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Abstract

Optical motion captue provides an impressive
ability to replicate gestues. However, even with a
highly professionalsystenthere are manyinstances
whete crucial markers are occludedor whenthe al-
gorithm confuseghe trajectory of one marker with
that of another Thisrequires mud editing work on
the part of the animator before the virtual charac-
ters are ready for their screendehuts. In this pa-
per, we presentan appmad to increasingthe robust-
nessof a motion capture systemby using a sophis-
ticated anatomichumanmodel. It includesa pre-
cisedescriptionof the skeletons mobility and an ap-
proximatedervelope It allows usto accumately pre-
dict the 3—-D location and visibility of markers, thus
significantlyincreasingthe robustnessof the marler
tracking and assignmentand drastically reducing—
or eveneliminating—theneedfor humanintervention
during the 3—D reconstructiorprocess.

Keywords: Motion capture,skeleton-basedrack-
ing

1 Intr oduction

In recentyearsfeature-lengttfilms have success-
fully exploited virtual actortechnology "Titanic” is
one of the bestknown examples. It featureshun-
dredsof digital passengerwith suchlevel of realism
thatthey areindistinguishabldrom real actors. The
mostcritical elementin thecreationof digital humans
wasthe replicationof humanmotion: “No otheras-
pectwasasaptto make or breaktheillusion.”[1] Op-
tical motion captureoffers a very attractie solution

to this problemand providesanimpressve ability to

replicategestures. Strolling adults, children at play
andotherlifelik e activities have beenrecreatedn this

manner The issuesare slightly differentfor game-
orientedmotion capture. Capturingsubtletiesis less
importantbecausgamegocusmoreonbig andbroad
movements.What mattersmoreis the robustnesof

the reconstructiorprocessand the amountof human
interventionthatis required.

In this last respectthe motion captureprocesss
far from perfect.Evenwith a highly professionakys-
tem thereare mary instanceswvhere crucial markers
areoccludedor whenthe algorithmconfuseghe tra-
jectory of one marker with that of another This re-
quiresmucheditingwork on the part of the animator
beforethevirtual charactersirereadyfor their screen
dehuts.

In this paperwe presentinapproacho increasing
the robustnessof a motion capturesystemby using
a sophisticatedanatomichumanmodel. It includes
aprecisedescriptionof the skeletons mobility andan
approximatecenvelope.lt allowsusto accuratelypre-
dict the 3—-D location andvisibility of markers, thus
significantly increasingthe robustnessof the marker
tracking and assignmentand drastically reducing—
or eveneliminating—theneedfor humanintervention
duringthe 3-D reconstructiorprocess.In contrastto
commerciallyavailableapproaches motion capture
suchasthe onesproposedy Elite’™ andVICON?!™,
we do not treat3—D marker reconstructiorindepen-
dantly from motion recovery. Insteadwe combine
thesetwo processesindusepredictiontechniquego
resole ambiguities. For example, we can predict
whetheror notamarkeris expectedo be occludedy
thebodyin oneor moreimagesandtake this knowl-
edgeinto accountfor reconstructiorpurposesWhen
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a marker cannotbe reconstructedvith certaintyfrom
its imageprojectionswe usethe expectedpositionof
the skeletonto identify the marker anddisambiguate
its 3—D location. This is helpful whenit is only seen
by a small numberof cameras.In our approachthe
performers skeletonmotionis a byproductof there-
constructiorprocess.

In the remainderof this paper we first review
briefly someof the existing motion capturetechnolo-
gies. We thendescribeour skeleton-baseepproach.
Finally we demonstratets robustnessusing some
complex motionsthatfeaturebothlargeaccelerations
andsevereocclusions.

