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Abstract

Optical motion capture provides an impressive
ability to replicategestures. However, even with a
highly professionalsystemthere are manyinstances
where crucial markers are occludedor whenthe al-
gorithm confusesthe trajectory of one marker with
that of another. This requiresmuch editing work on
the part of the animator before the virtual charac-
ters are ready for their screen debuts. In this pa-
per, wepresentan approach to increasingtherobust-
nessof a motion capture systemby using a sophis-
ticated anatomichumanmodel. It includesa pre-
cisedescriptionof theskeleton’s mobility andan ap-
proximatedenvelope. It allows us to accurately pre-
dict the 3–D location and visibility of markers, thus
significantlyincreasingthe robustnessof the marker
tracking and assignment,and drastically reducing—
or eveneliminating—theneedfor humanintervention
during the3–D reconstructionprocess.

Keywords: Motion capture,skeleton-basedtrack-
ing

1 Intr oduction

In recentyearsfeature-lengthfilms have success-
fully exploited virtual actor technology. ”Titanic” is
one of the best known examples. It featureshun-
dredsof digital passengerswith suchlevel of realism
that they are indistinguishablefrom real actors. The
mostcritical elementin thecreationof digital humans
wasthe replicationof humanmotion: “No otheras-
pectwasasapt to make or breaktheillusion.” [1] Op-
tical motion captureoffers a very attractive solution

to this problemandprovidesan impressive ability to
replicategestures.Strolling adults,children at play
andotherlifelik eactivitieshavebeenrecreatedin this
manner. The issuesare slightly different for game-
orientedmotion capture.Capturingsubtletiesis less
importantbecausegamesfocusmoreonbig andbroad
movements.What mattersmoreis the robustnessof
the reconstructionprocessandthe amountof human
interventionthatis required.

In this last respect,the motion captureprocessis
far from perfect.Evenwith a highly professionalsys-
tem therearemany instanceswherecrucial markers
areoccludedor whenthealgorithmconfusesthe tra-
jectory of onemarker with that of another. This re-
quiresmucheditingwork on thepartof theanimator
beforethevirtual charactersarereadyfor their screen
debuts.

In this paper, we presentanapproachto increasing
the robustnessof a motion capturesystemby using
a sophisticatedanatomichumanmodel. It includes
aprecisedescriptionof theskeleton’smobility andan
approximatedenvelope.It allowsusto accuratelypre-
dict the 3–D locationandvisibility of markers, thus
significantly increasingthe robustnessof the marker
trackingand assignment,and drasticallyreducing—
or eveneliminating—theneedfor humanintervention
duringthe3–D reconstructionprocess.In contrastto
commerciallyavailableapproachesto motioncapture
suchastheonesproposedby Elitetm andVICONtm,
we do not treat3–D marker reconstructionindepen-
dantly from motion recovery. Insteadwe combine
thesetwo processesandusepredictiontechniquesto
resolve ambiguities. For example, we can predict
whetheror notamarker is expectedto beoccludedby
thebody in oneor moreimagesandtake this knowl-
edgeinto accountfor reconstructionpurposes.When
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a marker cannotbereconstructedwith certaintyfrom
its imageprojections,we usetheexpectedpositionof
the skeletonto identify the marker anddisambiguate
its 3–D location. This is helpful whenit is only seen
by a small numberof cameras.In our approach,the
performer’s skeletonmotion is a byproductof there-
constructionprocess.

In the remainderof this paper, we first review
briefly someof theexisting motioncapturetechnolo-
gies. We thendescribeour skeleton-basedapproach.
Finally we demonstrateits robustnessusing some
complex motionsthatfeaturebothlargeaccelerations
andsevereocclusions.

