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Abstract

Printed circuits in bounded media encompass a wide range of practical structures such as
discontinuities in waveguides, planar circuits embedded in shielded multilayered media or
even two-dimensional printed periodic structures.

The Electromagnetic (EM) modeling of printed circuits in layered bounded media is per-
formed via an Integral Equation (IE) technique. Green’s functions (GFs) are specially defined
to satisfy both the Boundary Conditions (BCs) imposed by the layered media and by the
transverse boundary enclosing the entire structure. Finally, a system of IEs on the equiva-
lent sources can be solved numerically by means of the Method of Moments (MoM). Each
of the problems enumerated above has already been solved by other authors using IE-MoM
techniques. Nevertheless, our formulation introduces a unified approach applicable to all the
aforementioned problems.

Due to the symmetry presented by a bounded layered media, the GF problem can be reduced
into a two-dimensional transverse boundary problem and a one-dimensional transmission line
problem in the normal direction. Both problems can be treated independently.

This thesis proposes and fully develops an efficient technique that encompasses different lat-
erally bounded multilayered problems with a seamless transition between them. The method
is based on a modal representation of the transverse boundary problem and on the expansion
of the equivalent surface currents by zero-curl & constant-charge Basis Functions (BFs). It
offers a unified and versatile approach that, on one hand eliminates redundancy in the formu-
lation and on the other hand simplifies each particular problem to the evaluation of constant
coefficients or basic line integrals. Analytical solutions can be found for the combination of li-
near subsectional basis functions in rectangular and circular Perfect Electric Conductor (PEC)
boundaries as well as for periodic lattices.

This thesis then solves the problem of transmission line model in the longitudinal direction
by proposing an efficient algorithm that guarantees numerical stability under a variety of
known critical conditions where other already known formulations fail. In addition, it intro-
duces alternate equivalent expressions of this formulation that allow new interpretations of
the problem.

Due to its practical interest, the method is applied for the EM modeling of multilayered
boxed printed circuits. This motivated the implementation of a dedicated software tool for
the efficient analysis of these topologies including losses. Extensive numerical experiments
have been carried out to assess the validity of the aforementioned theory and some properties
of test-structures (losses, mesh, etc).

Keywords: Computational electromagnetics, layered media, printed circuits, cavity.
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Résumé

Les circuits imprimés en milieux finis englobent un large éventail de structures pratiques
telles que les discontinuités en guides d’ondes, les circuits planaires intégrés dans des milieux
stratifiés voire des structures imprimées périodiques à deux dimensions.

La modélisation électromagnétique (EM) des circuits imprimés en milieux stratifiés finis
est effectuée à l’aide d’une technique d’équation intégrale (IE). Les fonctions de Green (GF)
sont définie spécifiquement pour respecter à la fois les conditions aux limites imposées par la
structure multicouche et par le frontières transverses entourant la structure complète. Finale-
ment, un système d’IE sur les sources équivalentes peut être résolu numériquement à l’aide de
la méthode des moments (MoM). Les problèmes énumérés ci-dessus ont déjà été résolus par
d’autres auteurs en utilisant des techniques d’IE-MoM. Néanmoins, la formulation introduite
ici utilise une approche unifiée applicable à tous les problèmes mentionnés.

En raison de la symétrie présentée par les milieux stratifiés finis, la formulation de la GF
peut être réduite à un problème de frontière transversale à deux dimensions et à une ligne de
transmission unidimensionelle dans la direction perpendiculaire. Les deux problèmes peuvent
être traités indépendemment.

Cette thèse propose et développe de manière approfondie une technique efficace qui couvre
de façon simple différents problèmes multicouches ayant des dimensions latérales finies. La
méthode est basée sur une représentation modale du problème à frontière transverse et sur
une expansion des courants de surface équivalents à l’aide de fonctions de base à rotationnel
nul et charge constante. Elle offre une approche unifiée et souple qui d’une part élimine la
redondance dans la formulation, et de l’autre simplifie chaque problème particulier en une
évaluation de coefficients constants et d’intégrales de ligne simples. Des solutions analytiques
peuvent être trouvées pour la combinaisons de fonctions de base partielles dans les conducteurs
électriques parfaits rectangulaire et circulaire, ainsi que dans les réseaux périodiques.

Cette thèse résout ainsi le problème du modéle de ligne de transmission dans la direction
longitudinale en proposant un algorithme efficace qui garantit la stabilité numérique dans
nombre de conditions critiques, où d’autres formulations connues échouent. De plus, elle intro-
duit d’autres expressions équivalentes de cette formulation, qui permettent des interprétations
nouvelles du problème.

De par son intérêt pratique, cette méthode est appliquée à la modélisation
électromagnétique de circuits imprimés multicouches en bôıtiers. Cela a conduit à
l’implémentation d’un logiciel spécialisé pour l’analyse efficace de ces topologies, en inclu-
ant les pertes. De nombreux tests numériques ont été faits pour vérifier la validité de la
théorie présentée ci-dessus et certaines propriétés des structures testées (pertes, maillage, etc.).

Mots-clés: calculs électromagnétiques, milieux stratifiés, circuits imprimés, cavités.
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Resumen

Los circuitos impresos en medios cerrados comprenden a una amplia gama de estructuras
prácticas tales como discontinuidades en gúıa de onda, circuitos impresos inmersos en un
medio multi-estratificado y blindado o incluso estructuras periódicas en dos dimensiones.