2 Motion Capture Technologies

Motion capturetechnologiescan be groupedinto
two broadclasse$7]

e On-line motion capture. The systems output
can be directly usedto pilot in real-timea vir-
tualhumanbodymimickingtheperformerspos-
ture. This technologyis often basedon mag-
netic sensorg2, 9] They are mainly used for
Virtual Reality andon-line TV shows with syn-
thetic character$7] However this technologyis
limited in several respects:Rangeof measure-
mentspacenoisydata,cumbersomsensorgal-
thoughthey tendto becomesmaller).As demon-
stratedat SIGGRAPH’99by VICON!™ andMo-
tion Analysis™, opticaltechnologyis becoming
a seriouscontenderin this areaand candeliver
resultsat a rate of 20 to 30 Hertz, provided that
all markersremainvisible.

o Off-line motion capture. Two processingtages
arenecessaryo retrieve the performers motion.
Thistechnologyis typically basednopticalmo-
tion capturefrom multiple cameraviews, usually
in the infrared range. Despitethe longertime
requiredto visualize the capturedmotion, it is
often preferredto magnetictechnology It al-
lows the acquisitionof the subtle gestureghat
areimportantin high-quality productionto con-
vey emotionthroughmotion. It is usedto cap-
ture the large and complex movementsthat are
importantin productionto maintaina salientvi-
sualresponséo userinput. It is alsoeffectivein a
clinical context for theassessmerf orthopaedic
pathologies.

For both classef technique the charactethatis to
beanimatednaydiffer considerablyn shapeandpro-
portionfrom the performingartist. This canbesolved
usingmotionretagetingtechniqueg6]

Optical technologyis thereforeboundto become
increasinglyuseful for mary applications. However
traditional approachesuch as the one depictedby
Figure 1(a) suffer from occlusionsand ambiguities
thatplaguethe 3—DreconstructiorprocessTypically,
whenmarkersbecomenccludedijt grindsto ahaltand
requiresuserguidance. This limits its applicability
in a real-timecontext and drives up post-processing
costsfor nonrealtime applications.This is the issue
that our proposedapproachdepictedby Figure 1(b),
addresses.

3 Approach

We useasinput the 2—-D cameradataandcalibra-
tion parameterprovidedby anElite'™ opticalmotion
capturesystem[5]. More precisely asshown in Fig-
ure2(b), we aregivensetsof 2—D pointlocations,one
for eachmarker and eachcamerathat seesit, anda
projectionmatrix for eachcamera.

To extract a 3—D animationof a skeletonfrom a
variety of movementsperformedby the sameactor
wearingthe samemarkers,we first derive a skeleton-
and-marler model,thatis a skeletonscaledto the ac-
tor'sbody proportionsandanestimateof themarlkers’
locationswith respecto thejoints. To achieve this re-
sult, the actoris asked to performa “Gym motion;
thatis a sequencef simple movementshatinvolve
all the major body joints. We canthenusethis cali-
bratedskeletonfor furthermotion capturesession®f
morecomplex motions.

The completeapproachs depictedby Figurel(b).

3.1 Acquiring the Skeleton and Mark er

Model

During the calibrationphase,our goal is to scale
thebonesof thegenericskeletonof Figure3(a)sothat
it conformsto the performers anatomyandto model
the marker’s locationswith respecto thejoints. The
completeskeleton,excluding detailedhandsandfeet,
had 69 degreesof freedom(33 joints), plus six po-
sition parametersn 3-D space. The endresultis a
skeleton-and-marér modelsuchasthe oneshown in
Figure3(b). In thiswork, we useaverysimplemarker
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Figure 1. Approachego Motion Capture:(a) In mostcommerciallyavailable packagesthe estimationof the markers’ 3-D
positionsandthefit of the3—D skeletonaredecoupled(b) In our approachwe first computea skeleton-and-made
modelusinga standardizedetof motions.We thenuseit to resole theambiguitiesduringthe 3—D reconstruction

process.