2 Motion Capture Technologies

Motion capturetechnologiescanbe groupedinto
two broadclasses.[7]

• On-line motion capture. The system’s output
can be directly usedto pilot in real-timea vir-
tualhumanbodymimickingtheperformer’spos-
ture. This technologyis often basedon mag-
netic sensors.[2, 9] They are mainly used for
Virtual Reality andon-line TV shows with syn-
thetic characters.[7] However this technologyis
limited in several respects:Rangeof measure-
mentspace,noisydata,cumbersomesensors(al-
thoughthey tendto becomesmaller).As demon-
stratedatSIGGRAPH’99by VICONtm andMo-
tion Analysistm, optical technologyis becoming
a seriouscontenderin this areaandcandeliver
resultsat a rateof 20 to 30 Hertz,providedthat
all markersremainvisible.

• Off-line motion capture. Two processingstages
arenecessaryto retrieve theperformer’smotion.
Thistechnologyis typically basedonopticalmo-
tion capturefrom multiplecameraviews,usually
in the infrared range. Despitethe longer time
requiredto visualize the capturedmotion, it is
often preferredto magnetictechnology. It al-
lows the acquisitionof the subtlegesturesthat
areimportantin high-qualityproductionto con-
vey emotionthroughmotion. It is usedto cap-
ture the large andcomplex movementsthat are
importantin productionto maintaina salientvi-
sualresponseto userinput. It isalsoeffectivein a
clinical context for theassessmentof orthopaedic
pathologies.

For bothclassesof technique,thecharacterthat is to
beanimatedmaydiffer considerablyin shapeandpro-
portionfrom theperformingartist.Thiscanbesolved
usingmotionretargetingtechniques.[6]

Optical technologyis thereforeboundto become
increasinglyuseful for many applications. However
traditional approachessuch as the one depictedby
Figure 1(a) suffer from occlusionsand ambiguities
thatplaguethe3–Dreconstructionprocess.Typically,
whenmarkersbecomeoccluded,it grindsto ahaltand
requiresuserguidance. This limits its applicability
in a real-timecontext anddrivesup post-processing
costsfor nonreal time applications.This is the issue
thatour proposedapproach,depictedby Figure1(b),
addresses.

3 Approach

We useasinput the 2–D cameradataandcalibra-
tion parametersprovidedby anElitetm opticalmotion
capturesystem[5]. More precisely, asshown in Fig-
ure2(b),wearegivensetsof 2–Dpoint locations,one
for eachmarker andeachcamerathat seesit, anda
projectionmatrix for eachcamera.

To extract a 3–D animationof a skeletonfrom a
variety of movementsperformedby the sameactor
wearingthesamemarkers,we first derive a skeleton-
and-markermodel,that is a skeletonscaledto theac-
tor’sbodyproportionsandanestimateof themarkers’
locationswith respectto thejoints. To achievethis re-
sult, the actor is asked to performa “Gym motion,”
that is a sequenceof simplemovementsthat involve
all the major body joints. We canthenusethis cali-
bratedskeletonfor furthermotioncapturesessionsof
morecomplex motions.

Thecompleteapproachis depictedby Figure1(b).

3.1 Acquiring the Skeleton and Mark er
Model

During the calibrationphase,our goal is to scale
thebonesof thegenericskeletonof Figure3(a)sothat
it conformsto theperformer’s anatomyandto model
themarker’s locationswith respectto the joints. The
completeskeleton,excludingdetailedhandsandfeet,
had 69 degreesof freedom(33 joints), plus six po-
sition parametersin 3–D space. The end result is a
skeleton-and-markermodelsuchastheoneshown in
Figure3(b). In thiswork,weuseaverysimplemarker
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(a)

(b)

Figure 1. Approachesto Motion Capture:(a) In mostcommerciallyavailablepackages,theestimationof themarkers’ 3–D
positionsandthefit of the3–Dskeletonaredecoupled.(b) In ourapproach,wefirst computeaskeleton-and-marker
modelusinga standardizedsetof motions.Wethenuseit to resolve theambiguitiesduringthe3–Dreconstruction
process.

