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Abstract

Syntheticmodelingof humanbodiesand thesimulation
of motionis a longstandingproblemin animationandmuch
work is involvedbefore a near-realistic performancecan
beachieved.At present,it takesan experienceddesignera
very long timeto build a completeandrealisticmodelthat
closelyresemblesa specificperson. Our ultimategoal is
to automatetheprocessandto producerealisticanimation
modelsgivena setof videosequences.

In this paper, we showthat, givenvideosequencesof a
personmoving in frontof thecamera, wecanrecovershape
informationandjoint locations.Bothof which areessential
to instantiatea completeand realistic model that closely
resemblesa specificpersonand without knowledge about
thepositionof thearticulationsa charactercannotbeani-
mated.This is achievedwith minimalhumanintervention.
Therecoveredshapeandmotionparameterscanbeusedto
reconstructtheoriginal movementor to allow otheranima-
tion modelsto mimicthesubject’sactions.1

1 Intr oduction

Syntheticmodelingof humanbodiesandthesimulation
of motionis alongstandingproblemin animationandmuch
work is involved before a near-realistic performancecan
be achieved. At present,it takesan experienceddesigner
a very long time to build a completeand realistic model
thatcloselyresemblesa specificperson.Our ultimategoal
is to automatethe processandto producerealisticanima-
tion modelsgiven a set of video sequences.Eventually
the whole taskshouldbe performedquickly by an opera-
tor whois notnecessarilyanexperiencedgraphicsdesigner.

1This work is undercopyright of IEEE.
It appearsin theproceedingsof the1999InternationalWorkshoponMod-
elling People(MPEOPLE’99),Sept.1999,Corfu,Greece

Weshouldbeableto invite avisitor to our laboratory, make
him walk in front of asetof cameras,andproduce,within a
singleday, a realisticanimationof himself.

In thispaper, weshow that,givenstereovideosequences
of a personmoving in front of thecamera,we canrecover
shapeinformation and joint locations,both of which are
essentialto instantiatethe model. This is achieved with
minimal humanintervention: To initialize the process,the
usersimplyclickson theapproximatelocationof a few key
joints in oneimagetriplet. Therecoveredshapeandmotion
parameterscanbe usedto reconstructthe original motion
or to make otheranimationmodelsmimic thesubject’s ac-
tions.

We concentrateon a video-basedapproachbecauseof
its comparatively low costandgoodcontrolof thedynamic
natureof theprocess.While laserscanningtechnologypro-
videsafairly goodsurfacedescriptionof astaticobjectfrom
a given viewpoint, videogrammetryallows us in addition
to measureand track particularpointsof interest,suchas
joints, and to recordand track surfaceand point features
aroundtheobject.

The problemto be solved is twofold: first, robustly ex-
tract imageinformationfrom the data;second,fit the ani-
mationmodelsto the extractedinformation. In this work,
we usevideo sequencesacquiredwith threesynchronized
camerasto extracttrackingandstereoinformation.

Recently, techniqueshave beenproposed[10, 7, 12, 3]
to track humanmotionsfrom video sequences.They are
fairly effectivebut useverysimplifiedmodelsof thehuman
body, suchas ellipsoids, that do not preciselymodel the
humanshapeandwouldnotbesufficient for atruly realistic
simulation.

Much work hasalsobeendevotedto the useof silhou-
ettesfor body modeling[4, 9]. They provide very useful
but incompleteinformationaboutshapewhich is oneof the
issueswe will addressin this work. Here,we usestereoin-
formationto instantiatethesophisticatedanimationmodels
that we have developedin the pastto both track the mo-
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Figure 1. Least squares matc hing algorithm.
Left: template image, right: search image

tion andrecover theshapeof thebodyasaccuratelyaspos-
sible. However, silhouetteinformationcaneasilybe inte-
gratedinto ourextensibleleast-squaresframework. Thein-
terestedreaderis referredto an earlierpublication[5] for
moredetailson silhouetteintegration.

Wefirst introduceourapproachto computing3–Dstereo
informationand3–D surfacetrajectories.We thenpresent
theanimationmodelwe use.Finally, we introduceour fit-
ting procedureandshow how we canhandlethe different
kindsof input information.

