
Bridging Geometry and Semantics for Object
Manipulation and Grasping

Workshop Paper

Tolga Abacı
VRlab–EPFL

tolga.abaci@epfl.ch

Michela Mortara
IMATI–CNR

mortara@ge.imati.cnr.it

Giuseppe Patanè
IMATI–CNR

patane@ge.imati.cnr.it

Michela Spagnuolo
IMATI–CNR

patane@ge.imati.cnr.it

Frédéric Vexo
VRlab–EPFL

frederic.vexo@epfl.ch

Daniel Thalmann
VRlab–EPFL

daniel.thalmann@epfl.ch

Abstract
In this paper, we present our on-going work
towards grasping in an object manipulation con-
text. Our proposal is a novel method that com-
bines a tubular feature classification algorithm,
a hand grasp posture generation algorithm
and an animation framework for human-object
interactions. This method works on objects with
tubular or elongated parts, and accepts a number
of parameter inputs to control the grasp posture.

Keywords: virtual environments, grasping,
shape analysis, smart objects, animation

1 Introduction

Realistic animation of object grasping for an au-
tonomous virtual human is a difficult problem,
with many different sides to take into account.
The human hand is a complicated articulated
structure with 27 bones. Not only the move-
ments of these joints must be calculated, but also
the reaching motion of the arm and the body
needs to be considered. For real-time perfor-

mance in a VR system with many agents, fast
collision-detection and inverse kinematics algo-
rithms [20] will be necessary in most cases.

The calculation of the hand and body postures
is not the only difficulty in grasping: realistic
grasping also requires significant input about the
semantics of the object. Even if the geometric
and physical constraints permit, sometimes an
object is simply not grasped “that way”. For ex-
ample, a door handle must not be grasped from
the neck section if the goal is to turn it. A fully-
automatic grasping algorithm that only takes the
geometry of the object into account cannot al-
ways come up with solutions that are satisfac-
tory in this sense. It is evident that the grasping
operation is strongly dependent on the artificial
intelligence of an autonomous virtual human.

Fortunately, the grasping problem for au-
tonomous virtual humans is easier than its robot-
ics counterpart. Simply put, we do not have to
be as accurate and physical constraints are much
less of a problem. The main criterion is that the
grasp must “look” realistic. In fact, the apparent
physical realities of a virtual environment can
be very different from those of the real-world,

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with very different constraints being imposed.
For example, we can imagine a virtual human
holding an object that is several times his size
and weight in air, while grasping it at a small
site on the edge. This does not conflict with the
previous examples addressing the reality issue,
as for an autonomous virtual human in a virtual
setting, this is more a question of what he in-
tends to do with the object (semantics) than the
actual physics of grasping.

In this paper, we present our on-going work
towards grasping in an object manipulation con-
text. For the solution of this problem we propose
a novel method that combines a tubular feature
classification algorithm, a hand grasp posture
generation algorithm and an animation frame-
work for human-object interactions (with smart
objects [8]). Our method works on objects with
tubular or elongated parts, and accepts a number
of parameter inputs to control the grasp posture.

2 Related Work

2.1 Smart Objects

Making objects interaction-capable usually re-
quires solutions to closely-related issues on two
fronts: the specification of behavior and its re-
flection through animation.

On the behavior front, virtual human–object
interaction techniques were first specifically ad-
dressed in the object specific reasoner (OSR)
[12]. The primary aim of this work is to bridge
the gap between high-level AI planners and the
low-level actions for objects, based on the obser-
vation that objects can be categorized with re-
spect to how they are to be manipulated. This
works gives little consideration to interaction
with more complex objects.

The work on Parameterized Action Repre-
sentation [1] addresses the issue of natural lan-
guage processing for virtual human-object inter-
actions. A PAR describes an action by speci-
fying conditions and execution steps. Recently,
Vosinakis and Panayiotopoulos have introduced
the Task Definition Language [22]. This lan-
guage supports complex high-level task descrip-
tions through combination of parallel, sequential
or conditionally executed built-in functions.