(a) (b)

Figure 2. Input Data: (a) Theperformerwearsmarkersandis imagedby eight infraredcameras.(b) For eachcamera,the
Elitetm systemreturnsa 2–D locationfor eachvisiblemarker.

model:Themarkersareattachedto specificjointsand
areconstrainedto remainonaspherecenteredaround
thatjoint.

The skeleton-and-marker model is computedus-
ing least-squaresminimization. As this is a non lin-
earprocess,thesystemgoesthroughthreesuccessive
adjustmentstepsso as to move closerand closerto
thesolutionatanacceptablecostwhile avoiding local
minima.Thesestepsaredescribedbelow.

3.1.1 3–D marker reconstruction

As the gym motion is an especiallysimple routine
highlighting the major joints motions,the 3–D loca-
tion of themarkerscanbeautomaticallyandreliably
reconstructedwithout knowledgeof the skeletonfor
200to 300framesat a time.

In practice,wepartitionthegymmotioninto inde-
pendentsequences,eachoneinvolving only the mo-
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(a) (b)

Figure 3. SkeletonandMarker Model. (a) GenericskeletonModel. (b) The genericmodel is scaledto conformthe per-
former’s anatomy. Eachmarker is attachedto a joint andcanmove ona spherecenteredaroundthatjoint.

tion of onelimb or bodypartat a time. We thenper-
form 3–Dreconstructionandtrackingfor eachonein-
dependently. If necessary, theusercanreattachsome
markersto speficicbodypartsif they becomelost.

3–D markersarereconstructedfrom the 2–D data
usingstereotriangulation[4]. In ourexamples,weuse
eightcameras.We first performpairwisereconstruc-
tion. For eachnon-ambiguousstereomatch,that is
when thereis only onepossiblecandidate,we com-
pute the corresponding3–D coordinateson the ba-
sis of the 2–D coordinates.These3–D coordinates
are then re-projectedonto the remainingsix camera
views, in order to determinethe entire set of 2–D
coordinatespotentiallyassociatedwith this one3–D
marker. We assumethat a 3–D marker is correctly
reconstructedif it re-projectsinto at leastone other
cameraview, thusmakingatotalof at leastthreecam-
eraviews. We will saythat thesemarkersarerecon-
structedby trinocular stereo,that is, using at least
threecameras.This is in contrastto markersrecon-
structedusingonly two cameraviews, andfor which
theprojectionsinto theotherviews failed.

Oncewe have reconstructedthesetrinocular3–D
markers in the first frame, we needto comparethe
numberof reconstructedmarkerswith thenumberof
markersknown to be carriedby the actor. As all re-
mainingprocessingis automatic,it is absolutelyes-
sentialthatall markersbeidentifiedin thefirst frame.
Any marker not presentin the first frame is lost for
the entiresequence.Therefore,if the numberof re-
constructedmarkers is insufficient, a secondstereo

matchingis performed,this time alsotaking into ac-
count markers seenin only two views. As binocu-
lar stereomatchingis boundto introduceerrors,the
useris thenpromptedto confirmwhetheror not these
binocularreconstructionsarecorrect.

As soonasall markersarefoundin thefirst frame,
the useris asked to associateeachmarker to a joint.
For eachhighlightedmarker, the usermust selecta
body part and correspondingjoint. Any marker not
associatedto abodypartis discardedduringthefitting
process.Oncetheseassociationshave beenmanually
created,we canproceedwith 2–D and3–D tracking
of themarkersover theentiresequence.

2–Dtrackingis carriedoutat thesametimeas3–D
trackingbecause2–Dsequencesareboundto provide
more continuity than reconstructed3–D sequences.
We thereforeuse2–D trackingin orderto accelerate
3–D reconstruction:For eachreliably reconstructed
marker in frame[f], we considerthe two setsof 2–D
coordinatesthat wereusedto computeits 3–D coor-
dinates. After 2–D tracking, thesetwo setsof 2–D
coordinateswill mostlikely have links to two setsof
2–Dcoordinatesin [f+1], thenext frame.If so,wecan
thenusethemin [f+1] to constructthecorresponding
3–D marker. To determinethe related2–D positions
in the othercameraviews, we reprojectthe 3–D co-
ordinates,asin thestereomatchingprocessdescribed
above.