El modelado electromagnético (EM) de circuitos impresos en medios estratificados y cer-
rados se lleva a cabo mediante la técnica de ecuación integral (IE). La función de Green
(GF) está especialmente definida para satisfacer las condiciones de contorno impuestas por
el medio estratificado y por la superficie transversal que engloba a toda la estructura. Fi-
nalmente, un sistema de IEs sobre las fuentes equivalentes son resueltas numéricamente por
medio del método de los momentos (MoM). Cada uno de los problemas anteriormente men-
cionados han sido ya resueltos por otros autores mediante técnicas de IE-MoM. No obstante,
esta formulación introduce una nueva solución unificada aplicable a todos ellos.

Debido a la simetŕıa presente la estructura estratificada y cerrada, el problema de GF puede
simplificarse a un problema de contorno transversal en dos dimensiones, y un problema de
ĺınea de transmisión en la dirección normal en una sola dimensión. Ambos problemas pueden
ser tratados independientemente.

Esta tesis propone y desarrolla una técnica para resolver de forma general distintos proble-
mas estratificados y encerrados lateralmente por ciertas condiciones de contorno. El método
se basa en la representación modal del problema de contorno transversal y en la expansión de
las corrientes de superficie equivalentes mediante funciones base con rotacional cero y carga
constante. Esto permite un procedimiento unificado y versatil que, por un lado elimina la
redundacia en la formulación y por otro simplifica cada problema espećıfico a la evaluación
de coeficientes constantes o simples integrales de ĺınea. En concreto, la combinación de fun-
ciones lineales de soporte finito tanto con paredes de conductor perfecto (PEC) de formas
rectangular o circular como con condiciones periódicas presentan solución anaĺıtica.

En esta tesis, el problema de ĺınea de transmisión en la dirección longitudinal, se resuelve
mediante un eficaz algoritmo que garantiza la estabilidad numérica incluso bajo condiciones
cŕıticas en las que otras formulaciones fallan. Además, se han desarrollado distintas variantes
de la formulación que permiten nuevas interpretaciones del problema.

Debido a su interés práctico, este método ha sido aplicado para el modelado EM de
circuitos impresos multi-estratificados en caja. Esto ha motivado la implementación de una
herramienta software especializada en analizar eficazmente este tipo de topoloǵıas incluyendo
efectos de pérdidas. Se han llevado a cabo un gran número de experimentos numéricos para
garantizar la validez de esta teoŕıa aśı como algunas de las propiedades de las estructuras de
prueba (pérdidas, mallado, etc).

Palabras-clave: Electromagnetismo computacional , medio estratificado, circuito impreso,
cavidad.

vii





Acknowledgements

The work that you are about to read is not only the result of my own research but the
continuous advise, collaboration and support of many other people. It is a pleasant aspect
that I have now the opportunity to express my gratitude for all of them.

First and foremost, I would like to deeply thank my thesis advisor, Prof. Juan R. Mosig,
who gave me the great opportunity of joining his laboratory and doing this work. I really
appreciated his constant support, his effort to make a gap for me in his always busy agenda,
his ideas, his honesty, and his trust on me. It has been an honor for me to work side by side
with a great person and a worldwide renowned scientist.

My appreciation goes to the committee of experts who evaluated this thesis: Prof. Juan E.
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1 Introduction

Multilayered media with printed circuits embedded between dielectric layers are one of the
most successful technologies for manufacturing planar structures with a good performance-to-
price ratio. Planar structures include many different geometries, ranging from cavity-backed
microstrip antennas, through Frequency Selective Surface (FSS) and photonic band-gap mate-
rials, to shielded printed circuits or waveguide filters with printed irises. The common denom-
inator in all of them is a) the presence of planar metallic surfaces (printed lines, patches, and
apertures in ground planes); b) a multilayered structure made of homogeneous and isotropic
dielectric, and c) a certain BC imposed laterally.

We can classify all the above geometries into a generic structure denoted as printed circuits
in a bounded layered media (Fig. 1.1). The concept of printed circuit must be understood
in a general sense. In microstrip-type circuits, it means the metallic surface of the circuit
but it refers to the metal-devoid surfaces in circuits like coplanar waveguide or slot-lines. On
the other hand, bounded layered media are characterized by a constant cross section along
transverse coordinates (u1, u2) and a filling medium whose properties vary stepwise along the
normal direction z (the multilayered substrate).

We aim at analyzing the Electromagnetic (EM) behavior of these structures for two different
scenarios. The first one corresponds to the excitation of the structure with EM waves Ei

1,H
i
1

impinging the medium with a certain angle and polarization. This situation is encountered,
for example, when planar periodic structures are illuminated with plane waves or in the
excitation of a waveguide with modes. The other scenario is more characteristic of planar
shielded circuits using coaxial-type feeds and assumes a localized field Ei

2,H
i
2 at the edge of

a printed circuit (Fig. 1.1).

The EM behavior of this problem can be modeled with a wide range of numerical tech-
niques. The growth of computer technologies is pushing the utilization of generic methods
like finite elements [1] , finite differences [2] or the transmission line method [3], where the
volume of complex geometries is discretized and the EM problem can be solved systematically
by performing a large amount of repetitive operations. As it is well known, these “generic”
methods are essentially discrete formulations of the original differential Maxwell equations and
can therefore be applied pointwise (or at least “pixelwise”). This means that complex geome-
tries and arbitrary local variations of constitutive parameters can be easily accommodated.
In turn, a high computational effort is needed and the achieved accuracy is insufficient for
certain applications. The alternative, in order to gain in efficiency and accuracy, is to utilize
methods specially suited to a specific topology. Some examples are the Mode Matching (MM)
technique [4, 5], mainly applied to waveguide structures, or the IE approach in conjunction
with the MoM, where the Green’s function characterizes a specific environment. In general,
aside from the geometry restrictions, one of the major drawbacks of the latter methods is the
amount of quite sophisticated analytical pre-processing that they require. However if properly

1
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Figure 1.1: An example of printed circuits in a bounded layered media. (a) transverse boundary
conditions, (b) layered media, (c) three-dimensional view.