Rule-based behaviors are a popular tech-
nique: according to the system state, applicable

rules can be selected to evolve the simulation.
In addition, state machines are widely used for
specifying behaviors as they have useful graphi-
cal representation. A good example for a system
utilizing both techniques is Improv [17].

Animation of virtual humans can be exam-
ined in many categories, depending on the type
of action. Generation of realistic human walk-
ing motion has been an interesting subject for
researchers [5]. Inverse kinematics is also com-
monly used for creation of reaching motions
for articulated structures [2, 20, 23], but it is
still difficult to obtain realistic full-body pos-
tures without substantial tweaking. On the other
hand, database-driven methods [24, 4] cope bet-
ter with full body postures. These methods are
based on capturing motions for reaching inside a
discrete and fixed volumetric grid around the ac-
tor. The reaching motion for a specific position
is obtained through interpolation of the motions
assigned to the neighboring cells.

Grasping is perhaps the most important and
complicated motion that manipulation of objects
involves. Robotics techniques can be employed,
as in [7] for automatic grasping of geometrical
primitives, based on a pre-classification of most
used hand configurations for grasping [6]. Plan-
ning algorithms for determining collision free
paths of articulated arms have also been devel-
oped for manipulation tasks [10], and they have
been successfully used for interactive generation
of reaching and transfer motions [9]. Because of
the random nature of this method, complicated
motions can be planned, but with high and un-
predictable computational cost. A huge litera-
ture about motion planning is available, mainly
targeting the motion control of different types of
robots [11].

2.2 Shape Analysis

Knowledge about the presence of elongated fea-
tures is relevant in the context of animation for
the definition of posture and grasping motion for
virtual humans. While tubular or elongated fea-
tures can be quite easily defined during the de-
sign processes, their automatic extraction from
unstructured 3D meshes is not a trivial task.
Moreover, geometric parameters such as tube
axis or section size should be made readily avail-
able to the animation tool.

2

Among the many methods for shape analysis,
skeleton extraction techniques are the most suit-
able for identifying tubular features. Topology-
based skeletons, for example, code a given shape
by storing the evolution of the level sets of a
mapping function defined on its boundary. A
geometric skeleton is usually associated to this
coding, defined by the barycenters of the con-
tours. The shape is decomposed into parts
which can be characterized as protrusion-like
features or branching sites of the shape, even if
the protrusions can be arbitrarily shaped. The
Reeb graph is an example of topology-based
skeketons, whose computation has been pro-
posed in the literature using different approaches
[19, 21, 3]. Topological graphs usually preserve
genus information and therefore could be used
to identify tubular parts that define handles, but
the location and shape of other elongated feature
requires a more specific analysis.

For example, in [13], tubular parts are identi-
fied using a sweeping techniques along the arcs
of the skeleton which is constructed by join-
ing the edges remaining after an edge collapse
process on the whole mesh. These edges are
linked in a tree structure, and it is used as a sup-
port for the sweeping process where the mesh is
intersected by a set of planes and tubes are iden-
tified by looking at the geometry of the cross-
sections.

Other skeletons, such as the well-known Me-
dial Axis Transformation (MAT), define a struc-
ture which could be useful for the identification
of tubular features. But the MAT of a 3D object
is generally a non-manifold complex, computa-
tionally heavy to compute, and sensitive to noise
because tiny perturbations may produce a whole
new arc. Furthermore, there is not a direct rela-
tion between tubular features and specific com-
ponents of the MAT, especially when the tubes
have an arbitrary shape and the cross sections do
not exhibit any symmetry.

3 Approach

Our primary goal is to address grasping issues
for virtual human object manipulation. For this,
we propose the flow comprised of the steps
given below:

1. Given an object, the tubular or elongated

features of an object are recognized and a list of
cross-sections is associated to the features.

2. During smart object design, the designer
selects the sections of the extracted features that
are relevant for grasping. Additional grasping
parameters are specified for each of these sec-
tions.

3. At run-time, grasping is performed using
the data specified in the smart object, as a part
of the object manipulation sequence.