2 Extracting Image Inf ormation

2.1 SurfaceMeasurement

Our approachis basedon multi imagephotogrammetry.
We take threeimagesusingthreesynchronizedcameras.A
multi-imageleastsquaresbasedmatchingprocess[8] estab-
lishescorrespondencesin the threeimages. It considersa
patchof areaarounda selectedpoint. Oneimageis usedas
templateandtheothersassearchimages.Thepatchin the
searchimageis modifiedby anaffinetransformation(trans-
lation, rotation, sheeringand scaling)and the grey levels
arevariedby multiplicativeandadditive constants.Theal-
gorithmfinds thecorrespondingpoint in theneighborhood
of theselectedpoint in thesearchimagesby minimizingthe
sumof the squareof the differencesbetweenthe grey lev-
els in thesepatches.Figure1 shows the resultof the least
squaresmatchingwith an imagepatchof 13 × 13 pixels.
Theblackboxesrepresentthepatchesselected(initial loca-
tion in the searchimage)andthe white box representsthe
affinely transformedpatchin thesearchimage.

To definethe seedpoints of the multi-imagematching
process,approximationsfor a few correspondingpoints
have to be manuallyselectedin the threeimages.For ex-
ample,for thearmsequenceof Figure8 we selectedabout
tenseedpointsmanually. Theleastsquaresalgorithmis ap-
plied to find their exact locationin the pictures. To define
the regionsbetweenthe differentseedpoints,we compute
a Voronoi tessellationin the templateimage.The imageis
divided into polyhedralregionsaccordingto which of the

seed points

matched points

zoom

Figure 2. Search strategy for the estab lish-
ment of correspondences between images

seedpoints is closest. Startingfrom the seedpoints, the
stereomatcherautomaticallydeterminesadensesetof cor-
respondences.Thecentralimageis usedasa templateim-
ageand the other two (left and right) are usedas search
images.The matchersearchesthecorrespondingpointsin
thetwo searchimagesindependently. At theendof thepro-
cess,thedatasetsaremergedto becometripletsof matched
points.

The matcherusesthe following strategy: the process
startsfrom oneseedpoint, shifts the templatehorizontally
in thesearchimageandthenappliestheleastsquaresalgo-
rithm. If thequality of thematchis good,theshift process
continueshorizontally until it reachesthe region bound-
aries.Thecoveringof theentirepolygonalregionof a seed
point is achieved by subsequentlyhorizontaland vertical
shifts (Figure 2). If the quality of the match is not sat-
isfactory, the algorithmworks adaptively by changingpa-
rameters(e.g. smallershift, biggersizeof the patch). The
searchprocessis repeatedfor eachseedpoint region un-
til the whole imageis covered. At the endof the process,
holesof nonanalyzedareascanappearin thesetof matched
points.Thealgorithmtriesto closetheseholesby searching
from all directionsaround.Thematchingprocessresultsin
a setof matchedpoints in the threeimages. To compute
the 3–D coordinatesof thesepoints,we apply forward in-
tersectionusingthe orientationandcalibrationdataof the
cameras[13].

2.2 Tracking process

The tracking processis also basedon least squares
matchingtechniques.Thespatialcorrespondencesbetween
thethreeimagesof thedifferentviewsandalsothetemporal
correspondencesbetweensubsequentframesarecomputed
usingthesameleastsquaresmatchingalgorithmmentioned
as before. To start the processa triplet of corresponding
pointsin thethreeimagesis needed.This3–Dpoint is then
trackedthroughthesequencein thethreeimagesandthere-
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Figure 4. Tracking in image space: LSM tem-
poral is applied at the position of best cross
correlation

fore its 3–D trajectorycanbe computed. Figure 3 shows
theuseof theleastsquaresmatchingalgorithmto trackthe
point.

In framei, a triplet of correspondingpointsin thethree
imagesis establishedwith the leastsquaresmatchingal-
gorithm (spatial LSM). In eachof the three images(left,
center, right) a correspondentpoint is matchedin the next
framei + 1 alsowith the sameleastsquaresmatchingal-
gorithm (temporal LSM). Figure 4 depictshow the tem-
poral correspondencesareestablishedbetweensubsequent
frames.