Figure 2. Input Data: (a) The performerwearsmarkersandis imagedby eightinfraredcameras.(b) For eachcamerathe

(b)

Elite’™ systenreturnsa 2—D locationfor eachvisible marler.

model: The markersareattachedo specificjointsand
areconstrainedo remainon a spherecenteredaround
thatjoint.

The skeleton-and-manér model is computedus-
ing least-squareminimization. As this is a nonlin-
earprocessthe systemgoesthroughthreesuccessie
adjustmentstepsso asto move closerand closerto
thesolutionatanacceptableostwhile avoiding local
minima. Thesestepsaredescribedelow.

3.1.1 3-Dmarker reconstruction

As the gym motion is an especiallysimple routine
highlighting the major joints motions,the 3—-D loca-
tion of the markerscanbe automaticallyandreliably
reconstructedvithout knowledgeof the skeletonfor
200to 300framesatatime.

In practice we partitionthegym motioninto inde-
pendentsequencesgachoneinvolving only the mo-
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Figure 3. Skeletonand Marker Model. (a) GenericskeletonModel. (b) The genericmodelis scaledto conformthe per
former's anatomy Eachmarler is attachedo a joint andcanmove on a spherecenterecaroundthatjoint.

tion of onelimb or body partat atime. We thenper
form 3—D reconstructiorandtrackingfor eachonein-
dependentlylf necessarthe usercanreattachsome
markersto speficicbody partsif they becomdost.

3-D markersarereconstructedrom the 2-D data
usingsteredriangulation[4]. In ourexampleswe use
eight cameras.We first perform pairwisereconstruc-
tion. For eachnon-ambiguoustereomatch,that is
whenthereis only one possiblecandidate we com-
pute the correspondingB3—D coordinateson the ba-
sis of the 2—-D coordinates. These3-D coordinates
are thenre-projectedonto the remainingsix camera
views, in orderto determinethe entire set of 2-D
coordinategotentially associatedvith this one 3-D
marker. We assumethat a 3—D marker is correctly
reconstructedf it re-projectsinto at leastone other
cameraview, thusmakingatotal of atleastthreecam-
eraviews. We will saythatthesemarkersarerecon-
structedby trinocular stereo,that is, using at least
threecameras.This is in contrastto markersrecon-
structedusingonly two cameraviews, andfor which
theprojectionsinto the otherviews failed.

Oncewe have reconstructedhesetrinocular 3-D
markersin the first frame, we needto comparethe
numberof reconstructednarkerswith the numberof
markersknown to be carriedby the actor As all re-
maining processings automatic,it is absolutelyes-
sentialthatall markersbeidentifiedin thefirst frame.
Any marker not presentin the first frameis lost for
the entire sequence.Therefore,if the numberof re-
constructedmarkers is insufficient, a secondstereo

matchingis performed this time alsotakinginto ac-
countmarkers seenin only two views. As binocu-
lar stereomatchingis boundto introduceerrors,the
useris thenpromptedo confirmwhetheror notthese
binocularreconstructionsrecorrect.

As soonasall markersarefoundin thefirst frame,
the useris asked to associateeachmarker to a joint.
For eachhighlighted marker, the usermust selecta
body part and correspondingoint. Any marker not
associatetb abodypartis discardediuringthefitting
process.Oncetheseassociationbiave beenmanually
createdwe can proceedwith 2—D and 3-D tracking
of themarkersovertheentiresequence.

2-Dtrackingis carriedout atthe sametime as3-D
trackingbecaus@-D sequenceareboundto provide
more continuity than reconstructed3—D sequences.
We thereforeuse2-D trackingin orderto accelerate
3-D reconstruction:For eachreliably reconstructed
marker in frame[f], we considerthe two setsof 2—D
coordinateghat were usedto computeits 3—D coor
dinates. After 2-D tracking, thesetwo setsof 2-D
coordinatewill mostlikely have links to two setsof
2-Dcoordinatesn [f+1], thenext frame.If so,wecan
thenusethemin [f+1] to constructthe corresponding
3-D marker. To determinethe related2—-D positions
in the other cameraviews, we reprojectthe 3—-D co-
ordinatesasin the stereamatchingprocessiescribed
above.