3–D trackingpropagatesthe informationattached
to eachmarker in thefirst framethroughouttheentire
gym motion,so thatasmany markersaspossibleare
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identifiedin all frames.A broken link in the tracked
trajectoryof a marker implies the lossof its identity
andthe usermustthenbe prompted.In Section3.2,
we will seehow weusetheskeletonto overcomethat
problemin anautomatedfashion.

To computethe trajectoryof a marker from frame
[f] into frame[f+1], bothin 2–D and3–D,we look at
thedisplacementof themarkeroverafour-frameslid-
ingwindow [8]. Thebasicassumptionis thatdisplace-
mentis minimal from oneframeinto thenext, andthe
ideais to predictandconfirmthepositionof amarker
in thenext frame.Thedisplacementof amarker from
[f-1] into [f] predictsthe position in [f+1]. The ac-
tual positionin [f+1] andtheprojectionof themove-
ment into [f+2] shouldconfirm the previously-made
hypothesisby eliminatingambiguities.

At the end of the marker reconstructionprocess
and2–D/3–Dtrackingsteps,wehavethegymmotion
reconstructedin 3–D, the trajectoriesof the markers
throughoutthesequence,aswell asthe identification
of themarkerswith respectto theskeletonmodel.

3.1.2 Initial Joint Localization

In earlier work [11], we have developed a non-
iterative techniquethatallows us to usethesetracked
markersto roughlyestimatethe3–Dlocationof a few
key joints in eachframeof the sequence,aswell as
the relative 3–D trajectoriesof the markerswith re-
spectto theunderlyingjoints. We introducethis tech-
niquebriefly below andrefer the interestedreaderto
ourearlierpublicationfor additionaldetails.

Let us considera referentialboundto a bonerep-
resentedasa segment.Undertheassumptionthat the
distancebetweenmarkersandjointsremainsconstant,
the markers that are attachedon adjacentsegments
move on a spherecenteredon the joint that links the
two segments.Thepositionof a segmentin spaceis
completelydefinedby threepoints. Thus,if we have
a minimum of threemarkers on a segment,we can
definethepositionandorientationof thatsegmentin
space.Afterwards,we computethemovementof the
markersonadjacentsegmentsin thereferentialestab-
lishedby thesemarkersandwe estimatetheir centers
of rotation.

To take advantageof this observation,we partition
the markersinto setsthat appearto move rigidly and
estimatethe3–D locationof thecenterof rotationbe-
tweenadjacentsubsets,whichcorrespondsto thejoint
location.

This yields the approximate3–D locationof thir-
teenmajor joints, namelythe joints of the armsand
legs,aswell asthe locationof thepelvic joint, at the
baseof thespine.

3.1.3 SkeletonInitialization

Given thesethirteenjoint locationsin all frames,we
take the mediandistancesbetweenthem to be esti-
matesof thelengthof theperformer’s limbs. We then
useanthropometrictablesto infer the length of the
otherskeletonsegments.

Thisgivesusaskeletonmodelscaledto thesizeof
theactor. This model,however, is a staticone,that is
it hastheappropriatedimensionsbut doesnotyetcap-
turetheposturesfor thegym sequenceor therelative
positionof markersandjoints.

To estimate those distances,we first need to
roughly position the skeletonin eachframeby min-
imizing the distanceof the thirteenkey joints to the
correspondingcentersof rotation. This is doneby
minimizing an objective function that is the sum of
squaredistancesfrom the centersof rotation to the
joint it is attachedto.