For frame i + 1, a linear predictionof the position of
the tracked point from the previous frame is made. A
searchbox is definedaroundthis predictedpositionin the
framei + 1. This box is scannedfor searchingtheposition
which hasthe bestvalueof cross-correlationbetweenthe
imageof framei andtheimageof framei+1. Thisposition
is consideredanapproximationof theexactpositionof the
point to betracked.Theleastsquaresmatchingalgorithmis
appliedat thatpositionandtheresultcanbeconsideredthe
exact positionof the trackedpoint in the new frame. This
processis performedindependentlyfor thethreeimagesof
the differentviews. A spatial LSM is executedat the po-
sitionsresultingfrom the temporal LSMsandif no signifi-
cantdifferencesoccursbetweenthetwo matches,thepoint
canbeconsideredexactly tracked.Thetrackedpoint’s3–D
trajectoryis determinedby computingthe3–D coordinates
of the point throughthe sequenceby forward intersection.
Velocitiesandaccelerationsarealsocomputed.The track-

removed part of trajectory

check for consistency and local uniformitythresholds of velocity and acceleration

Figure 5. Vector field of trajectories of surface
trac king

ing algorithm is appliedto all the pointsmeasuredon the
surfaceof thefirst frame. Theresultcanbeseenasa vec-
tor field of trajectories(position,velocityandacceleration).
An importantadvantageof this generaltrackingschemeof
all the points is that at the endthe resultscanbe checked
for consistency andlocaluniformity of themovement.Two
filters areappliedon theresultsto removeor truncatefalse
trajectories(Figure5).

Thefirst filter consistsof thresholdsfor thevelocity and
acceleration.Thesecondfilter checksfor the local unifor-
mity, both in spaceandtime, of the motion. Sincethe hu-
manbody canbe consideredasan articulatedmoving ob-
ject, theresultingvectorfield of trajectoriesmustbelocally
uniform, i.e. the velocity vector must be nearly constant
in sufficiently small regionsat a particulartime. To check
this property, the single trajectoriesarecomparedto local
(in spaceandtime) meanvaluesof the velocity vector. If
thedifferencesaretoo large,thetrajectoryis consideredto
be falseandit is truncatedor removed. The resultsof this
filteringarenotonly trajectorieswithouterrors,but alsosur-
facemeasurement(in form of a 3–D pointscloud) at each
time instancewithout errors.Thepossibleerrorsin thesur-
facemeasurementdoneat thebeginningof thesequenceare
removed during the tracking process,sincethey probably
generatefalsetrajectories.

Testsondifferentsequenceshaveshown thattheprocess
worksalsowith lesstexturedsurfaceslike jeansor skin. Al-
thoughtheaccuracy of thetrackingis lower, thecorrectness
of thetrackedmotionis assuredby theuniformity filter.

3 MODELS

In thissection,wefirst describethecompletemodelthat
we usefor animationpurposes.This modelhastoo many
degreesof freedomto beeffectively fit to noisydatawith-
outa-prioriknowledge.Wethereforeintroduceasimplified
modelthat we have usedto derive an initial shapeandpo-
sition. In this work, wewill usethisknowledgeto initialize
thecompleteonebeforerefiningit.



(a) (b) (c) (d)

Figure 6. The layered human bod y model: (a)
Skeleton. (b) Ellipsoidal metaballs used to
sim ulate musc les and fat tissue . (c) Polyg-
onal surface representation of the skin. (d)
Shaded rendering.

3.1 CompleteAnimation Model

Generally, virtual humansbodiesarestructuredasarticu-
latedbodiesdefinedby askeleton.Whenananimatorspeci-
fiesananimationsequence,hedefinesthemotionusingthis
skeleton.

A skeletonis a connectedsetof segments,correspond-
ing to limbs andjoints. A joint is the intersectionof two
segments,whichmeansit is askeletonpointwherethelimb
linkedto thatpointmaymove.