3-D tracking propagateshe information attached
to eachmarkerin thefirst framethroughoutheentire
gym motion, sothatasmary markersaspossibleare



identifiedin all frames. A brokenlink in the tracked
trajectoryof a marker implies the loss of its identity
andthe usermustthenbe prompted. In Section3.2,
we will seehow we usethe skeletonto overcomethat
problemin anautomatedashion.

To computethe trajectoryof a marker from frame
[f] into frame[f+1], bothin 2-D and3-D, we look at
thedisplacementf themarker overafour-frameslid-
ingwindow [8]. Thebasicassumptioris thatdisplace-
mentis minimal from oneframeinto the next, andthe
ideais to predictandconfirmthe positionof a marker
in the next frame. Thedisplacementf a marker from
[f-1] into [f] predictsthe positionin [f+1]. The ac-
tual positionin [f+1] andthe projectionof the move-
mentinto [f+2] shouldconfirm the previously-made
hypothesidy eliminatingambiguities.

At the end of the marker reconstructionprocess
and2-D/3-Dtrackingstepswe have thegym motion
reconstructedn 3-D, the trajectoriesof the markers
throughoutthe sequenceaswell asthe identification
of themarkerswith respecto the skeletonmodel.

3.1.2 Initial Joint Localization

In earlier work [11], we have developed a non-
iterative techniquethatallows usto usethesetracked
markersto roughlyestimatehe 3—-D locationof afew
key joints in eachframe of the sequenceaswell as
the relative 3—D trajectoriesof the markerswith re-
spectto theunderlyingjoints. We introducethis tech-
nigue briefly belon andrefertheinterestedeaderto
our earlierpublicationfor additionaldetails.

Let us considera referentialboundto a bonerep-
resentechisa sgment. Underthe assumptiorthatthe
distancébetweermarkersandjointsremainsconstant,
the markers that are attachedon adjacentsegments
move on a spherecenteredon the joint thatlinks the
two segments. The positionof a sggmentin spaceis
completelydefinedby threepoints. Thus,if we have
a minimum of threemarkers on a segment, we can
definethe positionandorientationof that segmentin
space.Afterwards,we computethe movementof the
markerson adjacensggmentsn thereferentialestab-
lishedby thesemarkersandwe estimatetheir centers
of rotation.

To take advantageof this obsenation, we partition
the markersinto setsthatappearo move rigidly and
estimatethe 3—D locationof the centerof rotationbe-
tweenadjacensubsetsywhich correspondso thejoint
location.

This yields the approximate3—D location of thir-
teenmajor joints, namelythe joints of the armsand
legs, aswell asthe locationof the pelvic joint, atthe
baseof the spine.

3.1.3 Skeletonlnitialization

Giventhesethirteenjoint locationsin all frames,we
take the mediandistancesbetweenthemto be esti-
matesof thelengthof the performerslimbs. We then
use anthropometridablesto infer the length of the
otherskeletonsegments.

This givesusa skeletonmodelscaledo the sizeof
theactor This model,however, is a staticone,thatis
it hastheappropriatalimensiongut doesnotyetcap-
turethe posturedor the gym sequencer therelative
positionof markersandjoints.

To estimate those distances, we first need to
roughly positionthe skeletonin eachframe by min-
imizing the distanceof the thirteenkey joints to the
correspondingcentersof rotation. This is done by
minimizing an objective function that is the sum of
squaredistancesrom the centersof rotation to the
joint it is attachedo.