The algorithm to detect tubular features is
called Plumber and it is a specialized shape clas-
sification method for triangle meshes. The algo-
rithm segments a surface into connected com-
ponents that are either body parts or elongated
features, that is, handle-like and protrusion-like
features, together with their concave counter-
parts, i.e. narrow tunnels and wells. The seg-
mentation can be done at single or multi-scale,
and produces a shape graph which codes how
the tubular components are attached to the main
body parts. Moreover, each tubular feature is
represented by its skeletal line and an average
cross-section radius.

The Smart Objects paradigm is based on ex-
tending objects (shapes) with additional infor-
mation on their semantics. Its focus is on au-
tonomous virtual humans within virtual environ-
ments. The semantic information that a smart
object carries is mainly about the “behavior” of
the object when an interaction occurs between
the object and a virtual human. By behavior, we
mean the changes in the appearance and state of
an object as a result of the interaction (i.e. a vir-
tual human opening a door).

In our approach, the smart objects control the
manipulation sequences. Grasping is perhaps
the most important part of a manipulation se-
quence, but it is not alone. A full sequence
can consist of walking and reaching to the ob-
ject, looking at it, grasping it multiple times,
and keeping the hands constrained to the ob-
ject while it is moving. Therefore, the smart
objects are required to provide a full manipula-
tion sequence, putting the grasping action into
the proper context.

The manual specification of the grasp para-
meters in the second step makes the approach
semi-automatic. While we can attempt to de-
rive these parameters automatically, it is very
difficult to do so only based on the geometri-

3

(a) (b) (c) (d)

Figure 1: Plumber method: (a) identification of limb vertices, (b) extraction of their connected com-
ponents and medial loop, (c) iteration, (d) tube and a cap (black) found at this scale.

cal properties of the object. To determine which
tubular sections of complex object are of rele-
vance to grasping, we need additional input on
how the object is to be manipulated. For exam-
ple, a teapot containing hot tea to be poured into
a cup should normally be grasped by the handle,
not the neck. The current state of the art in artifi-
cial intelligence does not offer a general, work-
ing solution for this problem yet, so our practical
solution is to make the teapot a smart object and
specify the required semantic information dur-
ing its design. As our approach uses smart ob-
jects for simulating manipulation, the grasping
parameters will be stored together with other at-
tributes of the object, which are also specified in
the design phase.

It is possible to generate the grasp postures
(execute the third step) before run-time. This
can be accomplished by calculating a fixed
grasping posture, and storing it in the smart ob-
ject and simply making the hand assume the
stored posture during run-time. While this ap-
proach results in simpler and faster run-time ex-
ecution, we have chosen not to take this route
for a number of reasons. Firstly, a fully pre-
computed grasping posture is dependent on the
hand for which it was computed. Different
virtual humans can have different hand sizes,
therefore the resulting grasp will not be accu-
rate enough. In addition, as we will explain
later, certain grasping parameters are specified
as ranges, which are then searched to find a sat-
isfactory solution for the particular virtual hu-
man configuration at the time of grasping. This
introduces a degree of variation into the manip-
ulation sequences, which is hard to achieve with
fixed pre-computed grasping postures.

4 The Plumber method

The Plumber method analyses the shape of
an object by studying how the intersection of
spheres centered at the mesh vertices evolve
while the sphere radius changes. For example,
for a thin limb, the curve of intersection be-
tween the mesh and a sphere will be simply con-
nected for a small radius and then will rapidly
split into two components when the radius in-
creases and becomes greater than the tube size.
While a detailed description of the shape analy-
sis technique which uses intersecting sphere and
of the Plumber method can be found in [15, 16],
we will summarize here the main properties of
Plumber and describe how the geometric para-
meters are associated to elongated features.

First of all, Plumber can identify tubular fea-
tures whose section and axis can be arbitrarily
shaped, and the size of the tube is kept as a con-
straint during the identification process. More-
over, since the shape is analysed using a set of
spheres of increasing radius, the recognition fol-
lows a multi-resolution schema.