Section 1.1: Objectives 3

treated, these methods can result in fast and efficient numerical algorithms. This is the main
purpose of this thesis.

The IE technique has been successfully used in the analysis of multilayered printed circuits,
and it has demonstrated accuracy and efficiency in the prediction of electrical responses of de-
vices without lateral walls [6, 7], as well as shielded components [8]. Any systematic approach
to these methods would contribute significantly towards the quality of the final algorithms,
reducing the difficulty and implementation time.

Modern fabrication techniques introduce layers manufactured with new materials and di-
mensions, like the extremely thin high-resistive or semiconductor layers used in (Monolithic)
Microwave Integrated Circuits (MMICs) and integrated antennas. Moreover, new function-
alities calls for periodical arrangements (FSS, metamaterials, ...) and for partial or total
shielding of devices (Electromagnetic Compatibility (EMC) problems, ...). This requires very
different boundary conditions to be considered.

The existing numerical solvers and formulations are either specific for a given lateral BC or
shown not to be numerically stable for every possible condition. A stable and efficient algo-
rithm is thus needed that will give numerically accurate results for different critical conditions
encountered in modern technology.

In this thesis we will demonstrate that an efficient technique that encompasses different
laterally bounded multilayered problems with a seamless transition between them is still
possible. The method will avoid having a specific formulation of printed circuits for each new
boundary problem and it will offer a unified and versatile approach that eliminates redundancy
in the formulation and eliminates error-prone numerical routines.

1.1 Objectives

The main research line in this thesis was strongly motivated by a project for the European
Space and Technology Center of the European Space Agency (ESA-ESTEC).

The ESA-ESTEC project number 16332/02/NL/LvH, entitled “Integrated Planar and Wa-
veguide Simulation Tools” and more specifically the activity associated with the “Analysis of
Multilayered Boxed Printed Circuits” defined the main objectives of this thesis. The purpose
of this research project was to bridge the gap between the printed circuit and the waveguide
world developing a software tool (MAMBO) for the simulation of printed circuits embedded in
multilayered media inside rectangular cavities. The model, based on an IE formulation, should
take into account of the losses in the walls of the cavity, dielectrics and the metallic part of
printed circuits. A dedicated formulation of the problem was required in order to produce
an efficient EM solver showing definitive advantages with respect to available commercial
softwares.

1.2 Outline

This section summarizes the contents of the chapters in the thesis. Every chapter contains a
selective literature review substantial for the material presented in it.
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Chapter 2 surveys the fundamental theorems and methods upon which the work in this thesis
is built. The field equations and the surface BCs provides the starting point for the study
of the EM problem. Based on the equivalence principle, we will demonstrate how the
problem can be formulated in terms of two types of IE technique. We present a modal
formulation of the GF for a general layered bounded media giving some insight into the
physical meaning of the equations. We briefly describe the method of moment applied
to the resolution of a system of integral equations emphasizing the role of the reaction
concept within this method. Finally, we describe the model of port used for the network
characterization of planar devices where the transfer function is deduced by exploring
different visions of the system matrix.

Chapter 3 presents a unified approach to deal with transverse boundary problems. This
Chapter first gives an overview of the formulation in connection with Chapter 2 and
it outlines a canonic type of surface integrals relevant for the resolution of a generic
transverse boundary problem. We describe how to reduce the dimension of these in-
tegrals, from surface to line integrals, by taking advantage of fundamental properties
of the modal and BFs. Then, these expressions are specialized for the simulation of
problems combining arbitrary transverse BCs and linear subsectional basis functions.
The analytical solution for geometries with rectangular or circular perfect electric walls
and two-dimensional periodic boundaries are also presented as example of application.
Finally this approach is validated by investigating four free-standing structures with
different transverse BCs. There, the response provided by this technique is compared
with other methods.

Chapter 4 focuses on developing an efficient and stable algorithm for the EM modeling of
layered media. It starts introducing the foundations of a transmission line model. The
formulation is presented using various forms that will allow different interpretations
of the problem. It follows a study of the stability in current algorithms to establish
the bases for the definition of a new algorithm. Then, the new formulation is used to
explore the resonances appearing in dielectric-filled cavities. Finally, the efficiency of
this technique is verified by the simulation of a realistic multilayered filter.

Chapter 5 applies these techniques for the resolution of multilayered boxed printed circuits.
After a review of existing numerical methods it presents an overview of the formulation
for this problem in connections with the methods described in previous chapters. It
examines the convergence of the modal series arising in the reaction terms filling the
MoM matrix, and proposes an acceleration technique. The approach used to model
all the losses in the structure is also addressed here. Then, it introduces a method to
include lumped elements in the simulation of printed circuits. Finally, it validates the
developed approach by means of extensive numerical experiments on several benchmark
structures.

Chapter 6 summarizes the concluding remarks, enumerates the original contributions and
outlines the possible future research directions inspired by the work presented here.
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2 Foundations

2.1 Introduction

In this chapter we give an overview of the fundamental theorems, methods and numerical
techniques upon which the work presented in this thesis is built.