Giventhe factthatwe usea samplingrate of 100
Hertz andthat the gym motion is slow, the displace-
mentfrom oneframeto anotheiis very small. Fitting
is performedoneframe at a time, andthe initial pa-
rametewvaluesfor frame[f] arethe optimisedparam-
etersobtainedfrom the fitting in the previous frame
[f-1]. As we only have thirteenobsenationsfor each
frame,we do not attemptto estimateall of the skele-
ton’s degreesof freedom.Only tenjoints (shoulders,
elbows, hips, knees pelvic joint andthe fourth spine
vertebrajareactive while all theothersremainfrozen.
Thisyieldsthepostureof theskeletonin all framesof
the gym motion. In otherwords,we now have values
of the global positioningvectorsand degreesof free-
domin eachframe,aswell asa betterapproximation
to thelimb lengthsof the skeleton.

3.1.4 Global Fitting

We now have a skeletonmodelthatis scaledto the
size of the performing actor, but we are still miss-
ing a completemarker model, that is one that spec-
ifies wherethe markersare positionedon the actor’s
body and their distanceto the joints to which they
areattached.This is computedby performinga sec-
ond least-squareminimizationwherethe actual3-D



marker locationsbecomethe datato which we intend
to fit the skeleton.

Markersare not locatedexactly on the joints and
the marker-to-joint distancesnustbe estimated. To
this end, we superimposéahe markers’ 3—D coordi-

nateswith the previously computedskeletonpostures.

In eachframe,we thencomputethe distancefrom the
marker to the joint andwe take the medianvalue of
thesalistanceso beourinitial estimateof themarker-
to-joint distance.Taking the marker modelto be the
distancdrom markerto joint meanghatthe markeris
expectedto alwaysbelocatedon a spherecenterecht
thejoint.

We now have all the information requiredto fit
the skeletonmodelto the obsenation data. The ini-
tial stateis given by the previously obtainedskele-
ton postures. As we needto checkthat all markers
are presentandidentified beforefitting, we do it one
frameatatime. Technically thefitting processs sim-
ilar to the onewe usedto fit modelsto stereovideo
sequenceg$10] Theinterestedeadeiis referredto [3]
for detailson the algorithm.

For eachframeandfor eachmarker, oncethefitting
is complete the distancebetweenmarker andjoint is
stored. At the end of the gym motion sequencewe
have asmary suchdistanceger marker asthereare
frames.Themedianvalueof thesedistancess anim-
proved approximationof the marker-to-joint distance
andbecomeghefinal marker model.

3.2 Capturing Complex Motions

Theresultingskeleton-and-marér modelcannow
beappliedto motionsthatwe actuallywishto capture.
The procedures very similar to the one usedin the
global fitting stepof the previous section. However,
we arenow dealingwith potentiallycomplex motions.
Consequentlyeventhough2—-D and3-D trackingen-
surethe identificationof a large numberof markers
from one frame to anothey ambiguities,suddenac-
celerationor occlusionswill oftencausebreaksin the
trackinglinks or erroneougeconstructions.For this
reasonjt hasprovedto be necessaryo increaseour
procedures robustnessy usingthe skeletonto drive
thereconstructiorprocessasdiscussedbelow.

The useris once again requiredto identify the
markersin thefirst frame.However, hewill nolonger
be associating3—D markersto joints, but directly to
3-D markerslocatedon the body modelascomputed
duringthecalibrationphase.

3.2.1 SkeletonBasedTracking

In orderto improve theresultsof stereomatchingwe
usetheskeletonfor applyingavisibility andocclusion
testto eachpair of 2—D markersusedto constructa
3-D marker, thusverifying the validity of the recon-
struction.

