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Abstract

Synthetiamodelingof humanbodiesand the simulation
of motionis a longstandingoroblemin animationandmud
work is involvedbefore a nearrealistic performancecan
be achieved. At presentjt takesan experiencedlesignera
verylong timeto build a completeand realistic modelthat
closelyresembles specificperson. Our ultimate goal is
to automatethe processandto producerealistic animation
modelsgivena setof videosequences.

In this paper we showthat, givenvideosequencesf a
personmovingin front of thecamer, we canrecover shape
informationandjoint locations.Bothof which are essential
to instantiatea completeand realistic modelthat closely
resembles specificperson and without knowledg about
the positionof the articulationsa character cannotbe ani-
mated. Thisis achievedwith minimal humanintervention.
Therecovered shapeand motionparametes canbe usedto
reconstructheoriginal movemenor to allow otheranima-
tion modelsto mimicthe subjects actions?

1 Intr oduction

Syntheticmodelingof humanbodiesandthe simulation
of motionis alongstandingroblemin animationandmuch
work is involved before a nearrealistic performancecan
be achieved. At present,t takesan experienceddesigner
a very long time to build a completeand realistic model
thatcloselyresembles specificperson.Our ultimategoal
is to automatethe processandto producerealisticanima-
tion modelsgiven a set of video sequences.Eventually
the whole task should be performedquickly by an opera-
torwhois notnecessarilyanexperiencedyraphicsdesigner
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We shouldbeableto invite avisitor to ourlaboratory make
him walk in front of a setof camerasandproduce within a
singleday, arealisticanimationof himself.

In this paperwe shaw that,givenstereovideosequences
of apersonmoving in front of the camerawe canrecover
shapeinformation and joint locations, both of which are
essentialto instantiatethe model. This is achieved with
minimal humanintervention: To initialize the processthe
usersimply clicks ontheapproximatdocationof afew key
jointsin oneimagetriplet. Therecoseredshapeandmotion
parametergan be usedto reconstructhe original motion
or to make otheranimationmodelsmimic the subjects ac-
tions.

We concentrateon a video-basedpproachbecauseof
its comparatiely low costandgoodcontrol of the dynamic
natureof the processWhile laserscanningechnologypro-
videsafairly goodsurfacedescriptiorof astaticobjectfrom
a given viewpoint, videogrammetryallows us in addition
to measureand track particularpoints of interest,suchas
joints, andto recordand track surface and point features
aroundtheobject.

The problemto be solvedis twofold: first, robustly ex-
tractimageinformationfrom the data; secondfit the ani-
mationmodelsto the extractedinformation. In this work,
we usevideo sequenceacquiredwith threesynchronized
camerago extracttrackingandstereadinformation.

Recently techniqueshave beenproposed10, 7, 12, 3]
to track humanmotionsfrom video sequences.They are
fairly effective but usevery simplified modelsof thehuman
body, suchas ellipsoids, that do not preciselymodel the
humanshapeandwould notbesufficientfor atruly realistic
simulation.

Much work hasalso beendevotedto the useof silhou-
ettesfor body modeling[4, 9]. They provide very useful
butincompleteinformationaboutshapewhichis oneof the
issuesve will addressn thiswork. Here,we usesterean-
formationto instantiatethe sophisticate@nimationmodels
that we have developedin the pastto both track the mo-
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Figure 1. Least squares matching algorithm.
Left: template image, right: search image

tion andrecoverthe shapeof the bodyasaccuratelyaspos-
sible. However, silhouetteinformation can easily be inte-
gratedinto our extensibleleast-squaresameawork. Thein-
terestedreaderis referredto an earlier publication[5] for
moredetailson silhouetteintegration.

We firstintroduceour approacto computing3—D stereo
informationand 3-D surfacetrajectories.We thenpresent
the animationmodelwe use. Finally, we introduceour fit-
ting procedureand shov how we canhandlethe different
kindsof inputinformation.