Given the fact that we usea samplingrateof 100
Hertz andthat the gym motion is slow, the displace-
mentfrom oneframeto anotheris very small. Fitting
is performedoneframeat a time, andthe initial pa-
rametervaluesfor frame[f] aretheoptimisedparam-
etersobtainedfrom the fitting in the previous frame
[f-1]. As we only have thirteenobservationsfor each
frame,we do not attemptto estimateall of theskele-
ton’s degreesof freedom.Only ten joints (shoulders,
elbows, hips,knees,pelvic joint andthe fourth spine
vertebra)areactivewhile all theothersremainfrozen.
Thisyieldstheposturesof theskeletonin all framesof
thegym motion. In otherwords,we now have values
of theglobalpositioningvectorsanddegreesof free-
domin eachframe,aswell asa betterapproximation
to thelimb lengthsof theskeleton.

3.1.4 Global Fitting

We now have a skeletonmodel that is scaledto the
size of the performing actor, but we are still miss-
ing a completemarker model, that is one that spec-
ifies wherethe markersarepositionedon the actor’s
body and their distanceto the joints to which they
areattached.This is computedby performinga sec-
ond least-squaresminimizationwheretheactual3–D
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marker locationsbecomethedatato which we intend
to fit theskeleton.

Markersarenot locatedexactly on the joints and
the marker-to-joint distancesmustbe estimated.To
this end, we superimposethe markers’ 3–D coordi-
nateswith thepreviouslycomputedskeletonpostures.
In eachframe,we thencomputethedistancefrom the
marker to the joint andwe take the medianvalueof
thesedistancesto beourinitial estimateof themarker-
to-joint distance.Taking the marker modelto be the
distancefrom markerto joint meansthatthemarker is
expectedto alwaysbelocatedon a spherecenteredat
thejoint.

We now have all the information requiredto fit
the skeletonmodel to the observation data. The ini-
tial stateis given by the previously obtainedskele-
ton postures.As we needto checkthat all markers
arepresentandidentifiedbeforefitting, we do it one
frameatatime. Technically, thefitting processis sim-
ilar to the onewe usedto fit modelsto stereovideo
sequences.[10] Theinterestedreaderis referredto [3]
for detailson thealgorithm.

Foreachframeandfor eachmarker, oncethefitting
is complete,thedistancebetweenmarker andjoint is
stored. At the endof the gym motion sequence,we
have asmany suchdistancesper marker asthereare
frames.Themedianvalueof thesedistancesis anim-
provedapproximationof themarker-to-joint distance
andbecomesthefinal markermodel.

3.2 Capturing ComplexMotions

Theresultingskeleton-and-markermodelcannow
beappliedto motionsthatweactuallywishto capture.
The procedureis very similar to the oneusedin the
global fitting stepof the previous section. However,
wearenow dealingwith potentiallycomplex motions.
Consequently, eventhough2–Dand3–Dtrackingen-
surethe identificationof a large numberof markers
from one frame to another, ambiguities,suddenac-
celerationor occlusionswill oftencausebreaksin the
tracking links or erroneousreconstructions.For this
reason,it hasproved to be necessaryto increaseour
procedure’s robustnessby usingtheskeletonto drive
thereconstructionprocess,asdiscussedbelow.

The user is once again required to identify the
markersin thefirst frame.However, hewill no longer
be associating3–D markers to joints, but directly to
3–D markerslocatedon thebodymodelascomputed
duringthecalibrationphase.

3.2.1 SkeletonBasedTracking

In orderto improvetheresultsof stereomatching,we
usetheskeletonfor applyingavisibility andocclusion
test to eachpair of 2–D markersusedto constructa
3–D marker, thusverifying the validity of the recon-
struction.