Visibility Check A marler is expectedto be visi-

ble in a givenview if it is seenmoreor lessfaceon

asopposedio edgeon, thatis if the surfacenormal
atthe marker’s locationandthe line of sightform an
acuteangle.Suppose¢hatwe havereconstructedcer

tain 3—D marker usingthe 2-D pair (markeril, view

j1) and(markeri2, view j2); we checkthatthesetwo

markersil andi2 areindeedvisible in viewsj1 andj2

respectiely. Still assuminghatdisplacemenis min-

imal from oneframeto the next, we usethethe skele-
ton’s posturein the previous frame and calculatethe
normal at the 3—D marker’s location with respectto

its underlyingbody part sgment. We draw the line

joining the 3—D marker coordinatesto the position
in spaceof the cameraandif the anglebetweenthe

normalandthe line is acute,thenthe marker is vis-

ible. If this testshavs that we have usedthe wrong

2-D coordinatesfor reconstructionwe must select
othercandidate—D coordinatesAs discussedh Sec-
tion 3.1.1,each3-D marker is associatedo two sets
of 2-D coordinatesdeterminedby stereocorrespon-
dence,which we then usefor reconstructinghe 3—

D marker. To this 3—-D marker, we then also asso-
ciatethe 2—-D coordinategrom the remainingcamera
views onto which the 3—D coordinatesf the marker

projectedcorrectly Given thatthe visibility testhas
detectecan erroneous—D reconstructionye choose
oneof the 2-D coordinatecomputedvia 3-D to 2—

D projection,andcalculatenew 3—-D coordinatesWe

thenperforma new visibility test,andif this fails, we

repeatheentireprocedure.

Occlusioncheck Oncea3-Dmarkerhaspassedhe
visibility test,it needd4o undegotheocclusioncheck:
Wewantto ensurghatthe3—D markeris notoccluded
from somecameraviews by anotherbody part. To
this end,we approximatebody partsby solids, cylin-
dersfor limbs anda spherefor the head. In the case
of limbs, thecylinder'saxisis thecorrespondindpone
andtheradiusis the averagejoint-to-marler distance
of themarkersassociatetb this bodypart. In thecase
of the sphere the centreis the mid-point of the seg-
ment. For each3-D marker, aline is tracedfrom the



marker to the position of the camera,and testedfor
intersectionwith all body part solids. In caseof in-
tersectionwith a solid, the marker is mostlikely oc-
cludedfrom this cameraview. Therefore,we con-
clude that we have usederroneous2-D coordinates
for reconstruction.As before,we chooseother2-D
coordinategndrepeatheprocess.

3.2.2 Mark er inventory

When all the markers have beenreconstructecand
testedwe canproceedvith trackingandfitting. More

specifically for eachframe, we perform 3—-D recon-
struction, tracking from the previous frame into the

presenine,identificationof all markers,andfinally,

fitting of the skeleton-and-marér modelto the obser

vations. In orderfor the fitting to work correctly all

markers mustbe presentin every frame. To ensure
this, we carryouta markerinventoryafter3—D recon-
structionandbeforefitting.

Saywe havejust performed3—-D reconstructions-
ing the 2—-D dataof frame[f], andwe have thusob-
taineda setof markers.We thenproceedwith thefol-
lowing checks:

1. If the numberof markers reconstructedusing
trinocular stereois smallerthanthe actualnum-
ber of markers worn by the actor we perform
binocularreconstructiorand addthe newly cal-
culatedcoordinatedo the alreadyexisting list of
markers.

2. Weperform3-Dtrackingfrom [f-1] into[f], thus
identifyingacertainnumberof markersin [f], i.e.
attachinghemto their legitimatejoint.

3. If all markersarestill not found, we attemptto
identify the 3—D markers that are still anory-
mous. We find all the skeletons joints that are
missing one or more markers. Assumingthat
displacements minimal from oneframeto an-
other, we retrieve the coordinatef thesejoints
in the previousframe,andcalculatethe distance
from thesejoints to eachremainingunidentified
3-D marker; the distanceclosestto the marker-
to-joint distancespecifiedby the marker model
yields an associatiorof the 3—D marler to that
joint.