The Electromagnetic (EM) modeling of printed circuits in layered bounded media is performed
via an Integral Equation (IE) technique [1]. A Green’s function (GF) is specially defined to
satisfy both the BCs imposed by the layered media and by the transverse boundary enclosing
the entire structure. On the other hand, the printed circuits are considered as inhomogeneities
that scatter any incident field inside the aforementioned medium. This scattering problem is
conveniently converted into an equivalent problem for which a formal solution may be directly
written. This is accomplished by application of the equivalence principle [2, §3.5] that replaces
the inhomogeneities by equivalent induced currents (also denoted “sources” throughout this
text). Finally, a system of IEs on the equivalent sources can be formulated by imposing
boundary conditions on the printed circuit surfaces. The latter, is solved numerically by
means of the Method of Moments (MoM) [3]. Further results can be derived from the MoM
solution, like the multiport network characterization of the device under investigation.

2.2 Field Equations

The electric E [V/m] and magnetic H [A/m] fields in an EM problem are governed by the
Maxwell–Hertz–Heaviside (MHH) equations∗. A differential and symmetric form of these
equations is used here:

∇× E = −jωμH − M (2.1a)

∇× H = +jωεE + J, (2.1b)

where ω is the angular frequency [rad/s]; μ, ε are the permeability [H/m] and permittiv-
ity [F/m] and J,M are electric [A/m2] and magnetic current densities [V/m2], respectively.
All fields are assumed time harmonic with a time variation according to e jωt.

The keystone in the application of the equivalence principle is that the equivalent surface
currents are able to artificially introduce discontinuities in the EM fields across a surface.
Therefore, a simplified scenario can reproduce the field solution in the original problem by
introducing these currents conveniently. Formally, the effect of the currents is formulated as

∗The work of James C. Maxwell (1831 – 1879) in electromagnetism was later reformulated by Heinrich R.
Hertz (1857 – 1894) and Oliver Heaviside (1850 – 1925) into the field equations used nowadays.

7
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Figure 2.1: Discontinuity in fields produced by
surface currents over S.
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Figure 2.2: Transverse view of a general
problem: a planar circuit (Ω1)
embedded in a medium bounded
by ∂Ω.

follows. Consider a surface distribution of currents Js [A/m] and Ms [V/m] flowing over a
surface S, as represented in Fig. 2.1. Under these conditions, the fields at each side of S
satisfy the following relation [2, (1-86)]:

(E2 − E1) × n̂ = Ms (2.2a)

n̂ × (H2 − H1) = Js (2.2b)

where n̂ is the unit vector normal to the surface and pointing into region ©2 . Obviously,
the above equation above is applicable in the case Ms or Js are zero resulting in continuous
tangential field components along the surface interface.

2.3 Surface Integral Equations

The resolution of a scattering problem, within an IE context, starts by splitting the EM
solution into two types of fields, those associated with a primary source, external to the
problem, and another associated with the equivalent induced sources [4, §1.3]. The former,
denoted impressed or incident fields Ei and Hi, are obtained by illuminating the medium in
the absence of the printed circuits. The secondary induced sources, which also radiate in
the medium, produce the scattered fields Es and Hs. The superposition of the impressed and
scattered fields yields the original fields in the presence of the printed circuits. In other words,
the total field is expressed as

E = Ei + Es (2.3a)

H = Hi + Hs. (2.3b)

The incident fields in the immediate vicinity of the printed circuit (away from the primary
source) satisfy the homogeneous (source free) Maxwell–Hertz–Heaviside (MHH) equations
(2.1) and the scattered fields are deduced from the equivalent induced currents as[

Es

Hs

]
=

[ ↔
GEE

↔
GEH↔

GHE

↔
GHH

]
∗
[

J

M

]
(2.4)
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where
↔
GPQ(r|r′) is the dyadic GF relating transverse components of the P-type fields at r and

Q-type sources at r′ (where P, Q = {E, H}); and the operator ∗ denotes convolution integral
over the pertinent source domain

↔
GPQ ∗ F =

�� ↔
GPQ(r|r′)F(r′) dS.

The sources on the surface, denoted from now on J,M without subscript “s” for simplicity,
are introduced by applying the equivalence theorem on the printed circuits. Starting from the
representation of Fig. 2.2, two approaches are possible: either the conducting surfaces (Ω1)
are replaced by equivalent electric currents or the metal-devoid complementary surfaces (i.e.
surfaces labeled with Ω2) are represented by equivalent magnetic currents. Each case results
in a different IE formulation as will be discussed next.

ẑ

PEC

DE

Ei,Hi �

(a) Flat conducting surface DE.

ẑ

PEC

DE

Ei,Hi �
©2

©1
(b) Side view of a flat conducting surface.

ẑ

Ei,Hi �
©2

©1

J M → 0

ε
→

0

(c) Mathematical surface S wrapping DE.

ẑ
DE

Ei,Hi �

J

J′,M′

(d) Equivalent scattering problem.

Figure 2.3: Equivalence principle for flat conducting screen.

Consider a flat conducting surface, infinitesimally thin and of finite size as represented
in Fig. 2.3(a). Using the equivalence principle, a mathematical surface S [dotted line in
Fig. 2.3(c)] with equivalent currents is defined around the conducting surface. If S is permit-
ted to shrink until it coincides with the surface of the PEC (i.e. ε = 0), (2.2) dictates that
the tangential electric field must vanish on the surface [4, §1.7]. If follows that the equivalent
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sources replacing the conducting surface are

J = ẑ × (H2 − H1) (2.5a)

M = 0, (2.5b)

over the region covered by DE. Here, J is a surface equivalent current that represents the
sum of actual currents flowing above and below the conducting surface [5, §8.2].