2 Extracting Image Information
2.1 SurfaceMeasurement

Our approachs basedon multi imagephotogrammetry
We take threeimagesusingthreesynchronizedcamerasA
multi-imageleastsquaredasednatchingprocesg8] estab-
lishescorrespondenceis the threeimages. It considersa
patchof areaarounda selectecpoint. Oneimageis usedas
templateandthe othersassearchimages.The patchin the
searctimageis modifiedby anaffine transformatior{trans-
lation, rotation, sheeringand scaling) and the grey levels
arevariedby multiplicative andadditive constantsTheal-
gorithmfindsthe correspondingpointin the neighborhood
of theselectegointin thesearcimageshy minimizingthe
sumof the squareof the differencedetweenthe grey lev-
elsin thesepatches.Figure 1 shaws the resultof the least
squaregmatchingwith animagepatchof 13 x 13 pixels.
Theblackboxesrepresenthe patcheselectedinitial loca-
tion in the searchimage)andthe white box representshe
affinely transformecpatchin the searcimage.

To definethe seedpoints of the multi-image matching
process,approximationsfor a few correspondingpoints
have to be manuallyselectedn the threeimages. For ex-
ample,for the arm sequenc®f Figure8 we selectedabout
tenseedpointsmanually Theleastsquareslgorithmis ap-
plied to find their exactlocationin the pictures. To define
the regionsbetweenthe differentseedpoints, we compute
a Voronoitessellatiorin the templateimage. Theimageis
divided into polyhedralregionsaccordingto which of the
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Figure 2. Search strategy for the establish-
ment of correspondences between images

seedpointsis closest. Startingfrom the seedpoints, the
stereomatcherautomaticallydetermines densesetof cor
respondencesThe centralimageis usedasa templateim-
age andthe othertwo (left andright) are usedas search
images. The matchersearcheshe correspondingpointsin
thetwo searclimagesndependentlyAt theendof the pro-
cessthedatasetsarememedto becomeripletsof matched
points.

The matcherusesthe following stratgy: the process
startsfrom one seedpoint, shifts the templatehorizontally
in the searcimageandthenappliesthe leastsquareslgo-
rithm. If the quality of the matchis good,the shift process
continueshorizontally until it reachesthe region bound-
aries.The coveringof the entirepolygonalregion of a seed
point is achiezed by subsequenthhorizontaland vertical
shifts (Figure 2). If the quality of the matchis not sat-
isfactory the algorithmworks adaptvely by changingpa-
rameterge.g. smallershift, biggersizeof the patch). The
searchprocessis repeatedor eachseedpoint region un-
til the wholeimageis covered. At the end of the process,
holesof nonanalyzedareasanappeain thesetof matched
points. Thealgorithmtriesto closetheseholesby searching
from all directionsaround.The matchingprocesgesultsin
a setof matchedpointsin the threeimages. To compute
the 3—D coordinatesof thesepoints, we apply forward in-
tersectionusing the orientationand calibrationdataof the
cameras[13].

2.2 Tracking process

The tracking processis also basedon least squares
matchingtechniquesThe spatialcorrespondencdsetween
thethreeimageof thedifferentviews andalsothetemporal
correspondencdsetweersubsequenramesarecomputed
usingthesameeastsquaresnatchingalgorithmmentioned
as before. To startthe processa triplet of corresponding
pointsin thethreeimagess neededThis 3—D pointis then
trackedthroughthesequencén thethreeimagesandthere-



left centre right

-
LSM LSM
ws: spatial ﬁ spatial —
=

LSMj temporal

frame |

LSMt temporal LSM ttemporal
W v WL v :
- - frame j+1
spatial spatial
left centre right

Figure 3. Tracking process

=

C

h | I
- ==
i i+1
i1 i+1

O predicted position

zoom

i | search box

linear prediction of position in frame ~ j+1 search path

Jr position of best cross correlation

Figure 4. Tracking in image space: LSM tem-
poral is applied at the position of best cross
correlation

fore its 3—D trajectorycanbe computed. Figure 3 shawvs
theuseof theleastsquaresnatchingalgorithmto trackthe
point.

In frames, atriplet of correspondingpointsin the three
imagesis establishedwith the leastsquaresmatchingal-
gorithm (spatial LSM). In eachof the threeimages(left,
center right) a correspondenpoint is matchedn the next
framei + 1 alsowith the sameleastsquaregnatchingal-
gorithm (tempoal LSM). Figure 4 depictshow the tem-
poral correspondenceare establishedetweensubsequent
frames.