Chosen a sphere of radius R, Plumber per-
forms the following steps:

1. identify seed-tube regions; these regions
will produce one intersection area with the
sphere, with two boundary curves of inter-
section (see Figure 1(a));

2. shrink each of the two selected intersection
curves along the surface to the medial-loop,
whose points are nearly equidistant from
the two border loops (see Figure 1(b));

3. expand-back the medial-loop by sweeping
the extent of the shape in both directions.
More precisely, at each iteration we place a

4

sphere of radius R in the barycentre of the
new medial loops. If the intersection be-
tween the sphere and the surface generates
two loops, mesh vertices inside the sphere
are marked as visited;

4. the procedure is iterated in both directions
until:

• no more loops are found, or more
than one loop is found on not-visited
regions;

• the new loop lies on triangles that are
already part of another tube, or the
length of the new loop exceeds a pre-
defined threshold.

5. the tube skeleton is extracted by joining the
loops’ barycentres.

As shown in Figure 2, tubular features are
recognized at different scales and their geomet-
ric description is computed also in case of in-
teracting features. For the purpose of extracting
grasping sites for a virtual human, like handles
for instance, the radius value can be set with re-
spect to hand anthropometric measures.

(a) (b)

Figure 2: Tubular features recognized by
Plumber on a complex model: (a)
tube axis and loops, (b) tubes colored
with respect to their scale.

After the location of seed tubular regions and
the computation of the medial loop, the tubes
are recovered by expanding the loop by con-
trolled procedure which, at each step, extends
the center-line and at the same time ensures that
the surface is tubular around it. For the ex-
pansion process, intersecting spheres are used
again, but centred on the tube axis. A first
medial sphere is drawn, whose centre p is the

barycentre of the medial loop, and whose radius
is R. If M∩S(p,R) does not have two boundary
components, the growing stops and the candi-
date tube is discarded. Otherwise, a new sphere
with the same radius is centred in the barycen-
tre of the two intersection loops; the process is
then split into two parts, trying to grow the tube
in both directions. Now we focus on the sphere
moving in one of the two directions, since the
other case is symmetric.

At each iteration, the sphere rolls to the
barycentre of the next loop, and the triangles
laying completely or partially inside the sphere
are marked as belonging to that tube. Then, the
intersection between the sphere in the new posi-
tion and the mesh is again computed, taking into
account only the intersection curves through non
visited triangles (all the spheres except the me-
dial one have always a “backward” loop, pass-
ing on the already marked triangles). During the
loop expansion, the following cases may arise:

• no intersection curves are found. This is
the case of a tubular protrusion terminating
in a tip; visited triangles locate a cap (see
Figure 3(a), in the square);

• the intersection curve consists of one loop
(see Figure 3(a)). If its length is less
than a pre-defined threshold, the size of the
tube section is not varying too much; the
loop becomes a new cross section and its
barycentre contributes to the skeleton as a
new node. Otherwise (see Figure 3(b), in
the oval), the growth stops.

• the intersection counts two, or more loops;
that is, a bifurcation occurs (see Figure
3(b)). The growing of the tube in this di-
rection stops, and the last visited triangles
are unmarked.

Finally, the barycentres of the medial loops
are joined to define the tube skeleton.

5 Smart Objects

In essence, smart objects provide not only the
geometric information necessary for drawing
them on the screen, but also semantic informa-
tion useful for manipulation purposes. We have

5

(a) (b)

Figure 3: (a) No new loop is found on the snake
tail (in the box), and a loop discarded
after the length check on the head (in
the oval). (b) A branching occurs on
the dolphin tail.

built a framework for real-time animation of vir-
tual human – object manipulation sequences.
This framework provides smart objects capabil-
ities and is composed of the following compo-
nents:

• A design tool that incorporates the defini-
tion of semantic information in the process
of object design.

• An XML-based specification for virtual ob-
jects, including appearance, animation and
interaction aspects.

• An extended scene-graph structure that en-
ables storage and query of semantic infor-
mation at run-time.

• An event-based mechanism and scripting
functionality for controlling and coordinat-
ing animation of objects and virtual hu-
mans.