Our model[17] is depictedby Figure6. It incorporates
a highly effective multi-layeredapproachfor constructing
andanimatingrealistichumanbodies.Ellipsoidalmetaballs
areusedto simulatethegrossbehavior of bone,muscle,and
fat tissue;they areattachedto theskeletonandarrangedin
an anatomically-basedapproximation.The skin construc-
tion is madein a threestepprocess.First, the implicit sur-
faceresultingfrom thecombinationof themetaballsinflu-
enceis automaticallysampledalongcross-sectionswith a
ray castingmethod[16, 17]. Second,the sampledpoints
constitutecontrolpointsof a B-splinepatchfor eachbody
part(limbs, trunk,pelvis,neck).Third, apolygonalsurface
representationis constructedby tessellatingthoseB-spline
patchesfor seamlessjoining differentskin piecestogether
andfinal rendering.Themethod,simpleandintuitive,com-
binestheadvantagesof implicit, parametricandpolygonal
surfacerepresentation,producingvery realisticandrobust
body deformations. By applying smoothblending twice
(metaballpotentialfield blendingandB-splinebasisblend-
ing), themodel’sdatasizeis significantlyreduced.

Sincethe overall appearanceof a humanbody is very
muchinfluencedby its internalmusclestructures,the lay-
eredmodelis themostpromisingfor realistichumananima-
tion. Thekey advantageof thelayeredmethodologyis that
oncethelayeredcharacteris constructed,only theunderly-
ing skeletonneedbe scriptedfor animation;consistentyet
expressiveshapedeformationsaregeneratedautomatically.

3.2 Skeletonand StateVector

The stateof the skeletonis describedby the combined
statevector

Sbody = [Smotion, Sskel] . (1)

Sincetheskeletonis modeledin a hierarchicalmanner, we
can definethe static or init stateof the skeletonSskel as
the rotationsandtranslationsfrom eachjoint with respect
to theprecedingone. It is fixed for a given instanceof the
body model. The variableor motionstatevectorSmotion

containstheactualvaluesfor eachdegreeof freedom(DoF),
i.e. theanglearoundthez-axistowardsthenext DoF. They
reflectthepositionandpostureof thebodywith respectto
its restposition.All joints havea singleangularDoF. More
complicatedarticulationsaresplit into several,single-DoF
joints sharingthe samelocationandonly differing in their
orientations.

The positionof joints in a globalor world referentialis
obtainedby multiplying the local coordinatesby a trans-
formationmatrix. This matrix is computedrecursively by
multiplying all thetransformationmatricesthatcorrespond
to theprecedingjoints in thebodyhierarchy:

Xj =
∏

i

Di(S) ∗Xw , (2)

with Xj,w = [x, y, z]T beingjoint local,resp.world global,
coordinatesandthe homogeneoustransformationmatrices
Di, which dependon the statevectorS, rangingfrom the
root articulation’s first to the referencearticulation’s last
DoF. Thesematricesare split into static and motion ma-
trices,accordingto thestatevector. They areof theform

D = Drotz ∗Dini . (3)

The rotation matrix Drotz is definedby the motion state
vector. It is a sparsematrix allowing only a rotationaround
the local z-axis (Θκ). The static transformationDini =
(RX + sT ) is a matrix directly taken from the standard
skeleton. Thesematricestranslateby the bonelengthand
rotatethe local coordinatesystemfrom the joint to its par-
ent. The matrix entriesarecalculatedusingvaluess from
thestatevectorSskel. Thevariablecoefficients is necessary
becausetheexactsizeof thelimbsmayvary from personto
person.



3.3 Simplified Model of a Limb

To robustlyestimatetheskeleton’spositionandto reduce
the numberof DoFs,we replacethe multiple metaballsof
Section3.1 by only threemetaballsattachedto eachlimb.
In an earlier approach[6, 5], we usedonly one ellipsoid
per limb. This hadtheadvantageof beingfastto compute
but theerrorsintroducedby themodel’s imperfectionwere
largeenoughto leadto unsatisfactoryfittings. We therefore
decidedto useaslightly morecomplicatedmodelwhichap-
proximatesbettertheshapeof humanlimbs. Figure7 shows
the model we have usedto recover the shapeandmotion
from thearmsequencesof Figure8. To reducethenumber
of DoFsweintroducedhigherlevel parameterswhichcover
a numberof direct metaballparameters.Like “upper arm
width” which controlsthe relative sizeof all metaballsin
theregionof theupperarm.

Themetaballsarerigidly attachedto theskeleton.They
have a fixedorientationanda fixedpositionrelative to the
lengthof the limb. Only their size,i.e. their radii, aresub-
ject to modificationby thefitting process.