For framei + 1, a linear predictionof the position of
the tracked point from the previous frame is made. A
searchbox is definedaroundthis predictedpositionin the
framei + 1. This boxis scannedor searchinghe position
which hasthe bestvalue of cross-correlatiorbetweenthe
imageof frame: andtheimageof framei + 1. This position
is consideredcan approximationof the exact positionof the
pointto betracked. Theleastsquaresnatchingalgorithmis
appliedatthatpositionandtheresultcanbe consideredhe
exact positionof the tracked pointin the new frame. This
processs performedindependentlyor the threeimagesof
the differentviews. A spatial LSM is executedat the po-
sitionsresultingfrom the tempoal LSMsandif no signifi-
cantdifferencesoccurshetweerthe two matchesthe point
canbe consideredxactly tracked. Thetracked point’s 3—-D
trajectoryis determinedoy computingthe 3—D coordinates
of the point throughthe sequencéy forward intersection.
Velocitiesandaccelerationsire alsocomputed.The track-
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Figure 5. Vector field of trajectories of surface
tracking

ing algorithmis appliedto all the points measuredn the
surfaceof thefirst frame. Theresultcanbe seenasa vec-
tor field of trajectorieqposition,velocity andacceleration).
An importantadvantageof this generaltrackingschemeof
all the pointsis that at the endthe resultscanbe checled
for consistenyg andlocal uniformity of the movement.Two
filters areappliedon the resultsto remove or truncatefalse
trajectorieqFigureb).

Thefirst filter consistf thresholdgor the velocity and
acceleration.The secondfilter checksfor the local unifor-
mity, bothin spaceandtime, of the motion. Sincethe hu-
manbody canbe consideredas an articulatedmoving ob-
ject, theresultingvectorfield of trajectoriesmustbelocally
uniform, i.e. the velocity vector must be nearly constant
in sufliciently smallregionsat a particulartime. To check
this property the single trajectoriesare comparedo local
(in spaceandtime) meanvaluesof the velocity vector If
thedifferencesaretoo large, the trajectoryis consideredo
befalseandit is truncatedor removed. The resultsof this
filtering arenotonly trajectorieswithouterrors but alsosur
facemeasurementin form of a 3—D pointscloud) at each
time instancewithout errors. The possibleerrorsin the sur
facemeasuremertdoneatthebeginningof thesequencare
removed during the tracking process sincethey probably
generatdalsetrajectories.

Testson differentsequencebave shovn thatthe process
worksalsowith lesstexturedsurfacedik e jeansor skin. Al-
thoughtheaccurag of thetrackingis lower, thecorrectness
of thetracked motionis assuredy the uniformity filter.

3 MODELS

In this section we first describehe completemodelthat
we usefor animationpurposes.This modelhastoo mary
degreesof freedomto be effectively fit to noisy datawith-
outa-prioriknowledge.We thereforeintroducea simplified
modelthatwe have usedto derive aninitial shapeandpo-
sition. In this work, we will usethis knowledgeto initialize
the completeonebeforerefiningit.



(a) (b) (©) (d)
Figure 6. The layered human body model: (a)

Skeleton. (b) Ellipsoidal metaballs used to
simulate muscles and fat tissue . (c) Polyg-
onal surface representation of the skin. (d)
Shaded rendering.

3.1 Complete Animation Model

Generallyvirtual humandodiesarestructuredasarticu-
latedbodiesdefinedby a skeleton.Whenananimatorspeci-
fiesananimationsequencehedefineghemotionusingthis
skeleton.

A skeletonis a connectedsetof segments,correspond-
ing to limbs andjoints. A joint is the intersectionof two
segmentswhich meanst is askeletonpointwherethelimb
linkedto thatpointmay move.

