May 8–12, 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005…$5.00.

 89

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

exhibit a desired behaviour. This technique is based on
Reinforcement Learning (RL) and it has been shown to work well
in [13]. Also, since all these learning techniques are designed to
be used on-line, they have, for the sake of interactive speed, a
limited learning capacity.
In RL, the machine learning of an input-output mapping is
performed through continued interaction with an environment in
order to maximize a scalar index of performance. This
performance index is called a fitness function. Some of the
earliest research in computer graphics involving RL sought to
make AVAs automatically learn how to walk, swim, or jump [14]
and [15]. However, whilst interesting and useful, this type of
learning does not provide AVAs with decision-making abilities.
On-line behavioural (reactionary) learning in computer graphics
is a new field of exploration.
The goal of RL is to automatically learn an optimal policy.
Optimal implies that the policy always maps the current state to
the best possible action according to the fitness function. Since it
is impractical to store a large Q-factor table explicitly, it must be
approximated. We have performed several experiments using Q-
learning for AVA learning, where the only information available
to an AVA was a fitness function. Previously, [13] have
demonstrated the difficulty of this approach. Firstly, to obtain
stable results, the Q-factor table must be approximated to a high
degree of accuracy. Secondly, Q-learning is harder to perform if
there are no terminal states. Also, as discussed in [16], Q-learning
can be challenging to successfully use, especially since it requires
the animator to visit every state-action many times.
The technique presented in this paper is built on the success of
traditional behavioural modelling with the goal of alleviating two
of its major weaknesses: performance and time-consuming
construction. In our opinion, the difficulties associated with Q-
learning make it an undesirable approach for our application. For
this reason, we have developed an alternative technique for AVA
low-level learning. The objective is to allow an AVA to explore
its unknown VE and to build structures, in the form of cognitive
models or maps, based on this exploration. Once its representation
has been constructed, the AVA could then easily communicate its
knowledge to, for example, other naive AVAs.

3. METHODOLOGY
In this section we introduce our low-level learning methodology.
This means that an AVA can automatically learn a behavioural
model. We have developed a new technique to perform AVA
learning, using a tree search with Inverse Reinforcement Learning
(IRL).

3.1 Planning-based Reinforcement Learning
(RL) with Subagents
Given the shortcomings of Q-learning discussed above, we have
developed an alternative approach to AVA low-level learning by
computing discrete examples of a policy.
A planning-based RL technique will only learn a sub-optimal
policy, the quality of which depends on the search depth limit
used [17] and [18]. To ensure that on the whole an AVA's
behaviour is optimal, we utilize the Q-decomposition approach
proposed by [19], where only the sum of the subagent Q-values
for a particular state determines the optimal action. This requires
each subagent to indicate, from its perspective, a value for every

action. Subagent j reports its action values Qj (s, a) for the current
state s to the arbitror. Then, the arbitror chooses an action
maximizing the sum of the Q-values (see Figure 1). In our
proposed methodology we use pseudo values – instead of Q-
values – for vision (Pvvision), avoidance (Pvavoidance) and navigation
(Pvnavigation) to trade-off different features of virtual sensors.

Figure 1: (left) Planning is performed with a tree search
algorithm A* of all proposed actions throughout the time
limit. (right) The arbitror chooses an action maximizing the
sum of the pseudo values (Action5).

3.2 Apprenticeship Learning via Inverse
Reinforcement Learning (IRL)
It may be impossible to use straightforward RL since an AVA
may only have an approximate idea of the reward function which,
when optimised, should generate a “desirable” behaviour. We
believe that the difficulty of manually specifying a reward
function represents a barrier to the broader applicability of RL
and the optimal control of the algorithms.

As the entire field of RL is founded on the supposition that the
reward function, rather than the policy or the value function,
constitutes the most succinct, robust and transferable definition of
the task, it seems natural to consider an apprenticeship learning
approach via IRL [20] to learn the reward function.

In the learning process, one source of information consists of
observing the behaviour of other “expert” AVAs as in imitation
and apprenticeship learning. In this context, it is commonly
assumed that the purpose of observation is to learn a policy which
is represented by the mapping of states to actions.

Figure 2: Apprenticeship learning via IRL is performed after
m trajectories generated by the expert.