Attributes are the primary means of specify-
ing information on how a virtual human ma-
nipulates its environment. They convey vari-
ous kinds of information (e.g. where and how
to approach for manipulating the object or to
position the hands in order to grasp it), anima-
tion sequences (e.g. a door opening) and gen-
eral, non-geometric information associated with
the object (e.g. weight or material properties).
The semantic information in the smart object is
used by the virtual characters to perform actions
on/with the object, e.g. grasping, moving it, op-
erating it (e.g. a machine or an elevator).

We have integrated the attribute definition
process into 3D Studio MAX, a popular soft-
ware package for design and visualization of vir-
tual environments. Using our plug-in, attribute
sets can be created as the geometry of the en-
vironment is designed. This has the advantage
of providing a consistent working space for de-
signers.

Figure 4: Object manipulation with grasping

The animation of virtual humans is handled
by “actions”. Actions provide a higher level
view of animation tasks. For example, the look
action requires a vector as a parameter and keeps
the virtual human looking at this position while
it is active. The walk action takes a vector as
a parameter, which is used as the target of the
walk. The reach action takes a hand posture and
a matrix as parameters. The hand of the virtual
human is brought to the position and orientation
specified by the matrix by using inverse kine-
matics. Once the hand is at the target, it assumes
the given posture for grasping.

Human.WalkTo(Wheel.FrontPosition)
WaitUntilEvent(WalkReached(Human))
Human.Reach(Wheel.LeftHand)
Wheel.StartAnim(Wheel.Turn)
Repeat
Event = WaitAndReceiveEvent()
If Event.Is(AttribChanged(Wheel.LeftHand)

Human.NewReachTarget(Wheel.LeftHand)
Until Event.Is(AnimFinished(Wheel.Turn)
Wheel.Turned = True

Figure 5: Sample manipulation pseudo-script

Scripts and events are used for flexible high-
level control and coordination of animation ele-
ments. Consider the example in Figure 4 from
a training application, where a virtual human
needs to manipulate a machine. In this partic-
ular case, the action to be performed is turn-
ing a wheel for adjustment. The sequence of
movements that the human should make and the

6

changes in the state of the machinery in response
is described by a script. Such a script, in a sim-
plified pseudo form, is given in Figure 5.

Grasping Extension Usually, designers de-
fine the grasping hand postures for a smart ob-
ject manually during the design phase. This is
tedious and results in manipulation sequences
that are always executed exactly in the same
way. Also, the results are satisfactory only for
the fixed dimensions. We propose to modify
this process, reducing it to specification of a few
grasping parameters relevant to the grasping al-
gorithm presented in this paper.

During the design phase, the designer is pre-
sented with the Plumber output, and first iden-
tifies the tubular regions of the object that are
relevant to grasping. These exist as sets of (ap-
proximated) cylinders that are connected in a
chain configuration. For each such region, the
designer then defines the following parameters:

• Wrist position/orientation relative to the
tubular section. Both can be specified as
either fixed or a range of values.

• Touch tolerance, essentially specifying
how much a finger can “sink” into the ob-
ject. This value sets the threshold in the
capsule intersection algorithm.

• Thumb configuration can be specified as
closed or on-the-side. If specified as
closed, the grasping algorithm will try to
make the thumb encircle the section to be
grasped, just like the other fingers. If spec-
ified as on-the-side, the algorithm will try
to make the thumb touch one of the tubes,
in a parallel orientation.

• Finger spread specifies the angle in be-
tween each of the four fingers, effectively
defining how much the fingers will be
spread.

• Finger selection specifies which fingers
will be involved in the grasp.

These parameters are stored in the object de-
scription file, together with all the other at-
tributes. There can be multiple sets of parame-
ters per region.

6 Grasping

6.1 Collision Detection

Our real-time grasping algorithm is based on ap-
proximating the parts of a tubular section and the
finger segments with capsules. A capsule (or
capped cylinder) is the set of points at a fixed
distance from a line segment. Two capsules in-
tersect if and only if the distance between cap-
sule line segments is smaller or equal to the sum
of the capsule radii.

Given a finger segment and a tubular region,
we first find out which part of the tubular region
is most likely to intersect with the finger seg-
ment. We accomplish this by intersecting the
finger plane with each tube center line segment.
We define the finger plane as the plane perpen-
dicular to the axis of rotation of the distal finger
joints. It is dependent on the finger spread pa-
rameter. We then run the capsule intersection
test to determine whether the tube and the finger
segment intersect.