Our model[17] is depictedby Figure®6. It incorporates
a highly effective multi-layeredapproachfor constructing
andanimatingrealistichumanbodies.Ellipsoidalmetaballs
areusedto simulatethegrossbehaior of bone,muscle and
fattissue;they areattachedo the skeletonandarrangedn
an anatomically-basedpproximation. The skin construc-
tion is madein athreestepprocess First, theimplicit sur
faceresultingfrom the combinationof the metaballsinflu-
enceis automaticallysampledalong cross-sectionsvith a
ray castingmethod[16, 17]. Second,the sampledpoints
constitutecontrol pointsof a B-spline patchfor eachbody
part(limbs, trunk, pelvis,neck). Third, a polygonalsurface
representatiors constructedy tessellatinghoseB-spline
patchedor seamlesgoining differentskin piecestogether
andfinal rendering.Themethod simpleandintuitive,com-
binesthe advantage®f implicit, parametricand polygonal
surfacerepresentationproducingvery realisticand robust
body deformations. By applying smoothblending twice
(metaballpotentialfield blendingandB-splinebasisblend-
ing), themodel's datasizeis significantlyreduced.

Sincethe overall appearancef a humanbody is very
muchinfluencedby its internalmusclestructuresthe lay-
eredmodelis themostpromisingfor realistichumanmanima-
tion. Thekey advantageof thelayeredmethodologyis that
oncethelayeredcharacteis constructedpnly the underly-
ing skeletonneedbe scriptedfor animation;consistentet
expressve shapedeformationsaregeneratedutomatically

3.2 Skeletonand State Vector

The stateof the skeletonis describedby the combined
statevector

Sbody = [Smotiona Ssk:el] . (1)

Sincethe skeletonis modeledin a hierarchicalmanneywe
can definethe static or init stateof the skeleton S,x.; as
the rotationsand translationsrom eachjoint with respect
to the precedingone. It is fixed for a giveninstanceof the
body model. The variableor motion statevector S, otion
containgheactualvaluesfor eachdegreeof freedom(DoF),
i.e. theanglearoundthe z-axistowardsthe next DoF. They
reflectthe positionand postureof the body with respecto
its restposition. All joints have a singleangularDoF. More
complicatedarticulationsare split into several, single-DoF
joints sharingthe samelocationandonly differing in their
orientations.

The positionof jointsin a global or world referentialis
obtainedby multiplying the local coordinatesby a trans-
formationmatrix. This matrix is computedrecursvely by
multiplying all the transformatiormatricesthatcorrespond
to the precedingointsin the body hierarchy:

X; = HDi(S) * Xy (2)

with X; ., = [z, 9, 2] beingjoint local, resp.world global,
coordinatesand the homogeneougransformatiomrmatrices
D?, which dependon the statevector S, rangingfrom the
root articulations first to the referencearticulations last
DoF. Thesematricesare split into static and motion ma-
trices,accordingto the statevector They areof theform

D= Drotz * Dini . (3)

The rotation matrix D, is definedby the motion state
vector It is asparsamatrix allowing only arotationaround
the local z-axis (©,). The static transformationD,,,; =
(RX + sT) is a matrix directly taken from the standard
skeleton. Thesematricestranslateby the bonelengthand
rotatethe local coordinatesystemfrom the joint to its par
ent. The matrix entriesare calculatedusingvaluess from
thestatevectorS,,.;. Thevariablecoeficients is necessary
becausegheexactsizeof thelimbs mayvary from persorno
person.



3.3 Simplified Model of a Limb

Torobustly estimateheskeletons positionandto reduce
the numberof DoFs,we replacethe multiple metaballsof
Section3.1 by only threemetaballsattachedo eachlimb.
In an earlier approach[6, 5], we usedonly one ellipsoid
perlimb. This hadthe advantageof beingfastto compute
but the errorsintroducedby the model’s imperfectionwere
largeenoughto leadto unsatiséctoryfittings. We therefore
decidedo useaslightly morecomplicatednodelwhichap-
proximatesdettertheshapeof humanimbs. Figure7 shavs
the model we have usedto recover the shapeand motion
from thearmsequencesf Figure8. To reducethe number
of DoFswe introducechigherlevel parametersvhich cover
a numberof direct metaballparameters.Like “upperarm
width” which controlsthe relative size of all metaballsin
theregion of theupperarm.