Apprenticeship Learning

via IRL
(to acquire a skilled behaviour)

S2

S5

Goal

S0

m = 1
(trajectory)

Action5

Start
Apprenticeship Learning

via IRL
(to acquire a skilled behaviour)

S2

S5

Goal

S0

m = 1
(trajectory)

Action5

Start

S0

S1 S2

S3 S4
S5

S2Subagent
j=a,b and c

of S2
Action5

Tree Search Algorithm A*

Arbitror

Goal

Pvvision

Pvnavigation

Pvavoidance

S2a

S2b

S2c

Start

Action

Action

Action

S0

S1 S2

S3 S4
S5

S2Subagent
j=a,b and c

of S2
Action5

Tree Search Algorithm A*

Arbitror

Goal

Pvvision

Pvnavigation

Pvavoidance

S2a

S2b

S2c

Start

Action

Action

Action

 90

In our methodology, IRL is used in apprenticeship learning to
acquire a skilled behaviour and to ascertain the optimisation of a
reward function through a natural system. Yet, in using IRL, it is
difficult to extract an observed reward function [21]. This is a
fundamental challenge in theoretical biology, econometrics and
other fields.

Using this method, an AVA can automatically learn a behavioural
model. For the animator, this alleviates the workload of
programming an explicit behavioural model (see Figure 2).

4. INTEGRATION
The integration of our low-level learning technique combined
with different machine-learning techniques – but with several
greatly improved – will be more useful to the computer graphics
community than techniques based on a purely machine-learning
approach (see Figure 3).

Figure 3: Comprehensive UML design of AVA low-level
Learning (AVAlowLEARN). (left) State and action space.
(right) Multi-sensory information necessary for our
behavioural learning.

Firstly, we used a tree search algorithm A* [22] to observe the
trajectories (state sequences) generated by the user (expert) and
which take actions according to πE (πexpert).
Secondly, we integrated the same Q-decomposition approach as
[19], which uses all pseudo value function components (vision,
avoidance and navigation) to choose the actions. Q-decomposition
allows for multiple value functions, with each of these residing in
a subagent, but it still requires each subagent to report its value
estimates to an arbitror and to receive in turn the action chosen
by the arbitror.
Thirdly, we took the apprenticeship learning via IRL with the
projection algorithm proposed by [20] and adapted it to our
behavioural animation.

A policy π is a mapping from states to probability distributions
over actions. Given that the reward R is expressible as a linear
combination of the features φ, the expectation values of the
features for a given policy π completely determine the expected
sum of discounted rewards for acting according to that policy (see
Figure 4).
Given a MDP\R (denotes a Markov Decision Process without a
reward function), a feature mapping φ and the expert’s feature
expectations µE, the problem is to find a policy whose
performance is close to that of the expert’s, on the unknown
reward function R* = ω*. φ.

Figure 4: Reinforcement Learning (RL) description with a
finite-state Markov Decision Process (MDP).

The apprenticeship learning projection algorithm proposed by
[20] for finding a policy is as follows (pseudo-code):

1. Randomly we pick some policy π(0), µ(0) = µ(π(0)), and
set i = 1.

µ(π) = E [∑∞
t=0 γt . φ(st) | π] ε ℜk

(µ(π) is the expected discounted accumulated features
value vector)

2. Set µ)1(−i =

)(
)2()1()2()1(

)2()2()1(
)2()1()2(

)()(
)()(µµ

µµµµ
µµµµµ −−−

−
−−−−

−−−
+

−−

−− ii

T

T

i

iiii

i
E

ii

(This computes the orthogonal projection of µE onto the
line throughµ)2(−i andµ)1(−i).

 Set µµω

)1()(−−= ii
E

Set µµ)1()(
2

−−= i
E

it

3. If t(i) ≤ ε, then terminate.

4. Using the RL algorithm, compute the optimal policy π(i)
for the MDP using rewards R = (ω(i))T φ.

5. Estimate µ(i) = µ(π(i)).
6. Set i = i + 1, and go back to step 2.

 Upon termination, the algorithm returns {π(i): i = 0 … n}.
The performance of this algorithm only depends on
(approximately) matching the feature expectations, not on
recovering the true underlying reward function.

5. EXPERIMENTAL RESULTS WITH
TWO CASE STUDIES
To test whether our low-level learning model was qualitatively
able to learn the demonstrated AVA's behaviour, we created two
environments requiring effective coordination of behaviours: a
virtual apartment and a more complex situation with a car driving
simulation inside a virtual city.