The different body partsare segmentedbefore the fit-
ting starts. This is simply done during the initialization
phasewherethemodeltakesanapproximateposturewhich
is goodenoughto assigna 3–D observation to the closest
limb. Thus,we do not have to wait for a motionof theper-
sonto split a limb suchasthearminto two parts,upperarm
andforearm,as is the casein the work of Kakadiarisand
Metaxas[11]. Thesegmentationis reversibleasit is redone
afterseveral iterationsand,thus,possiblesegmentationer-
rors due to a wrong initialization are removed during the
fitting process.

More sophisticatedprimitives that include both global
andlocal deformations,suchastaperedsuperquadrics[11]
or evolving surfaces[14], maybeableto approximatemore
closelythe exactshapeof the limb. However, they require
the settingof more parametersand are thus harderto fit.
As notedin Section3.1,thedouble-blendingapproachpro-
videsrealisticlookingshapesby usingonly few andsimple
primitives.

3.4 Metaballs and their Mathematical Descrip-
tion

3.4.1 Definition

In Blinn’s basicformulation[2], metaballsor blobsarede-
fined by a set of points Pi(xi, yi, zi) that are the sources
of a potentialfield. Eachsourceis definedby a field func-
tion Fi(x, y, z) that mapsR3 to R, or a subsetof R. At
a given point P (x, y, z) of the Euclideanspace,the fields
of all sourcesarecomputedandaddedtogether, leadingto
theglobalfield functionF (x, y, z) =

∑n
i=1 Fi(x, y, z). A

curved surfacecan then be definedfrom the global field

Figure 7. Simplified model for fitting. Al-
though the metaballs are displa yed as dis-
tinct ellipsoids, they blend into each other to
form a single smooth surface .

functionF by giving a thresholdvalueT andrenderingthe
following equipotentialsurfaceS for this threshold:

S =
{
(x, y, z) ∈ R3 | F (x, y, z) = T

}
. (4)

Conceptuallyit is usuallysimplerto considerfield func-
tionFi asthecompositionof two functions[1]: thedistance
functiondi which mapsR3 to R+, andthe potentialfunc-
tion fi whichmapsR+ to R:

F (x, y, z) =
n∑

i=1

fi(di(x, y, z)) . (5)

Thefunctionfi(d) characterizesthedistancebetweena
given point P (x, y, z) and the sourcepoint Pi(xi, yi, zi).
Typically di is definedasa functionof a user-providedpa-
rameterra ∈ R+ (calledeffectiveradius) which expresses
the growing speedof the distancefunction. The mostob-
vioussolutionfor di(x, y, z) is theEuclideandistance,but
severalotherfunctionshavebeenproposedin theliterature,
especiallywhenthepotentialsourceis not reducedto asin-
glepoint or its field is not equallydistributedin space.

3.4.2 Distancefunction

In this work, we only considerellipsoidsasprimitivesbe-
causethey are relatively simple but, nevertheless,allow
modelingof humanlimbswith afairly low numberof prim-
itivesandthusnumberof parameters.We representthedis-
tancefunction di by the implicit distanceto the ellipsoid
thatis

di(x, y, z) =
(

x

lx

)2

+
(

y

ly

)2

+
(

z

lz

)2

, (6)

whereLi = (lx, ly, lz) aretheradii of theellipsoid,i.e. half
theaxislengthalongtheprincipaldirections.



3.4.3 Potential function

The field value at any point P in spaceis definedby the
distancesbetweenP andthesourcepointsPi. Thecenterof
theprimitive, its source,hasthegreatestdensity. Thevalue
of the primitive’s density, or weight, decreasestoward the
element’souteredge,or effectiveradius.Thevisiblesizeof
aprimitive,calledthethresholdradius, is determinedby the
effective radiusandweight. Field functionsshouldsatisfy
two criteria:

1. Extremum: The contribution at the sourceis some
maximumvaluew0, andthe field will drop smoothly
to zeroata distancera, theeffectiveradius.

2. Smoothness: In order to blend multiple metaballs
smoothlyandgradually, f ′(0) = f ′(ra) = 0.

A single,lower degreepolynomialcannotmeetbothcrite-
ria, henceeither piecewise quadricor high order polyno-
mials have beenproposed.Their disadvantagearea high
complexity andthushigh computationalcost.