The metaballsarerigidly attachedo the skeleton. They
have a fixed orientationanda fixed positionrelative to the
lengthof thelimb. Only their size,i.e. their radii, aresub-
jectto modificationby thefitting process.

The different body parts are sggmentedbefore the fit-
ting starts. This is simply done during the initialization
phasevherethe modeltakesanapproximatgosturewhich
is good enoughto assigna 3—D obsenation to the closest
limb. Thus,we do not have to wait for a motion of the per
sonto split alimb suchasthearminto two parts,upperarm
andforearm,asis the casein the work of Kakadiarisand
Metaxaq11]. Thesegmentatioris reversibleasit is redone
after severaliterationsand, thus, possiblesegmentatiorer-
rors due to a wrong initialization are removed during the
fitting process.

More sophisticatedorimitives that include both global
andlocal deformationssuchastaperedsuperquadricfl1]
or evolving surfaceqg14], maybeableto approximatenore
closelythe exactshapeof the limb. However, they require
the settingof more parametersand are thus harderto fit.
As notedin Section3.1,the double-blendingpproacipro-
videsrealisticlooking shapesy usingonly few andsimple
primitives.

3.4 Metaballs and their Mathematical Descrip-
tion

3.4.1 Definition

In Blinn’s basicformulation[2], metaballsor blobsarede-
fined by a setof points P;(x;, y;, 2;) that are the sources
of a potentialfield. Eachsourceis definedby a field func-
tion F;(x,y, z) that mapsR? to R, or a subsetof R. At
a given point P(z,y, z) of the Euclideanspace the fields
of all sourcesarecomputedandaddedtogetheyleadingto
theglobalfield function F(z,y, z) = > | Fi(x,y,2). A
curved surface can then be definedfrom the global field

Figure 7. Simplified model for fitting.  Al-
though the metaballs are displayed as dis-
tinct ellipsoids, they blend into each other to
form a single smooth surface .

function F' by giving athresholdvalueT” andrenderingthe
following equipotentiakurfacesS for thisthreshold:

S:{(x,y,z)€R3 | F(x,y,z)zT} . 4)

Conceptuallyit is usuallysimplerto consideffield func-
tion F; asthecompositiorof two functions[1]: thedistance
functiond; which mapsR? to R*, andthe potentialfunc-
tion f; whichmapsR™ to R:

F(z,y,2) =Y fildi(x,y,2)) - (5)
=1

Thefunction f;(d) characterizethe distancebetweena
given point P(z,y, z) andthe sourcepoint P;(z;, yi, z;)-
Typically d; is definedasa function of a userprovided pa-
rameterr, € R* (calledeffectiveradiug which expresses
the growing speedof the distancefunction. The mostob-
vious solutionfor d;(z,y, z) is the Euclideandistance put
severalotherfunctionshave beenproposedn theliterature,
especiallywhenthe potentialsourceis notreducedo a sin-
gle pointorits field is notequallydistributedin space.

3.4.2 Distancefunction

In this work, we only considerellipsoidsas primitivesbe-
causethey are relatively simple but, nevertheless,allow
modelingof humanlimbs with afairly low numberof prim-
itivesandthusnumberof parametersWe representhe dis-
tancefunction d; by the implicit distanceto the ellipsoid

thatis
2\ 2 s\ 2\ 2
di(z,y,2) = <Z_> + <l—) + (l_) ) (6)

whereL; = (I,,1,,1.) aretheradii of theellipsoid,i.e. half
theaxislengthalongthe principaldirections.



3.4.3 Potential function

The field value at any point P in spaceis definedby the
distancedetweenP andthesourcepointsP;. Thecenterof
the primitive, its source hasthe greatestlensity Thevalue
of the primitive’s density or weight decreasesoward the
elements outeredge or effectiveradius.Thevisible sizeof
aprimitive, calledthethresholdradius is determinedy the
effective radiusandweight. Field functionsshouldsatisfy
two criteria:

1. Extremum: The contribution at the sourceis some
maximumvalue wy, andthe field will drop smoothly
to zeroatadistancer,, theeffective radius.