Visibility Check A marker is expectedto be visi-
ble in a given view if it is seenmoreor lessfaceon
asopposedto edgeon, that is if the surfacenormal
at themarker’s locationandthe line of sight form an
acuteangle.Supposethatwehavereconstructedacer-
tain 3–D marker usingthe2–D pair (marker i1, view
j1) and(marker i2, view j2); we checkthat thesetwo
markersi1 andi2 areindeedvisible in views j1 andj2
respectively. Still assumingthatdisplacementis min-
imal from oneframeto thenext, weusethetheskele-
ton’s posturein the previous frameandcalculatethe
normalat the 3–D marker’s locationwith respectto
its underlyingbody part segment. We draw the line
joining the 3–D marker coordinatesto the position
in spaceof the cameraand if the anglebetweenthe
normalandthe line is acute,then the marker is vis-
ible. If this testshows that we have usedthe wrong
2–D coordinatesfor reconstruction,we must select
othercandidate2–Dcoordinates:Asdiscussedin Sec-
tion 3.1.1,each3–D marker is associatedto two sets
of 2–D coordinatesdeterminedby stereocorrespon-
dence,which we then usefor reconstructingthe 3–
D marker. To this 3–D marker, we then also asso-
ciatethe2–D coordinatesfrom theremainingcamera
views onto which the 3–D coordinatesof the marker
projectedcorrectly. Given that the visibility testhas
detectedanerroneous3–D reconstruction,we choose
oneof the 2–D coordinatescomputedvia 3–D to 2–
D projection,andcalculatenew 3–D coordinates.We
thenperforma new visibility test,andif this fails,we
repeattheentireprocedure.

Occlusioncheck Oncea3–Dmarkerhaspassedthe
visibility test,it needsto undergotheocclusioncheck:
Wewantto ensurethatthe3–Dmarkeris notoccluded
from somecameraviews by anotherbody part. To
this end,we approximatebodypartsby solids,cylin-
dersfor limbs anda spherefor the head. In thecase
of limbs,thecylinder’saxisis thecorrespondingbone
andtheradiusis theaveragejoint-to-markerdistance
of themarkersassociatedto thisbodypart. In thecase
of the sphere,the centreis the mid-point of the seg-
ment. For each3–D marker, a line is tracedfrom the
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marker to the position of the camera,and testedfor
intersectionwith all body part solids. In caseof in-
tersectionwith a solid, the marker is most likely oc-
cluded from this cameraview. Therefore,we con-
clude that we have usederroneous2–D coordinates
for reconstruction.As before,we chooseother2–D
coordinatesandrepeattheprocess.

3.2.2 Mark er inventory

When all the markers have beenreconstructedand
tested,wecanproceedwith trackingandfitting. More
specifically, for eachframe,we perform3–D recon-
struction, tracking from the previous frame into the
presentone,identificationof all markers,andfinally,
fitting of theskeleton-and-markermodelto theobser-
vations. In orderfor the fitting to work correctly, all
markers must be presentin every frame. To ensure
this,wecarryoutamarker inventoryafter3–Drecon-
structionandbeforefitting.

Saywehavejustperformed3–Dreconstructionus-
ing the 2–D dataof frame[f], andwe have thusob-
taineda setof markers.We thenproceedwith thefol-
lowing checks:

1. If the number of markers reconstructedusing
trinocularstereois smallerthanthe actualnum-
ber of markers worn by the actor, we perform
binocularreconstructionandaddthe newly cal-
culatedcoordinatesto thealreadyexisting list of
markers.

2. Weperform3–Dtrackingfrom [f-1] into [f], thus
identifyingacertainnumberof markersin [f], i.e.
attachingthemto their legitimatejoint.

3. If all markersarestill not found, we attemptto
identify the 3–D markers that are still anony-
mous. We find all the skeleton’s joints that are
missing one or more markers. Assumingthat
displacementis minimal from oneframeto an-
other, we retrieve thecoordinatesof thesejoints
in thepreviousframe,andcalculatethedistance
from thesejoints to eachremainingunidentified
3–D marker; the distanceclosestto the marker-
to-joint distancespecifiedby the marker model
yields an associationof the 3–D marker to that
joint.