5.1 Case Study No. 1: an AVA learning to
avoid obstacles and to navigate inside a virtual
apartment
We chose to simulate an AVA in an apartment where he can
“live” autonomously by perceiving his VE and generating a few
behaviours at specific locations.

System
dynamics

So

R(So)
aoεA

System
dynamicsS1

R(S1)
a1εA

System
dynamicsSn-1

R(Sn-1)
an-1εA

…

+ + +

Sn

R(Sn)…

System
dynamics

So

R(So)
aoεA

System
dynamics

So

R(So)
aoεA

System
dynamicsS1

R(S1)
a1εA

System
dynamicsSn-1

R(Sn-1)
an-1εA

…

+ + +

Sn

R(Sn)…

1 .. * represents
Sate-Rep

Sate-Action

1 .. * perceives

State

Virtual Sensors
Vision – Avoidance - Navigation

Virtual World

1 .. *

1 .. * is composed

AVAlowLEARN

1 .. * perceives1 .. * memorizes

from ALifeE

+ QDecomposition() : void
+ IRL() : void
+ WorldPerception() : void

+ VECTOR_ARRAY

A*

1 .. * represents
Sate-Rep

Sate-Action

1 .. * perceives

State

Virtual Sensors
Vision – Avoidance - Navigation

Virtual World

1 .. *

1 .. * is composed

AVAlowLEARN

1 .. * perceives1 .. * memorizes

from ALifeE

+ QDecomposition() : void
+ IRL() : void
+ WorldPerception() : void

+ VECTOR_ARRAY

A*

 91

We can test our behavioural model applied to an AVA by
implementing the model in C++ and Python [23] thanks to the
Python module of the real time framework [24] for advanced
virtual human simulations.
As depicted in Figure 5, an interface has been designed to monitor
and change, if necessary, the evolution of the AVA’s states and
actions in real-time inside the virtual apartment. The path
planning module [25] is applied for obstacle avoidance when the
AVA walks to a specific location (see Figure 6). It is also utilized
to the decisions the AVA makes. Its 3D viewer shows, in real-
time, what the AVA decides to do at each moment and can play
keyframes for the learned actions using the walk engine [26].

Figure 5: Top view of the virtual apartment.

Figure 6: (upper left corner) Top view of the virtual
apartment with path planning after low-level learning
process. The AVA is now inside the kitchen.

Figure 7 shows the inputs and outputs of the behavioural model
for the navigation inside a virtual apartment. The input for Vision
(r, φ) is the spherical coordinates of the AVA's head. Our
Artificial Life Environment (ALifeE) [5] gives multi-sensory
information to the AVA's sensors of vision, audition and touch
(see Figure 3).

Figure 7: Behavioural model for the navigation inside a
virtual apartment with inputs and outputs. The MDP has two
different actions: walk and orientation.

In the first scenario (see Figures 8 a), b) and c)), an AVA learns
the behaviour of taking a CD box from the kitchen table. Then,
the AVA walks around inside the different rooms whilst taking
care to observe and avoid virtual objects and also navigates with a
path planning between doors. Finally, the AVA puts the CD box
on the desk in the office.

Figures 8 a), b) and c): Snapshots of the AVA learning
(through seeing, avoiding and navigating) to take a CD box
from the kitchen table and to put in on the office desk.

In the second scenario (see Figures 9 a), b) and c)), an AVA
learns to take a glass from the living room table or from the
bedroom shelf and to bring it to the kitchen.

Position (x,z)

Vision (r, φ)

Walk

Orientation

Behavioural
Model

Position (x,z)

Vision (r, φ)

Walk

Orientation

Behavioural
Model

 92

Figures 9 a), b) and c): Snapshots of the AVA learning
(through seeing, avoiding and navigating) to take a glass from
the living room table and to bring it to the kitchen.

The two scenarios were reported in Table 1 to illustrate the
performance of our low-level learning methodology. Using our
methodology, only a few sample trajectories were needed to attain
a performance mimicking that of the expert. Thus, by learning a
compact representation of the reward function, our methodology
outperformed.

Table 1. Plot of performances obtained with our low-level
learning methodology. All animations were rendered in real
time using OpenGL on a 3.0 GHz PC with an nVIDIA
GeForce FX Go5350 video card.

5.2 Case Study No. 2: an AVA learning to
drive a car inside a virtual city
We implemented our approach to learn the behavioural model
applied to a car driving simulation inside a virtual city. An AVA
is the driver and has dual control over the acceleration and the
wheel of the car (see Figure 10). The controls are real-value (e.g.,

the action space is continuous) and the car can move to any
location or take any orientation.