2. Smoothness: In order to blend multiple metaballs
smoothlyandgradually f/(0) = f'(r,) = 0.

A single,lower degreepolynomialcannotmeetboth crite-
ria, henceeither piecavise quadricor high order polyno-
mials have beenproposed. Their disadwantageare a high
complity andthushigh computationatost.

Herewe are attemptingto fit the modelto 3—D databy
minimizing an objective function. In orderto do so, we
needto work on a well-definedmathematicabasisandthe
smoothnessriterionis essentialvhenfitting a shapewith
multiple metaballs. We thereforeuse an exponentialfield
function:

1\2
fi = w; (?) = w; x exp(—2d) , (7

with d beingdefinedasin Equation6 andthe weightbeing
fixed for the moment(wy = 1, w; = 0.5). In the future,
we mightleave theweightasa free parametefor thefitting
sinceit allowsto easilymodelsharperedges.

An exponentialfield function is also more effective in
the leastsquareditting framewvork becausats derivatives
are very easyto compute. Its equipotentialsurfaceS is
only slightly differentfrom the standardepresentatioand,
moreimportantly, it neverfallsto zero.

This lastpropertyhastwo consequences:

1. Eachblob hasan influenceon all other blobs of the
samdimb, although,it will becomevery smallfor dis-
tantblobs. This is obviously undesiredor modeling
purposesincethedesignetoosedocal control.

2. At the sametime as eachblob influencesall other
blobs, eachblob is influencedby all obsenationsin
our fitting framework. This allows us to work with
only a roughinitialization of the model's posturebe-
causeof the long rangeeffect of the exp() function.
Sincethe obsenationsare alreadysegmentedand as-
sociatedo bodyparts theunlimitedinfluencedoesnot
poseary problemsontheotherbodyparts.

4 Fitting the Modelsto Image Data

From a fitting point of view, the body model of Sec-
tion 3.3 embodiesa rough knowledgeaboutthe shapeof
thebodyandcanbeusedto constrainthesearchspace Our
goalis to fix its degreesof freedomsothatit conformsas
faithfully aspossibleto theimagedata.

Here we usemotion sequencesuchasthe one shavn
in Figure 8 andcorrespondingtereodatacomputedusing
the methodof Section2.1. Thus, the expectedoutput of
our systemis a statevectorthat describeghe shapeof the
metaballsand a setof joint anglescorrespondingo their
positionsin eachframe.

In this sectionwe introducetheleastsquare$ramewnork
we useandshov how we canexploit thetrackingandstereo
datathatwe derive from theimages.

4.1 LeastSquaresFramework

In standardeast-squarefashion,we will usetheimage
datato write nobs obsenationequation®f theform

Ji(S) = obs; —¢; ,1 <i<mnobs , (8)

where S is the statevectorof Equationl that definesthe
shapeandpositionof thelimb ande; is the deviation from
themodel.We will thenminimize

vl Pv= Min , (9)

wherev is thevectorof residualsand P is a weightmatrix
associateavith theobsenations(P is usuallyintroducedas
diagonal).

Our systemmustbe ableto dealwith obsenationscom-
ing from differentsourceshat may not be commensurate
with eachother Formally we canrewrite the obsenation
equationof Equation8 as
Fre(s) =

; obszype —¢ ,1<i<nobs , (10)

with weightp'¥?¢, wheretype is oneof the possibletypes
of obsenationswe use. In this paper type is restrictedto
object spacecoordinatesalthoughotherinformation cues
caneasilybeintegrated.

Theindividual weightsof the differenttypesof obsena-

tionshave to behomogenizegbrior to estimationaccording

to: )
N G))

NGO

K2

(11)

whereq’, o aretheapriori standardieviationsof the ob-
senationsobs;, obs; of typek, [.

Applying least-squareastimationmpliesthejoint min-
imum

nt
Z V"P€ Py o™ = Min (12)

type=1



with nt the numberof obsenationtypes,which thenleads
to the well-known normal equationswhich needto be
solvedusingstandardechniques.