4. If thedistancdrom markerto joint is largerthan
the distancespecifiedby the marker model, we
"bind” the coordinatef the 3—D marker to the

Percentage of markers identified by tracking without skeleton
(over 800 frames)

100%
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Figure 4. Percentage of markers identi-
fied by simple tracking, for the gym mo-
tion.

Percentage of markers identified by tracking without skeleton
(over 200 frames)

Figure 5. Percentage of markers identi-
fied by simple tracking, for a captured
karate motion.

joint: We changeits 3—-D coordinatesothatthe
marker moves within an acceptablalistanceof
the joint. We however leave all reliably recon-
structed3—D markersuntouched.

5. In the worst-casescenario,there may still be
jointsthataremissingmarkers.Weretrievethese
markersin the threeprevious frame[f-3], [f-2]
and[f-1], andcalculatethe accelerationwe ap-
ply this acceleratiorio the positionin [f-1], thus
obtainingan estimatedpositionof the markerin
thecurrentframe[f]. As before we calculatethe
distancefrom this inferred positionto its asso-
ciatedjoint. If it is out of range,we "bind” the
coordinates.

In this manner all 3—-D markersareavailablefor the
fitting process.



Marker inventory by category

Gym mation s karate motion

Figure 6. Percentage of markers identi-
fied by each step of the marker inventor vy,
respectivel y for the gym and the karate
motion.

4 Results

4.1 Impr ovementsprovided by the skeleton-
basedtracking

In the following, we will give somestatisticson
the assistancerovided by the skeletonwith respect
to trackingand marker reconstruction.In Fig. 4, we
have run 3D tracking over 800 framesof the cali-
bration gym motion. This trackingusesonly simple
marker predictionwithout skeletoninformation (see
paragrap!8.1.1)overaslidingwindow of four frames.
If amarlkeris lostin aframe,it cannotberecoveredin
ary of the subsequenframes. The figure shavs that
after about300 frames,the numberof tracked mark-
ersdropsto about10% (testsperformedwith an ac-
tor using 32 body markers). In Fig. 5, we have per
formedthe samestatistics,but this time usinga cap-
turedmotion containinga fastmovement,andwe no-
tice thatsimpletrackinglosesall markersin lessthan
200frames.

With skeleton-basedracking, all markersare re-
coveredin all frames,i.e. 100% of the markersare
presentandidentified.

In Fig. 6, we shav the percentageof markers
identified by each processof the marker inventory
of skeleton-basedracking(segaragraptB.2.2). The
two barchartscomparethesepercentages the case
of the gym motion and the karatemotion. The first
step of the processidentifies reconstructednarkers
using simple 3D tracking. This percentagds ob-
viously higherthanin the previous figures, because
in the skeleton-basedracking case,all markers are
presenin eachframe,whereasn the simpletracking
case,a marker lostin oneframeis lost forever. The

Figure 7. Three diff erent frames from the
karate motion (set 30 frames apart), seen
from various viewpoints.

'\(‘\\

y-

Figure 8. Virtual actor performing one of
the recovered motions.

secondstepidentifiesreconstructednarkersusingthe
positionof the skeletonin the previous frame. As to
thethird step,it reconstructshe markersthatarestill

missingin the currentframe,combiningpredictionof
the 3D trackingtype andthe positionof the underly-
ing skeleton.

4.2 Fitting Results

The imagesin Fig. 7 shov a few resultsobtained
with one of the movementsprovided by the Motion
CaptureStudio. Theuseof theskeletonhasenabledis
to improve every stepof the processfrom 3D recon-
struction to trackingandidentificationof themarkers.
It is robust with respectto noisy data, out-of-bound
andnon-identifiedmarkerswill berejectedandit can
alsohandlethe caseof occludedmarkers.

4.3 Discussion

Presently motion capture software solutions
mostly require humanintervention for solving am-
biguousstereomatchesaswell asfor re-identifying
markerswhena broken tracking link occurs. In our
case,the entire processs automatic,as soonasini-
tializationhasbeenperformedby the user



As is the caseof all methods,thereis however
spaceor improvement.