Hence, the equivalent problem involves induced currents radiating in the medium, as depicted
in Fig. 2.3(c). This representation shows a general scenario that considers the impressed
fields originated in a primary source and the presence of additional currents (J′,M′) from
other secondary sources. Regarding the original problem, the tangential component of the
total electric field must vanish on DE:

ẑ × E = 0 on DE. (2.6)

This BC in conjunction with (2.3) and (2.4) is used to formulate an electric field IE EFIE as

−ẑ × Ei =
↔
GEE ∗ J + ẑ × Es(J′,M′), (2.7)

where Es(J′,M′) designates the electric field on the surface DE by the sources J′,M′.
Conversely, a magnetic field IE MFIE, based on the first identity in (2.5), cannot be formulated
in this case being only possible on PEC surfaces enclosing a volume [4, p.18].

Let us now consider the scattering problem in an aperture over an infinite PEC plane, as
represented in Fig. 2.4(a). This time, the formulation of the IE is obtained from two equivalent
problems [4, §1.10], associated with the regions ©1 and ©2 in Fig. 2.4(b).

An equivalent representation of region ©2 can be constructed by placing a mathematical surface
S [dotted lines in Fig. 2.4(c)] over the PEC ground plane and introducing equivalent currents
there. Applying (2.2) with E2 = 0,H2 = 0 on the infinite PEC part of the plane S shows that
the magnetic currents vanishe all along the plane except in the aperture, while the electric
currents are nonzero everywhere. At this point, we can fill the aperture creating a uniform
infinite PEC plane, provided that the aforementioned equivalent currents reproduce the fields
in region ©2 , regardless of the problem below. With the infinite PEC ground plane under the
complete surface S, the electric currents can not radiate† and they are not considered. Hence,
only magnetic equivalent currents remain over S:

J = 0 (2.8a)

M =

{
E × n̂ in DH

0 otherwise
. (2.8b)

The latter is also valid and derived analogously for the region ©1 .

The EM solution must satisfy continuity of the tangential components for the electric and

†This can be easily understood using image theory [2, §3.4] to replace the ground plane, since the superposition
of a parallel electric source and its image cancel out.
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ẑ

M

−M

J′
1,M

′
1

J′
2,M

′
2

(d) Equivalent scattering problem.

Figure 2.4: Equivalence principle for an aperture in a conducting plane.

magnetic fields through the aperture. More specifically, using subscripts 1 and 2 to identify
the region, it follows that

(E2 − E1) × ẑ = 0 (2.9a)

ẑ × (H2 − H1) = 0 (2.9b)

on DH. The first equation establishes that the equivalent magnetic currents above and below
the aperture are of the same magnitude but opposite signs. More specifically,

M1 = E1 × (−ẑ)
M2 = E2 × (+ẑ)

}
⇒ M1 = −M2 = M, (2.10)

provided that (2.2) is satisfied on each side. This leads to an equivalent problem as illustrated
in Fig. 2.4(d) where, for the sake of generality, an impressed field and other secondary sources
on both sides of the ground plane (J′

1,J
′
2,M

′
1,M

′
2) are also considered. Finally, considering

an incident field Hi in the upper semi-space, an IE can be formulated on M by imposing
(2.9b) over the aperture surface DH, as follows:

−ẑ × Hi =
(↔
G2

HH +
↔
G1

HH

)
∗ M + ẑ ×

[
Hs(J′

2,M
′
2) − Hs(J′

1,M
′
1)
]
, (2.11)
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where Hs denotes the scattered magnetic field on DH originated by the secondary sources,↔
G1

HH,
↔
G2

HH are the GFs for the lower and upper region, respectively. Notice that the above
IE couples the sources at both sides of the aperture.

A more general problem, involving different conducting surfaces or apertures (e.g. in [6]), can
also be modeled using these two cases. The resulting formulation consists on a system of IEs
composed of expressions like (2.7) and (2.11) that couple the equivalent sources over every
circuit surface SP, with P = {E, H}.

2.4 Green’s Function

One analytical approach for developing more efficient IE models is the use of the specialized
GFs which satisfy some boundary conditions of the problem. These GFs are available for
layered bounded problems for which they provide a formal means to model the EM fields
produced by an infinitesimal source embedded in this medium. The tradeoff in using such
GFs is that of reducing the number of unknowns needed in the model at the expense of dealing
with a more complex IE kernel [7].

z

z

u1

u1

u2

u2
u

r

τ̂ ′δ(r − r′)
τ̂ ′δ(r − r′)

τ̂ ′′δ(r − r′′)

τ̂ ′′δ(r − r′′)

μ, ε

μ, ε

Ω
∂Ω

(a) Infinitesimal current sources in a homogeneous bounded
medium. Transverse (left) and longitudinal views.

z

γ, Z

u

j

+
+ −

I

V

z′

z′′

(b) Transmission line
model.

Figure 2.5: General representation of the GF problem and an associated model.

The IEs (2.7) and (2.11), considered in the previous section, are defined over planar surfaces
therefore requiring only the evaluation of the transverse components of the dyadic GF, i.e.
Grs

PQ where r, s ∈ {x, y}. A general representation for the GF problem of interest is shown
in Fig. 2.5(a). It illustrates an electric (single arrow) and a magnetic (double-headed arrow)
infinitesimal source oriented along τ̂ ′ and τ̂ ′′ over transverse planes at two different levels in
z. The medium is initially considered homogeneous to simplify the demonstration and later
it can be easily extended to the layered case.