Sinceour overall problemis non-linear the resultsare
obtainedthroughan iteration process. We usea modified
versionof the Levenbeg-Marquardtalgorithm from [15]
whichis ableto dealwith the hugenumberof obsenations
we encounter

4.2 Using Tracking Data

The 3-D trackinginformation of Section2.2 senesto
capturerobust sterecinformationandto initialize the body
modelin all frames. Thealgorithmis initialized by letting
the userspecifyanapproximatepostureandpositionof the
modelin the first frame of the sequence.The resultsof
thetrackingdeliver the approximatepositionsof thevisible
articulationsfor therestof the sequence.

4.3 Using StereoData

3-D pointssuchastheonescomputedvith thetechnique
of Section2.1or ary othersourceof 3—Dinformationcanbe
used.We wantto minimizethedistanceof thereconstructed
limb to all such“attractor” points. Giventhe implicit de-
scriptionof our metaballsthe simplestway to achieve this
resultis to write a pseudo-obsentionequationof theform:

Wt — € (13)
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wherenp is the numberof primitivesfor this body part,
P; (x,y, z) is the 3—-D obsenationtransformednto the lo-
cal coordinatef primitive ¢ with radii L;(lx, ly,lz). We
useEquationl4 whichis the samethanEquationl3 except
for thefixedweightsw;, = £, w; = 1, i € [1,np).

The optimizationis effectedwrt. the primitives’ radii L;
andthe DoFswhichresidein thetransformatiorof eachob-
senationfrom world globalto primitive local coordinates.
TheseDoFsconsistof themotionparameterandthe skele-
tonparameterg,e. lengthof eachlimb. Accordingto Equa-
tion 2, eachP; canbewritten asa function of its world co-
ordinatesandthe elementsof stateVectorS. In practice,
we experiencedbetter corvergenceby iteratively alternat-
ing betweenprimitive parameterand skeletonparameters
insteadof optimizingthemsimultaneouslyFor moredetail
we refertheinterestedeaderto a previous publication[5].

Figure 8. Arm sequence used to test the algo-

rithms.

Figure 9. Simplified arm model after being fit-
ted to the 3-D information obtained from our
stereo algorithm of the images of Figure 8.
Shoulder angle diff ers because we don't get
any information about the arm’s posture wrt.
the body.

Figure 10. Full arm model after being fitted.
Note the short upper arm whic h is “correct"
in the sense that the original images are
cropped too far from the shoulder .

N,

/]

Figure 11. The recovered shape and anima-

tion parameter s applied to the full animation

model.



4.4 Preliminary Results

Figure8 shavsthreeframesfrom a sequencef aperson
waving his armin front of the cameras After having com-
puted3-D stereadatafrom thesamageswefirst fit thesim-
plified armmodelto thedata(fig. 9). In asecondphasewe
fit ourfull modelof theright armandwe areableto recon-
structthepositionsandshapesiepictedby Figure10. Since
we usethe layeredmodelapproachcompareSection3.1,
a skin canbe computedautomaticallyon top of the meta-
balls. Figure 11 shaws the “ready for production” model
whosedimensiongloselyresemblehefilmed person.

5 Conclusionand Futur e Work

In this paperwe have shovn thatgivenvideosequences
of a moving personacquiredwith a multi-camerasystem,
we canrecover shapenformationandtrackjoint locations
during the motion. We have outlined techniquesfor fit-
ting a completeanimationmodelto noisy stereodataand
we have presenteda new tracking processbasedon least
squaresnatching.Therecoreredshapeandmotion param-
eterscanbe usedto createa realisticanimation. Our ulti-
mategoalis to produceautomaticallywith minimalhuman
intervention,realisticanimationmodelsgivenasetof video
sequencesThe capabilitywe intendto developwill be of
greatapplicability in animationareassincethe techniques
usednowadaysrequirea very long time of manualwork to
generateindanimatesophisticatesnodelsof humans Au-
tomatingthe processwill allow anincreaseof realismwith
simultaneousiecreasef costs.

In futurework, we will next producesomesyntheticdata
in orderto testthe accurag of the system.At the moment
we areapplyingthe algorithmson sequencesf full bodies
in motion. We will alsoinvestigatethe possibilitiesof hav-
ing the modelguidethe trackingprocess.If a pointonthe
body’s surfacevanisheslueto occlusiornwe canemploy the
modelto predictwhereandwhenit will appearagain.
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