To determine whether two capsules intersect,
we need to compute the minimum distance be-
tween points on two capsule line segments. The
parametric equations by the line segments are
given by �L0(s) = �B0 + s �M0 for s ∈ [0, 1],
and �L1(t) = �B1 + t �M1 for t ∈ [0, 1]. The
squared distance function for any two points on
the line segments is Q(s, t) = |�L0(s) − �L1(t)|2
for (s, t) ∈ [0, 1]2. The function is quadratic in
s and t, and given by

Q(s, t) = as2 + 2bst + ct2 + 2ds + 2et + f,

where a = �M0 · �M0, b = − �M0 · �M1, c = �M1 ·
�M1, d = �M0 · (�B0− �B1), e = − �M1 · (�B0− �B1),

and f = (�B0 − �B1) · (�B0 − �B1).
The goal is to minimize Q(s, t) over the unit

square [0, 1]2. Q is a continuously differentiable
function, therefore the minimum occurs either at
an interior point of the square where its gradient
is equal to (0, 0) or at a point on the boundary of
the square. [18] includes further details on how
this minimization is performed.

For grasping, we need to determine whether
the finger segment “touches” the object, there-
fore the test method described above is not
adequate since it merely reports intersections.
Therefore, we introduce the touch tolerance into

7

the capsule collision test inequality as a toler-
ance value. Let Rsum be the sum of the capsule
radii, Dmin the minimum distance between the
capsule line segments, and ε the touch tolerance.
We can distinguish between three cases:

• Dmin > Rsum : The finger segment does
not touch the object and it is outside the ob-
ject.

• Rsum ≥ Dmin > (Rsum − ε) : The finger
segment touches the object.

• (Rsum − ε) ≥ Dmin : The finger segment
is inside the object.

In fact, the touch tolerance value implies a re-
laxed suggestion on how much the capsules can
sink into each other. This, in turn, can create
the impression of a tighter or looser grasp on the
object. This is an advantage of using the cap-
sule intersection test for the collision detection
calculations.

Even though the choice of (uncapped) cylin-
der as the collision detection primitive comes
into mind, we have decided not to use it. The
main reason is that the intersection test for cylin-
ders is a fairly expensive one (e.g. [18] uses the
method of separating axes). Furthermore, a cap-
sule gives a nice approximation of a finger seg-
ment that includes the finger tip. Another choice
for the collision detection primitive would be the
box, but we do not use it since the results would
be too coarse. We need to create postures where
the fingers encircle the tubular sections, which is
not possible to do satisfactorily with box-based
collision detection.

6.2 Posture search

The final grasp posture is computed by execut-
ing a dichotomy search (similar to the one in
[14]) in the configuration space of the hand.
This space is defined by the range of wrist po-
sition and orientation plus the ranges of orienta-
tion of the finger joints. Fortunately, its dimen-
sions can be reduced thanks to the anatomy of
the hand:

• The metacarpophalangeal (MCP) joints are
biaxial joints, with two degrees of freedom.

• The distal interphalangeal (DIP) and proxi-
mal interphalangeal (PIP) joints are uniax-
ial (hinge type) joints, with only one degree
of freedom around the lateral axis.

• We can assume that the DIP joint angle is a
function of the PIP joint angle, further re-
ducing the dimensions.

There are also optional reductions that can
be made, to make the search faster in object-
specific cases. The finger spread parameter can
be fixed, resulting in reduction of the degrees
of freedom for the MCP joints from two to one.
Also, in case they are not needed for the grasp,
some fingers may be omitted from the search,
fixing their posture to a predefined one.

At each step during the search, we generate a
hand posture to be tested, which obeys the joint
limits. Then, the collision detection algorithm
described above is invoked for the posture. The
search continues until one of the following:

• A posture that fulfills all the constraints is
found. This posture is returned as the final
grasp posture, to be used during the object
interaction sequence.

• The maximum number of postures that can
be tested is reached. If this happens, we
assume that the virtual human cannot grasp
the object.