Figure 10: Behavioural model for the car driving simulation
inside a virtual city with inputs and outputs. The MDP has
two different actions: gas and wheel.

Figure 10 shows the inputs and outputs of the behavioural model
for the car driving simulation inside a virtual city. The input for
Distance (x) is the distance between the driver and the traffic
signal.
The continuous action space was quantified to achieve real-time
performance. The simulation ran at 15 [frames/s] and the expert's
features were estimated from a single trajectory of 2'700 samples,
corresponding to 3 minutes of driving time.
Our approach communicates the semantic information required
for the "right way" behaviour of our low-level learning method in
two ways:

 adding semantics to dynamic objects, and
 adding tools to sound, pedestrians and semantic objects

(e.g., road signals).

Adding Semantics to Dynamic Objects

The appropriate description of tools for autonomous cars and
pedestrians is available inside our simulation application. We use
scripts to configure the VE application and to determine the
behaviour of the autonomous cars in each different situation. The
behaviour of the autonomous cars is controlled with Python
scripts [23]. To simulate the life of a virtual city in a realistic
manner, the VE also integrates some semantic notions about
specific areas.

 Adding Tools to Sound, Pedestrians and Semantic Objects
 We have defined three types of plug-ins:

1. The plug-in for sound permits the definition of the
properties of the sound environment in 3Ds max® (3D
render software). To achieve a realistic illusion, it is
important to generate a 3D spatialization in sound. The
geometry of each object is transformed into a list of
points outlining the sound obstacle. We define four types
of sound primitives: environment, obstacle, listener and
sound source. Inside the VE, we can have several sound
sources with the following essential parameters: position,
orientation (e.g., the direction of propagation) and ray
configuration of the two cones of propagation. A sound
source can be attenuated, absorbed or reflected
depending on when the sound strikes an obstacle. The

Position (x,z)

Distance (x)

Orientation (θ)

Gas

Wheel

Behavioural
Model

Position (x,z)

Distance (x)

Orientation (θ)

Gas

Wheel

Behavioural
Model

0.1
0

0.5
0.4
0.3
0.2

0.9
0.8
0.7
0.6

1

Pe
rf

or
m

an
ce

Iterations
0 7010 20 30 40 50 60

Expert’s trajectory
Scenario 1: CD Box
Scenario 2: Glass

0.1
0

0.5
0.4
0.3
0.2

0.9
0.8
0.7
0.6

1

Pe
rf

or
m

an
ce

Iterations
0 7010 20 30 40 50 60

Expert’s trajectory
Scenario 1: CD Box
Scenario 2: Glass

Expert’s trajectory
Scenario 1: CD Box
Scenario 2: Glass

 93

obstacles are characterized by a two dimensional
contour.

2. The plug-in for pedestrians covers a crowd composed of
two types of people: those who walk in the virtual city
with a precise goal and those who stroll.

3. The plug-in for semantic objects, inspired by the smart
objects concept [27], gives significance to the road
signals and traffic lights so that the sensory module of
vision [5] can recognize them.

Figure 11: AVA learning to drive a car inside a virtual city
with visual pseudo-perception.

Using our plug-ins along with 3Ds max®, designers have the
information necessary to construct all types of VEs. We are now
able to create the semantic information for our simulation but it
will have a static character. However, we wish to obtain dynamic
semantic information and we will use pseudo-perception (see
Figure 11) or virtual perception [5] to achieve this goal.

In our car driving simulation, φ is the vector of the features
indicating the different driving desiderata that need to be
accounted for, such as a collision with another car, a pedestrian or
a virtual object, or driving on the sidewalk, for example. The
unknown vector ω* specifies the relative weight of these various
desiderata.
Blindly following the expert’s trajectory would not work, because
the pattern of traffic encountered is different each time.
We applied apprenticeship learning to try to learn behaviours to
avoid pedestrians and to take traffic lights into account (e.g., stop
at a red light, decelerate at an orange light and keep driving at a
green light).
The final result was a good driving behaviour, since the driver
could plan far enough ahead to manoeuvre the car adequately
around the virtual city, avoiding pedestrians and reacting
correctly to traffic lights (see Figures 12 a) and b)).

Figure 12 a): The car "sees" the traffic lights and the
pedestrian inside a circular zone. The panel informs the
driver that he/she must brake (B – in red at bottom right
corner).