4.3.1 Pre-setthresholdsand parameters

In thecaseof trackingandidentification,onepossibil-
ity would be to allow for dynamicsearchneighbour
hoodswhich would renderthe algorithmmorerobust
with respecto sudderaccelerations themovement.
Theseneighbourhoodwould befunctionof theaccel-
eration, thus expandingtheir radiuswhenthe move-
mentacceleratesThe thresholdssetfor trackingand
fitting aredirectly linkedto the averagedisplacement
betweentwo frames. Therefore thresholdssetat the
beginning of the sessionin view of a regular move-
mentat a certainspeedare mostoften not optimalin
caseof asudderaccelerationThe markerswill move
out of the boundariesof the searchneighbourhoods
definedby thesethresholdsthis resultingeitherin re-
jection of thesemarlers (in the tracking case)or in
thesemarkers’ co-ordinatesheing modified so asto
move themback closerto the skeletonjoints (in the
identificationcase). For example,a rapid movement
involving anextensionwill resultin anextensionthat
is notasfull asin the original motion.

4.3.2 Userintervention

With respectto initialisation, one could do without
userinterventionif the actorwereto adopta specific
poseat the beginning of the sequencethis beingthe
normfor calibrationin the context of motioncapture.

4.3.3 Gimbal lock

A problemwe have encounteredduring the fitting

phasds thewell-known Gimballock problemthatoc-

cursdueto theuseof Euleranglesfor expressingota-
tionsaroundthe axes. Thelossof onedegreeof rota-
tionalfreedonmresultsin thefactthatarotationdoesnt

occurdueto thealignmentof theaxes.Whenthis hap-
pensin our casetheoutputskeletonanimationsuffers
suddenjumpsfrom onepositionto anotheywhenro-

tationsdo not occur over several frames. In the fu-

ture, we could considerusing quaterniongo express
theaxisrotations.

4.3.4 Over-determination of the problem

Another problem regarding fitting is multiple solu-
tions, namelyin the caseof the spine.Evenwhenwe

keeponly two joints in the spine,multiple solutions
arepossiblefor eachposture resultingin twisting at
the spinelevel, andtorsionor roll at the pelvic joint
level. To solve this problem, we needto introduce
someconstraintson the spineon our side,or perhaps
addmoremarkersto the backof the actor Thereare
presenthyfour markersonthetorso: oneatthebottom
of theback,oneatthelevel of thethird vertebraepne
at the baseof the neck, and one on the chest. This
is obviously too few in orderto determinea unique
solution.

4.3.5 Mark er modellimitations

Regardingthe marker modelwe areusingfor the mo-
ment,we couldin the future usea moresophisticated
model that would take into accountthe relative tra-
jectoriesof the markers, calculatedn thejoint local-
ization phase(seeparagrapiB.1.2). The markersare
presentlyfree to evolve on a spherecentredin the
joint, whereasin reality, their relatve movementis
muchmorelimited. This would enableusto be more
precisewhenit comedo identifyingamarkerfor sure,
andalsofor reconstructinga missingmarker arounda
joint.

5 Conclusion

We have presentedan approachto increasingthe
robustnesf an optical motion trackingdevice. We
usea body-modelduring the 3-D reconstructiorand
tracking processto assistthe 3—-D reconstructionof
the markers, take visibility constraintsinto account
and remove ambiguities. This greatly increaseghe
motion capturesustems robustnessinddecreasethe
needfor humanintervention.

The resultsshavn in this paperwere obtainedus-
ing asinput the dataproducedby a specific optical
system. However, aswe only usethe markers’ 2—D
image locationsand the cameracalibration parame-
ters,theapproaclis genericandcouldbeincorporated
in ary similar system.This shouldleadto significant
reductionsn motion capturepost-processingostsin
arealproductionervironment.
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