The method used to find the field radiated by an arbitrary infinitesimal source is to expand the
radiated field in terms of a suitable set of modes. The latter are obtained as an orthonormal set
of eigensolutions for the transverse boundary problem ∂Ω. In a physical sense, an infinitesimal



Section 2.4: Green’s Function 13

source in Fig. 2.5(a) will excite the complete modal spectrum in a transverse plane with a
strength depending on its position and polarization. Then, the modes will propagate along
the z direction in the medium. Hence, the radiated field can be reconstructed at any observer
point r by superposition of its modal components [8, §5.6].

Let us now proceed formally with these ideas. Due to the invariance of the transverse BCs
(over ∂Ω) along the z direction, the MHH equations (2.1) can be reduced to a inhomogeneous
vector field equation on the transverse components of the electric and magnetic fields:

∂Et

∂z
= −jωμ

[
1 +

1

k2
∇t∇t·

]
(Ht × ẑ) − (Mt × ẑ) − ∇tJz

jωε
(2.12a)

∂Ht

∂z
= −jωε

[
1 +

1

k2
∇t∇t·

]
(ẑ × Et) − (ẑ × Jt) −

∇tMz

jωμ
(2.12b)

where k = ω
√

με and, for the sake of completeness, all source components are considered.
Notice that the transverse components of the modal field {e,h} are solutions of the equivalent
homogenous equations [9, §1.2], so we can express the fields in (2.12) as

Et =
∑

i

Vi(z)ei(u1, u2) (2.13a)

Ht =
∑

i

Ii(z)hi(u1, u2), (2.13b)

where Vi, Ii are complex amplitudes that modulate the transverse field components of an ith
mode along the propagation direction. Integrating over every mode and using the orthogonal
property:

��
Ω

ei · e∗j dΩ = δij

��
Ω

hi · h∗
j dΩ = δij , (2.14)

with δij being the Kronecker delta function, eliminates from (2.12) the transverse component
dependence. The resulting set of equations governs the behavior of the weighting functions
along z for every mode as

∂V

∂z
= −γZI + u (2.15a)

∂I

∂z
= −γ/ZV + j. (2.15b)

Notice that these are the well-known Telegraphers equations and therefore γ, Z correspond
to the propagation constant and the characteristic impedance in the equivalent transmission
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line and u, j correspond to voltage and current generators. The latter are calculated by

−u =
��
Ω

(
Mt × ẑ +

∇tJz

jωε

)
· e∗ dΩ =

��
Ω

Mt · h∗ dΩ (2.16a)

−j =
��
Ω

(
ẑ × Jt +

∇tMz

jωμ

)
· h∗ dΩ =

��
Ω

Jt · e∗ dΩ, (2.16b)

provided that h = ẑ × e and only sources transverse to the Ω are considered here. These
developments reveal that the propagation along z of the transverse components, governed by
(2.15), can be interpreted in terms of a transmission line problem with external generators.

At this point, the formulation of the GF can be readily obtained by exciting the medium with
the infinitesimal transverse sources, shown in Fig. 2.5(a). According to (2.16a), the sources
are projected on the orthonormal modal basis to get the following values

−u = h∗(u′) · τ̂ ′′δ(z − z′′) (2.17a)

−j = e∗(u′) · τ̂ ′δ(z − z′) (2.17b)

where u′ = r′−z′ẑ is a two-dimensional vector that points to the source position in the plane Ω.
The results obtained in (2.17) in conjunction with (2.15) show that the GF problem along
the longitudinal dimension can be reduced to an equivalent transmission line with lumped
generators as illustrated in Fig. 2.5(b). Hence, the radiated field in the medium of Fig. 2.5(a)
can be obtained solving the equivalent transmission line model for every mode and adding up
each contribution by means of (2.13). In addition, if the generators are set to j = 1 A and

u = 1 V, the transverse components of the GF, denoted for simplicity with the symbol
↔
G, are

given by

↔
GEE(r|r′) =

∑
i

V I
i (z, z′) ei(u1, u2)e

∗
i (u

′
1, u

′
2) (2.18a)

↔
GEH(r|r′′) =

∑
i

V V
i (z, z′′) ei(u1, u2)h

∗
i (u

′′
1, u

′′
2) (2.18b)

↔
GHE(r|r′) =

∑
i

II
i (z, z′)hi(u1, u2)e

∗
i (u

′
1, u

′
2) (2.18c)

↔
GHH(r|r′′) =

∑
i

IV
i (z, z′′)hi(u1, u2)h

∗
i (u

′′
1, u

′′
2) (2.18d)

where V I , II and V V , IV are the modal voltages and currents at the observer z in the equi-
valent transmission line of Fig. 2.5(b) produced by normalized excitations situated at z and
z′′, respectively. To refer to the ensemble of GFs represented above we will use the following
notation

↔
GPQ(r|r′) =

∑
i

PQ
i (z, z′)pi(u)q∗

i (u
′) (2.19)

where r = u + zẑ, P, Q = {E, H}, P, Q = {V, I} and pi,qi = {ei,hi}.
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Finally, the GF formulation in a layered medium is a straightforward extension of the equi-
valent transmission line problem represented in Fig. 2.5(b). Each kth layer is replaced by an
equivalent transmission line section {γk, Zk} for every mode considered. A detailed formula-
tion of the transmission line model for layered media will be presented in Chapter 4.