In most cases where a valid grasping pos-
ture exist, the search will terminate relatively
quickly, thanks to existence of the touch toler-
ance value. In those cases where a grasp posture
cannot be found, the most likely course of ac-
tion is for the designer to modify the design of
object to relax the grasp parameters, to increase
the chance of finding a grasp posture. This is
a consequence of the tradeoff between a fully-
automatic grasping method with less control or a
semi-automatic method like ours with more con-
trol over how the grasping takes place.

The reason why we have chosen to compute
the final grasp posture by searching instead of
analytical methods is that it provides a practical
means to satisfy all the constraints and still re-
main flexible. Not only the joint limits impose
constraints, but there are also dependencies be-
tween the joint angle values, primarily between

8

the DIP and PIP joints. Searching provides an
easy solution to these problems, within reason-
able computational demands.

An alternative to searching could be inverse
kinematics, but use of that method requires
specification of the finger touch points (end ef-
fector positions) on the object. This is not prac-
tical and it may actually be better to ask the de-
signer to design the whole hand posture instead.
In fact, we have observed that the actual finger
tip positions are not critical as long as a valid
grasping posture is generated.

7 Conclusion

We have described our grasping framework,
which brings together a tubular feature classi-
fication algorithm, a hand grasp posture genera-
tion algorithm and an animation framework for
human-object interactions. This unique com-
bination is capable of handling grasping tasks
within the proper context of virtual human ob-
ject manipulation. This is very important since
how an object is to be grasped depends strongly
on how it is be used. Most existing works ignore
this aspect.

The method has the advantage that it can work
with relatively complex objects, where manual
approximation with simple geometrical primi-
tives may not be possible or practical. Further-
more, the method supports many intuitive pa-
rameters for controlling the grasping posture,
such as the finger spread or the thumb configu-
ration. Since the grasp parameters are specified
as ranges, it is possible to generate a different
posture each time a virtual human attempts to
grasp an object, depending on the current con-
figuration of the virtual human. This introduces
a new degree of variety into the virtual environ-
ment, which, to the best of our knowledge, was
not possible with the previous approaches.

Since Plumber is oriented to the recognition
of tubular features, objects without tubular or
elongated protrusions cannot be characterized
by any grasping oriented annotation. Fortu-
nately, most objects of interest for grasping ac-
tually have elongated features which plumber is
able to recognize. We approximate these tubu-
lar features with capsules (capped cylinders), for
efficient collision and touch detection. While

this approximation is appropriate for finger seg-
ments and mostly cylindrical object parts, it may
not be adequate for conical object parts.

Acknowledgements

This work has been supported by the Swiss
Federal Office for Education and Science
and the European Union in the framework
of the European IST-Networks of Excellence
AIM@SHAPE.

References

[1] Norman Badler, Rama Bindiganavale, Jan
Allbeck, William Schuler, Liwei Zhao, and
Martha Palmer. Parameterized action rep-
resentation for virtual human agents. In
Embodied Conversational Agents, pages
256–284, Cambridge, MA, 2000. MIT
Press.

[2] Paolo Baerlocher. Inverse kinematics Tech-
niques for the Interactive Posture Control
of Articulated Figures. PhD thesis, Swiss
Federal Institute of Technology - EPFL,
2001.

[3] S. Biasotti, S. Marini, M. Mortara, and
G. Patanè. An overview on properties
and efficacy of topological graphs in shape
modelling. In Shape Modeling Interna-
tional, pages 10–15, 2003.

[4] B. Bindiganavale and N. I. Badler. Motion
abstraction and mapping with spatial con-
straints. In Nadia Magnenat-Thalmann and
Daniel Thalmann, editors, Proceedings of
the International Workshop on Modelling
and Motion Capture Techniques for Vir-
tual Environments (CAPTECH-98), vol-
ume 1537 of LNAI, pages 70–82, Berlin,
November 26–27 1998. Springer.

[5] Ronan Boulic, Branislav Ulicny, and
Daniel Thalmann. Versatile walk engine.
Journal of Game Development, 1(1), 2004.