Herewe areattemptingto fit the modelto 3–D databy
minimizing an objective function. In order to do so, we
needto work on a well-definedmathematicalbasisandthe
smoothnesscriterion is essentialwhenfitting a shapewith
multiple metaballs.We thereforeusean exponentialfield
function:

fi = wi

(
1
ed

)2

= wi ∗ exp(−2d) , (7)

with d beingdefinedasin Equation6 andtheweightbeing
fixed for the moment(w0 = 1, wt = 0.5). In the future,
wemight leavetheweightasa freeparameterfor thefitting
sinceit allows to easilymodelsharperedges.

An exponentialfield function is also more effective in
the leastsquaresfitting framework becauseits derivatives
are very easyto compute. Its equipotentialsurfaceS is
only slightly differentfrom thestandardrepresentationand,
moreimportantly, it never falls to zero.

This lastpropertyhastwo consequences:

1. Eachblob hasan influenceon all other blobs of the
samelimb, although,it will becomeverysmallfor dis-
tant blobs. This is obviously undesiredfor modeling
purposessincethedesignerlooseslocal control.

2. At the sametime as eachblob influencesall other
blobs, eachblob is influencedby all observationsin
our fitting framework. This allows us to work with
only a rough initialization of the model’s posturebe-
causeof the long rangeeffect of the exp() function.
Sincethe observationsarealreadysegmentedandas-
sociatedto bodyparts,theunlimitedinfluencedoesnot
poseany problemson theotherbodyparts.

4 Fitting the Models to Image Data

From a fitting point of view, the body model of Sec-
tion 3.3 embodiesa rough knowledgeaboutthe shapeof
thebodyandcanbeusedto constrainthesearchspace.Our
goal is to fix its degreesof freedomso that it conformsas
faithfully aspossibleto theimagedata.

Here we usemotion sequencessuchas the oneshown
in Figure8 andcorrespondingstereodatacomputedusing
the methodof Section2.1. Thus, the expectedoutput of
our systemis a statevectorthat describesthe shapeof the
metaballsanda set of joint anglescorrespondingto their
positionsin eachframe.

In thissection,weintroducetheleastsquaresframework
weuseandshow how wecanexploit thetrackingandstereo
datathatwe derive from theimages.

4.1 LeastSquaresFramework

In standardleast-squaresfashion,we will usethe image
datato write nobs observationequationsof theform

fi(S) = obsi − εi , 1 ≤ i ≤ nobs , (8)

whereS is the statevectorof Equation1 that definesthe
shapeandpositionof the limb andεi is thedeviation from
themodel.We will thenminimize

vT Pv ⇒ Min , (9)

wherev is thevectorof residualsandP is a weightmatrix
associatedwith theobservations(P is usuallyintroducedas
diagonal).

Our systemmustbeableto dealwith observationscom-
ing from differentsourcesthat may not be commensurate
with eachother. Formally we canrewrite the observation
equationsof Equation8 as

f type
i (S) = obstype

i − εi , 1 ≤ i ≤ nobs , (10)

with weightptype
i , wheretype is oneof thepossibletypes

of observationswe use. In this paper, type is restrictedto
objectspacecoordinates,althoughother informationcues
caneasilybeintegrated.

Theindividualweightsof thedifferenttypesof observa-
tionshaveto behomogenizedprior to estimationaccording
to:

pk
i

pl
j

=

(
σl

j

)2(
σk

i

)2 , (11)

whereσl
j , σk

i arethea priori standarddeviationsof theob-
servationsobsi, obsj of typek, l.

Applying least-squaresestimationimpliesthejoint min-
imum

nt∑
type=1

vtypePtypev
type ⇒ Min , (12)



with nt thenumberof observationtypes,which thenleads
to the well-known normal equationswhich need to be
solvedusingstandardtechniques.

Sinceour overall problemis non-linear, the resultsare
obtainedthroughan iterationprocess.We usea modified
versionof the Levenberg-Marquardtalgorithm from [15]
which is ableto dealwith thehugenumberof observations
weencounter.