4. If thedistancefrom marker to joint is largerthan
the distancespecifiedby the marker model,we
”bind” thecoordinatesof the3–D marker to the

Figure 4. Percenta ge of marker s identi-
fied by simple trac king, for the gym mo-
tion.

Figure 5. Percenta ge of marker s identi-
fied by simple trac king, for a captured
karate motion.

joint: We changeits 3–D coordinatessothat the
marker moveswithin an acceptabledistanceof
the joint. We however leave all reliably recon-
structed3–D markersuntouched.

5. In the worst-casescenario,there may still be
jointsthataremissingmarkers.Weretrievethese
markers in the threeprevious frame[f-3], [f-2]
and[f-1], andcalculatethe acceleration;we ap-
ply this accelerationto thepositionin [f-1], thus
obtaininganestimatedpositionof themarker in
thecurrentframe[f]. As before,wecalculatethe
distancefrom this inferred position to its asso-
ciatedjoint. If it is out of range,we ”bind” the
coordinates.

In this manner, all 3–D markersareavailablefor the
fitting process.
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Figure 6. Percenta ge of marker s identi-
fied by each step of the marker inventor y,
respectivel y for the gym and the karate
motion.

4 Results

4.1 Impr ovementsprovided by the skeleton-
basedtracking

In the following, we will give somestatisticson
the assistanceprovided by the skeletonwith respect
to trackingandmarker reconstruction.In Fig. 4, we
have run 3D tracking over 800 framesof the cali-
brationgym motion. This trackingusesonly simple
marker predictionwithout skeletoninformation (see
paragraph3.1.1)overaslidingwindow of four frames.
If amarker is lost in a frame,it cannotberecoveredin
any of the subsequentframes.The figureshows that
after about300 frames,the numberof trackedmark-
ersdropsto about10% (testsperformedwith an ac-
tor using32 body markers). In Fig. 5, we have per-
formedthe samestatistics,but this time usinga cap-
turedmotioncontaininga fastmovement,andwe no-
tice thatsimpletrackinglosesall markersin lessthan
200frames.

With skeleton-basedtracking, all markersare re-
coveredin all frames,i.e. 100%of the markersare
presentandidentified.

In Fig. 6, we show the percentageof markers
identified by eachprocessof the marker inventory
of skeleton-basedtracking(seeparagraph3.2.2). The
two barchartscomparethesepercentagesin the case
of the gym motion and the karatemotion. The first
step of the processidentifies reconstructedmarkers
using simple 3D tracking. This percentageis ob-
viously higher than in the previous figures,because
in the skeleton-basedtracking case,all markers are
presentin eachframe,whereasin thesimpletracking
case,a marker lost in oneframeis lost forever. The

Figure 7. Three diff erent frames from the
karate motion (set 30 frames apar t), seen
from various viewpoints.

Figure 8. Vir tual actor perf orming one of
the recovered motions.

secondstepidentifiesreconstructedmarkersusingthe
positionof the skeletonin the previous frame. As to
thethird step,it reconstructsthemarkersthatarestill
missingin thecurrentframe,combiningpredictionof
the3D trackingtypeandthepositionof theunderly-
ing skeleton.

4.2 Fitting Results

The imagesin Fig. 7 show a few resultsobtained
with oneof the movementsprovided by the Motion
CaptureStudio.Theuseof theskeletonhasenabledus
to improve every stepof theprocess,from 3D recon-
struction,to trackingandidentificationof themarkers.
It is robust with respectto noisy data,out-of-bound
andnon-identifiedmarkerswill berejected,andit can
alsohandlethecaseof occludedmarkers.

4.3 Discussion

Presently, motion capture software solutions
mostly require human intervention for solving am-
biguousstereomatches,aswell asfor re-identifying
markerswhena broken tracking link occurs. In our
case,the entireprocessis automatic,assoonas ini-
tializationhasbeenperformedby theuser.
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As is the caseof all methods,there is however
spacefor improvement.