In conclusion, the formulation of the GFs for bounded layered media (only transverse com-
ponents), given in (2.19), involves two different problems. First, the modal field components
{ei,hi} must be calculated by solving the transverse boundary problem. And second, an
equivalent transmission line model, derived from the layered media, is solved for each mode
in order to calculate the series weight functions PQ

i .

2.5 Method of Moments

The MoM [3] is applied for numerical resolution of system of surface IEs derived in §2.3. A
general representation of a vector IE can be written as

−Fi = L (K) =
�
S

↔
GK dS, (2.20)

where S extends to all the unknown equivalent induced currents K = {J,M} in the medium.
In the equation above, Fi represents the known impressed field and L is a linear operator that
returns the scattered field by convolution of the unknown equivalent induced sources with the
pertinent dyadic GF

↔
G.

To proceed, let us define a set of known BFs {b1,b2, . . .bN} in the domain of L, such that
K is approximated as

K ≈
∑

l

αlbl (2.21)

where αl are in general complex coefficients. Introducing this form into (2.20) and using the
linearity of the L operator we get

−Fi =
∑

l

αlL (bl) . (2.22)

Now, following the Galerkin procedure, the last equation is tested using weight functions
wk = bk and a suitable inner product 〈a,b〉 resulting in N linear equations with N unknowns
αl:

〈wk,−Fi〉 =
∑

l

αl〈wk,L (bl)〉

for k = 1, 2, . . . , N . Therefore, the original IE has been transformed into an algebraic linear
system which can be written in matrix form as[

〈bk,−Fi〉
]

=
[
〈bk,L (bl)〉

]
· [αl] . (2.23)

If the matrix is not singular then its inverse exists, the expansion coefficients are found and
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an approximation of the actual induced currents are obtained through (2.21).

From a physical point of view, testing using weight functions is a mathematical tool to “mea-
sure” the field on a surface D. Therefore, the MoM consists of adjusting, in magnitude and
phase, auxiliary discrete sources (the BFs) such that by superposition they radiate a field on
the circuit surface that compensates the “measured” incident field. Here, the inner product
is defined as a reaction [10]. The reaction between two distribution of sources K ≡ {J,M}
and K′ ≡ {J′,M′} is given by

〈K′,L(K)〉 =
��
D′

E

J′ · E(J,M) dS −
��
D′

H

M′ · H(J,M) dS (2.24)

where E,H can be interpreted as scattered or incident fields depending if they are produced
by secondary or primary sources. This definition of inner product, due to the reciprocity
principle [11, p.194], produces a symmetric matrix in the MoM [12, §1.6].

2.6 Network Characterization

Many engineering problems involve the measurement of the transfer of energy between diffe-
rent ports defined in a device. This process is commonly known as a multiport network charac-
terization and in passive devices it is given by a linear transformation. In high frequency EMs
the concept of port represents a value obtained by measure of a physical magnitude, normally
by integration over a region (surface, line, point). First, we need to know what magnitudes of
the problem (i.e. EM field, current density, etc) are available after the simulation and then a
mathematical tool to measure them must be chosen. The latter should be defined such that
it should only be correlated with the magnitude under investigation (i.e. a measure should
only be affected when changes arises in this magnitude and not the others) and it should
be reproducible in a laboratory. For example, in waveguide-based devices or FSS a port is
normally associated to the fundamental waveguide or Floquet mode, respectively. Incident
and reflection coefficients (values) are obtained by projection of the EM field over the corre-
spondent mode (measurements tool). In addition, each measure is associated to each mode
since they constitute an orthogonal set.

Here we are concerned with the multiport network characterization of planar circuits. The
common mechanisms to access these circuits are normally small coaxial connectors or wafer
probes. An approximate model consists in considering an incident field localized in an infini-
tesimal region at the device’s input/output and using the reaction concept (2.24) as measure-
ment tool. This is the idea behind commonly used excitation techniques like the delta-gap
voltage and the impressed-current models [13]. In principle, only those BFs in the excitation
region are susceptible of being excited, having 〈bk,F

i〉 
= 0. These BFs are denoted terminals
and a set of terminals within an excitation region will reconstruct the currents at a port. The
rest are denoted as circuit BFs [13]. Hence, without loss of generality, the MoM matrix (2.23),
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can be arranged according to circuit and terminal BFs as follows[
x

0

]
=

[
T m

mt C

]
·
[

t

c

]
(2.25)

where the superscript “t” denotes transposed matrix and T = T t, C = Ct are symmetric
submatrices. In the above equation, x = [xk] and t = [tk] are column vectors with complex
values associated to the terminal BFs. The first contains non-zero excitation coefficients
xk = 〈bk,−Fi〉 
= 0 and the second are the expansion coefficients associated to each basis
function. For the circuit BFs, these coefficients are stored in the column vector c = [ck].
The network characterization will be derived from the relations between terminal BFs. To
proceed, we can easily obtain from (2.25) the following identities

x = T · t + m · c (2.26a)

c =
(
−C−1 · mt

)
· t. (2.26b)

Recalling the discussion in §2.5, in the first equation the field radiated by the terminal and
the circuit currents compensates the field impressed in the ports region. At the same time,
the circuit and the terminal currents are related by the second equation. Now, by substituting
the second into the first equation and inverting the result, we can directly obtain the terminal
currents coefficients in terms of the excitation as

t =
(
T − m · C−1 · mt

)−1 · x = H · x. (2.27)

Notice that from the expression above we can obtain the induced current at every port,
reconstructed with the terminal currents t, for any given excitation x. In other words, H
directly provides a transfer function between terminal currents, and therefore ports. Hence,
a multiport network characterization of the circuit can be readily deduced from H (e.g. for
multisegmented ports see [13, §7] or for entire domain BF see [14, §2]). Finally, if the currents
in the rest of the circuit are required, the coefficients for the circuit BFs can be calculated
using (2.26b).

n̂

Ω

C

ν̂

J

H

DE

(a) Electric currents on a flat conducting strip.

n̂

Ω

C

ν̂

a

b
DH

τ̂

M

E

(b) Magnetic currents on a slot over a infinite
ground plane.