4.2 UsingTracking Data

The 3–D tracking informationof Section2.2 serves to
capturerobuststereoinformationandto initialize thebody
modelin all frames.Thealgorithmis initialized by letting
theuserspecifyanapproximatepostureandpositionof the
model in the first frame of the sequence.The resultsof
thetrackingdeliver theapproximatepositionsof thevisible
articulationsfor therestof thesequence.

4.3 UsingStereoData

3–Dpointssuchastheonescomputedwith thetechnique
of Section2.1orany othersourceof 3–Dinformationcanbe
used.Wewantto minimizethedistanceof thereconstructed
limb to all such“attractor” points. Given the implicit de-
scriptionof our metaballs,thesimplestway to achieve this
resultis to write apseudo-observationequationof theform:

np∑
i=1

wi ·
(

1
edi

)2

= wt − ε (13)

np∑
i=1

(
1

e
xi
lxi

2
+

yi
lyi

2
+

zi
lzi

2

)2

= 1
2 − ε , (14)

wherenp is the numberof primitives for this body part,
Pi (x, y, z) is the3–D observationtransformedinto the lo-
cal coordinatesof primitive i with radii Li(lx, ly, lz). We
useEquation14which is thesamethanEquation13except
for thefixedweightswt = 1

2 , wi = 1, i ∈ [1, np].
Theoptimizationis effectedwrt. theprimitives’ radii Li

andtheDoFswhichresidein thetransformationof eachob-
servation from world global to primitive local coordinates.
TheseDoFsconsistof themotionparametersandtheskele-
tonparameters,i.e. lengthof eachlimb. Accordingto Equa-
tion 2, eachPi canbewritten asa functionof its world co-
ordinatesand the elementsof stateVectorS. In practice,
we experiencedbetterconvergenceby iteratively alternat-
ing betweenprimitive parametersandskeletonparameters
insteadof optimizingthemsimultaneously. For moredetail
we refertheinterestedreaderto apreviouspublication[5].

Figure 8. Arm sequence used to test the algo-
rithms.

Figure 9. Simplified arm model after being fit-
ted to the 3–D inf ormation obtained from our
stereo algorithm of the images of Figure 8.
Shoulder angle diff ers because we don’t get
any inf ormation about the arm’s posture wr t.
the bod y.

Figure 10. Full arm model after being fitted.
Note the shor t upper arm whic h is “correct"
in the sense that the original images are
cropped too far from the shoulder .

Figure 11. The recovered shape and anima-
tion parameter s applied to the full animation
model.



4.4 Preliminary Results

Figure8 showsthreeframesfrom asequenceof aperson
waving his armin front of thecameras.After having com-
puted3–Dstereodatafrom theseimageswefirst fit thesim-
plified armmodelto thedata(fig. 9). In asecondphase,we
fit our full modelof theright armandwe areableto recon-
structthepositionsandshapesdepictedby Figure10. Since
we usethe layeredmodelapproach,compareSection3.1,
a skin canbe computedautomaticallyon top of the meta-
balls. Figure 11 shows the “ready for production” model
whosedimensionscloselyresemblethefilmed person.

5 Conclusionand Future Work

In this paper, we haveshown thatgivenvideosequences
of a moving personacquiredwith a multi-camerasystem,
we canrecover shapeinformationandtrack joint locations
during the motion. We have outlined techniquesfor fit-
ting a completeanimationmodel to noisy stereodataand
we have presenteda new tracking processbasedon least
squaresmatching.Therecoveredshapeandmotionparam-
eterscanbe usedto createa realisticanimation. Our ulti-
mategoalis to produceautomatically, with minimalhuman
intervention,realisticanimationmodelsgivenasetof video
sequences.The capabilitywe intendto developwill be of
greatapplicability in animationareas,sincethe techniques
usednowadaysrequirea very long time of manualwork to
generateandanimatesophisticatedmodelsof humans.Au-
tomatingtheprocesswill allow anincreaseof realismwith
simultaneousdecreaseof costs.

In futurework, wewill next producesomesyntheticdata
in orderto testtheaccuracy of thesystem.At themoment
we areapplyingthealgorithmson sequencesof full bodies
in motion. We will alsoinvestigatethepossibilitiesof hav-
ing themodelguidethe trackingprocess.If a point on the
body’ssurfacevanishesdueto occlusionwecanemploy the
modelto predictwhereandwhenit will appearagain.
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