4.3.1 Pre-setthr esholdsand parameters

In thecaseof trackingandidentification,onepossibil-
ity would be to allow for dynamicsearchneighbour-
hoodswhich would renderthealgorithmmorerobust
with respectto suddenaccelerationsin themovement.
Theseneighbourhoodswouldbefunctionof theaccel-
eration,thusexpandingtheir radiuswhen the move-
mentaccelerates.Thethresholdssetfor trackingand
fitting aredirectly linkedto theaveragedisplacement
betweentwo frames.Therefore,thresholdssetat the
beginning of the sessionin view of a regular move-
mentat a certainspeedaremostoftennot optimal in
caseof asuddenacceleration.Themarkerswill move
out of the boundariesof the searchneighbourhoods
definedby thesethresholds,this resultingeitherin re-
jection of thesemarkers (in the tracking case)or in
thesemarkers’ co-ordinatesbeing modified so as to
move thembackcloserto the skeletonjoints (in the
identificationcase).For example,a rapid movement
involving anextensionwill resultin anextensionthat
is not asfull asin theoriginalmotion.

4.3.2 User intervention

With respectto initialisation, one could do without
userinterventionif theactorwereto adopta specific
poseat the beginningof the sequencethis beingthe
normfor calibrationin thecontext of motioncapture.

4.3.3 Gimbal lock

A problem we have encounteredduring the fitting
phaseis thewell-knownGimballock problemthatoc-
cursdueto theuseof Euleranglesfor expressingrota-
tionsaroundtheaxes.Thelossof onedegreeof rota-
tionalfreedomresultsin thefactthatarotationdoesn’t
occurdueto thealignmentof theaxes.Whenthishap-
pensin ourcase,theoutputskeletonanimationsuffers
suddenjumpsfrom onepositionto another, whenro-
tationsdo not occur over several frames. In the fu-
ture, we could considerusingquaternionsto express
theaxisrotations.

4.3.4 Over-determination of the problem

Another problem regarding fitting is multiple solu-
tions,namelyin thecaseof thespine.Evenwhenwe

keeponly two joints in the spine,multiple solutions
arepossiblefor eachposture,resultingin twisting at
the spinelevel, andtorsionor roll at the pelvic joint
level. To solve this problem,we needto introduce
someconstraintson thespineon our side,or perhaps
addmoremarkersto thebackof theactor. Thereare
presentlyfour markersonthetorso:oneat thebottom
of theback,oneat thelevel of thethird vertebrae,one
at the baseof the neck, andoneon the chest. This
is obviously too few in order to determinea unique
solution.

4.3.5 Mark er model limitations

Regardingthemarkermodelweareusingfor themo-
ment,we couldin thefutureusea moresophisticated
model that would take into accountthe relative tra-
jectoriesof the markers,calculatedin the joint local-
izationphase(seeparagraph3.1.2). Themarkersare
presentlyfree to evolve on a spherecentredin the
joint, whereasin reality, their relative movementis
muchmorelimited. This would enableusto bemore
precisewhenit comesto identifyingamarkerfor sure,
andalsofor reconstructingamissingmarkerarounda
joint.

5 Conclusion

We have presentedan approachto increasingthe
robustnessof an optical motion trackingdevice. We
usea body-modelduring the 3–D reconstructionand
tracking processto assistthe 3–D reconstructionof
the markers, take visibility constraintsinto account
and remove ambiguities. This greatly increasesthe
motioncapturesustem’s robustnessanddecreasesthe
needfor humanintervention.

The resultsshown in this paperwereobtainedus-
ing as input the dataproducedby a specificoptical
system. However, aswe only usethe markers’ 2–D
imagelocationsand the cameracalibrationparame-
ters,theapproachis genericandcouldbeincorporated
in any similar system.This shouldleadto significant
reductionsin motioncapturepost-processingcostsin
a realproductionenvironment.
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