Figure 12 b): A pedestrian wishes to cross the road according
to the rules defined.

We achieved our best results by performing the low-level learning
method for 40 iterations and a policy was selected by inspection
(see Table 2).

Table 2. Results obtained with our low-level learning
methodology and one driving style (as estimated from 3
minutes of driver demonstration). All animations were
rendered in real time using OpenGL on a 3.0 GHz PC with an
nVIDIA GeForce FX Go5350 video card.

 Gas Wheel

µe 0.060 0.290

µ(π) 0.059 0.266

ω 0.107 0.059

Car

Traffic lights

r

Car

Traffic lights

r

 94

Our method was qualitatively able to mimic the demonstrated
driving style. Table 2 shows the feature expectations of the expert
(driver) µe, the feature expectations learned µ(π) and the weights
ω used to generate the policy.
 Although our technique performed well in our two case studies,
there is no guarantee that it will work for every imaginable AVA
and simulated VE.

6. DISCUSSION
Our low-level learning technique has proved to be fast, simple
and robust. It has also succeeded in automatically learning
behavioural models for difficult tasks. Thus, we believe it will be
more useful to the computer graphics community than a technique
based on the classical Q-learning approach. Unlike explicit Q-
learning, our technique is not guaranteed to find an optimal
policy. But Q-learning is usually impractical because of a large
Q-factor table
Our AVA low-level learning technique will only learn a sub-
optimal policy, whose quality depends on the selected search
depth limit. However, optimality is probably not necessary to
achieve the appearance of intelligent behaviour in an AVA.
Indeed, good behaviour usually looks just as, if not more, realistic
than perfect behaviour
With our method, an AVA can automatically learn a behavioural
model. For the animator, this relieves the workload of designing
an explicit model. Moreover, it allows to model tasks for which it
would be difficult or virtually impossible, to develop an explicit
model.
Our work needs to be distinguished from that of [28]. In fact,
when they performed off-line AVA learning, it could be difficult
to design a fitness function that resulted exactly in the desired
behavioural model. Our contribution in this paper is important
because we present a solution for this previously unsolved
problem and also we perform on-line AVA low-level learning.
In the robotics field, various methods like teaching by imitation,
imitation learning or learning by observation are effective.
However, since they are not automatic, they cannot be used for
on-line adaptation. The technique presented by [29] for teaching a
robot simple navigational behaviours is too limited for AVA
behavioural learning. By comparison, our mimicking method is
less general, but is fully automatic, learns quickly and can easily
encapsulate very complex behaviours. One of its most original
aspects is indeed to detect automatically novel behaviours.
However, there are some weaknesses in our approach. When
performing AVA low-level learning, it can be difficult to find a
policy that exactly corresponds to the desired behavioural model.
Also, the reward function should be expressible as a linear
combination of known features.
The methodology behind automatic learning behaviour is difficult
but interesting. This could take interactive computer graphics,
especially in the entertainment market, to a completely new level.
It could also be interesting if an animator could interactively train
an AVA for behavioural learning, rather than using a reward
value.
The approach presented here is part of a more complex model that
is the object of our research. The goal is to realize an Artificial

Life environment for an AVA including different interfaces and
sensorial modalities coupled with various evolving learning
methodologies.

7. ACKNOWLEDGMENTS
This research has been partially funded by the Swiss National
Science Foundation.

8. REFERENCES
[1] P. Larkin. Achieving human style navigation for synthetic

characters. A survey. In Proceedings of Neural Networks and
Computational Intelligence, pages 30-37, 2003.

[2] R. Downs and D. Stea. Cognitive maps and spatial behavior.
Image and Environment. R. Downs and D. Stea, Eds., pages
8-26, Chicago: Adline Publishing, 1973.

[3] D. Griffin. Topographical Orientation. Image and
Environment. R. Downs and D. Stea, Eds., pages 296-299,
Chicago: Adline Publishing, 1973.

[4] N. Kamwisher and P. Downing. Separating the wheat from
the chaff. Science, vol. 282, pages 57-58, 1998.

[5] T. Conde and D. Thalmann. An Artificial Life Environment
for Autonomous Virtual Agents with multi-sensorial and
multi-perceptive features. Computer Animation and Virtual
Worlds, 15(3-4), pages 311-318, John Wiley, 2004.

[6] C. Reynolds. Flocks, herds, and schools: A distributed
behavioural model. In Proceedings of ACM SIGGRAPH,
pages 25-34, 1987.