[6] M. Cutkosky. On grasp choice, grasp mod-
els, and the design of hands for manufac-
turing tasks. IEEE Transactions on Robot-
ics and Automation, 5(3):269–279, 1989.

9

[7] Z. Huang, R. Boulic, and Daniel Thal-
mann. A multi-sensor approach for grasp-
ing and 3-D interaction. In Computer
Graphics International ’95, June 1995.

[8] Marcelo Kallmann. Object Interaction in
Real-Time Virtual Environments. PhD the-
sis, École Polytechnique Fédérale de Lau-
sanne, 2001.

[9] Marcelo Kallmann, Amaury Aubel, Tolga
Abaci, and Daniel Thalmann. Planning
collision-free reaching motions for interac-
tive object manipulation and grasping. In
Proceedings of Eurographics 2003, pages
313–322, Granada, Spain, 2003.

[10] Yoshihito Koga, Koichi Kondo, James
Kuffner, and Jean-Claude Latombe. Plan-
ning motions with intentions. In An-
drew Glassner, editor, Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 24–
29, 1994), Computer Graphics Proceed-
ings, Annual Conference Series, pages
395–408. ACM SIGGRAPH, ACM Press,
July 1994. ISBN 0-89791-667-0.

[11] J.-C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, 1991. ISBN
0-7923-9192-2.

[12] Libby Levison. Connecting planning and
acting via object–specific reasoning, 1996.

[13] Xuetao Li, Tong Wing Toon, and Zhiy-
ong Huang. Decomposing polygon meshes
for interactive applications. In Symposium
on Interactive 3D graphics, pages 35–42,
2001.

[14] Nadia Magnenat-Thalmann, Richard
Laperriere, and Daniel Thalmann. Joint-
dependent local deformations for hand
animation and object grasping. In Pro-
ceedings of Graphics Interface ’88, pages
26–33, June 1988.

[15] M. Mortara, G. Patanè, M. Spagnuolo,
B. Falcidieno, and J. Rossignac. Blowing
bubbles for the multi-scale analysis and de-
composition of triangle meshes. Algorith-
mica, Special Issues on Shape Algorithms,
38(2):227–248, 2004.

[16] M. Mortara, G. Patanè, M. Spagnuolo,
B. Falcidieno, and J. Rossignac. Plumber:
a method for a multi-scale decomposition
of 3d shapes into tubular primitives and
bodies. In Ninth ACM Symposium on Solid
Modeling and Applications SM’04, pages
339–344, 2004.

[17] Ken Perlin and Athomas Goldberg. Im-
prov: A system for scripting interactive ac-
tors in virtual worlds. Computer Graph-
ics, 30(Annual Conference Series):205–
216, 1996.

[18] David H. Eberly Philip J. Schneider. Geo-
metric Tools for Computer Graphics. Mor-
gan Kaufmann, 2002.

[19] Y. Shinagawa, T.L. Kunii, A.G. Belayev,
and T. Tsukioka. Shape modeling and
shape analysis based on singularities. In-
ternational Journal of Shape Modeling,
2(1):85–102, 1996.

[20] Deepak Tolani, Ambarish Goswami, and
Norman I. Badler. Real-time inverse kine-
matics techniques for anthropomorphic
limbs. Graph. Models Image Process.,
62(5):353–388, 2000.

[21] Anne Verroust and Francis Lazarus. Ex-
tracting skeletal curves from 3d scattered
data. The Visual Computer, 16(1):15–25,
2000.

[22] Spyros Vosinakis and Themis
Panayiotopoulos. A task definition
language for virtual agents. Journal of
WSCG, 11(1):512–519, 2003.

[23] Xuguang Wang and Jean Pierre Verri-
est. A geometric algorithm to predict
the arm reach posture for computer-aided
ergonomic evaluation. The Journal of
Visualization and Computer Animation,
9(1):33–47, January–March 1998.

[24] Douglas J. Wiley and James K. Hahn.
Interpolation synthesis of articulated fig-
ure motion. IEEE Computer Graphics
and Applications, 17(6):39–45, Novem-
ber/December 1997.

10