[7] X. Tu and D. Terzopoulos. Artificial fishes: Physics,
locomotion, perception, behaviour. In Proceedings of ACM
SIGGRAPH, pages 43-50, 1994.

[8] B. Blumberg and T. Galyean. Multi-level direction of
autonomous creatures for real-time virtual environments. In
Proceedings of ACM SIGGRAPH, pages 47-54, 1996.

[9] K. Perlin and A. Golberg. A improv: a system for scripting
interactive actors in virtual worlds. In Proceedings of ACM
SIGGRAPH, pages 205-216, 1996.

[10] R. Burke, D. Isla, M. Downie, Y. Ivanov and B. Blumberg.
Creature smarts: The art and architecture of a virtual brain.
In Proceedings of the Computer Game Developers
Conference, pages 147-166, 2001.

[11] B. Tomlinson and B. Blumberg. Alphawolf: Social learning,
emotion and development in autonomous virtual agents. In
Proceedings of First GSFC/JPL Workshop on Radical Agent
Concepts, pages 35-45, 2002.

[12] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. Johnson
and B. Tomlinson. Integrated learning for interactive
synthetic characters. In Proceedings of ACM SIGGRAPH,
pages 417-426, 2002.

[13] T. Conde, W. Tambellini and D. Thalmann. Behavioral
Animation of Autonomous Virtual Agents helped by
Reinforcement Learning. Lecture Notes in Computer
Science, vol. 272, pages 175-180, Springer-Verlag: Berlin,
2003.

[14] K. Sims. Evolving virtual creatures. In Proceedings of ACM
SIGGRAPH, pages 15-22, 1994.

 95

[15] R. Grzeszczuk and D. Terzopoulos. Automated learning of
muscle-actuated locomotion through control abstraction. In
Proceedings of ACM SIGGRAPH, pages 63-70, 1995.

[16] R. S. Sutton and G. Barto. Reinforcement Learning: An
Introduction, MIT Press, 1998.

[17] T. Mitchell. Machine Learning, McGraw Hill, 1997.
[18] R. Pfeiffer and C. Scheier. Understanding Intelligence, MIT

Press, 1999.
[19] S. Russell and A. L. Zimdars. Q-Decomposition for

Reinforcement Learning Agents. In Proceedings of
Conference on Machine Learning ICML, pages 656-663,
2003.

[20] P. Abbeel and A.Y. Ng. Apprenticeship Learning via Inverse
Reinforcement Learning. In Proceedings of Conference on
Machine Learning ICML, vol. 69, ACM Press, New York,
2004.

[21] A. Y. Ng and S. Russell. Algorithms for Inverse
Reinforcement Learning. In Proceedings of Conference on
Machine Learning ICML, pages 663-670, 2000.

[22] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach, Prentice-Hall, 1995.

[23] M. Lutz. Programming Python, O'Reilly Ed., Sebastopol,
CA, 1996.

[24] M. Ponder, G. Papagiannakis, T. Molet, N. Magnenat-
Thalmann and D. Thalmann. VHD++ Development
Framework: Towards Extendible, Component Based VR/AR
Simulation Engine Featuring Advanced Virtual Character
Technologies. Computer Graphics International (CGI),
pages 96-104, 2003.

[25] M. Kallmann, H. Bieri and D. Thalmann. Fully Dynamic
Constrained Delaunay Triangulations. Geometric Modelling
for Scientific Visualization, 4:74-123, Heidelberg, Germany,
2003.

[26] R. Boulic, N. Magnenat-Thalmann and D. Thalmann. A
Glogal Human Walking Model with Real-Time kinematics
Personification. Visual Computer, 6:344-358, 1990.

[27] L. M. G. Gonçalvez, M. Kallmann and D. Thalmann.
Defining Behaviors for Autonomous Agents based on Local
Perception and Smart Objects. Computer & Graphics,
26(6):887-897, 2002.

[28] J. Dinerstein, P.K. Egbert and H. de Garis. Fast and learnable
behavioural and cognitive modelling for virtual character
animation. Computer Animation and Virtual Worlds, 15:95-
108, 2004.

[29] M. Kasper, G. Fricke, K. Steuernagi and E. von Puttkamer.
A behavior-based mobile robot architecture for learning from
demonstration. Robotics and Autonomous Systems, vol. 34,
pages 153-164, 2001.

 96