Figure 2.6: Dual electric and magnetic problems on a region D

Why do we claim that this is an approximated excitation model? The approximation arises
because we are considering the reaction over an infinitesimal incident field in order to measure
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Figure 2.7: Representation of the reaction taking place when electric and magnetic sources are con-
sidered. The circuit terminals in the electric and magnetic case are short- and open-
circuited respectively since the excitation coefficients are zero (in the lossless case). The
electric terminals are represented as external accesses to the circuit

.

the ports. Let us clarify this idea by rearranging the MoM matrix in electric or magnetic BFs
(i.e. according to the expansion of J and M currents):[

u

j

]
=

[
Z h

ht Y

]
·
[

i

v

]
(2.28)

with Z = Z ′ and Y = Y ′ symmetric matrices due to reciprocity. The notation used for the
vectors in (2.28) is deliberately chosen to indicate measures of voltage for u = [uk], v = [vk]
and current for i = [ik], j = [jk]. The unknowns i, v are naturally defined since, considering
Fig. 2.6, we have

ik =
�
C

J · ν̂ dl [A] (2.29a)

vk =
�
C

M · ν̂ dl =

b�
a

E · τ̂ dl [V], (2.29b)

while the excitation coefficients u, j are obtained through the reaction concept in (2.24), i.e.

uk = 〈J,−Ei〉 [V] (2.30a)

jk = 〈M,−Hi〉 [A] (2.30b)

The approximation arises in (2.30) since they do not represent exactly the voltages and cur-
rents at the device ports measured in the laboratory. The main reason is that the incident
field is not only localized over an infinitesimal region but instead it actually illuminates the
complete circuit. In order to see more formally this approximation, let us rearrange the MoM
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regarding (2.25) as

x =

[
ut

jt

]
t =

[
it
vt

]
c =

[
ic
vc

]
(2.31)

where the subscript “t” denotes that it belongs to terminal basis functions, and analogously
with “c” for circuit BFs. Hence, considering the real solution as xr = Hr · tr and the definition
(2.30) being an approximation, i.e. x ≈ xr, then we can conclude that H ≈ Hr provided that
t = tr is very accurate.

An exact determination of the excitation field would require an effort comparable to the
complete simulation since in that case the entire EM problem, including the port probes,
should be solved in the absence of equivalent sources. Other non-exact methods aim to
improve accuracy by better approximating the incident field, like the magnetic frill model [15,
§7.3.2], or by carrying out a pre-calibration in x in order to infer xr [16]. Nevertheless, it has
been demonstrated that the aforementioned approximate models provide accurate results for
excitations through small coaxial feeds or wafer probes in addition to a very low computational
effort.

An interesting circuit interpretation of the MoM is found by substituting (2.31) into (2.25). An
abstract representation is given in Fig. 2.7. The circuit is enclosed into a “black-box” accessed
by terminals which are linked to the electric and magnetic currents. The interactions inside
are given by the submatrices in (2.28) and the circuit currents in the MoM can be interpreted
as open or close-circuited terminals.

Finally, the multiport network characterization of microwave circuits is commonly desired in
terms of scattering parameters S. In order to show the procedure from H to S let us first
consider a MoM with only electric currents, such that (2.28) is reduced

u = Z · i (2.32)

where Z is sometimes called generalized impedance matrix [3, §5]. Arranging Z into terminals
and circuits and following the procedure described above leads naturally to a transfer function
between terminals that corresponds to the admittance matrix [3, §6]. Mathematically, this is
written as

it =
(
Ztt − Ztc · Z−1

cc · Z ′
tc

)−1︸ ︷︷ ︸
Z−1

·ut = Y · ut. (2.33)

The admittance matrix is now transformable into scattering parameters, using the definition
of Kurokawa [17], as follows

S = F · (1 − G·Y) · (1 + G·Y)−1 · F−1 (2.34)

where 1 is the identity matrix, F−1 = diag(2
√

R0p), G = diag(R0p) and R0p ∈ R is the
reference impedance of the pth port. Analogously, in the general case, H−1 = G is an hybrid
matrix relating electric and magnetic ports. Analogously, the scattering parameters can be
derived as

S = TE · (1 − D ·G) · (1 + D ·G)−1 · E−1 (2.35)
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where, for pth electric and qth magnetic ports, we have defined T = diag[1p,−1q],
E = diag[diag(

√
R0p), diag(1/

√
R0q)] and D = diag[diag(R0p), diag(1/R0q)].

2.7 General Assessment

Throughout this chapter we have shown the foundations of an IE-MoM technique for the EM
modeling of printed circuits in bounded layered media.

The basis of this approach consists of the formulation of a canonical problem consisting of
the radiation of an infinitesimal current inside bounded layered media. This defines the GF.
On the other hand, using the equivalence principle, the printed circuits can be replaced by
equivalent surface currents. In this way, the initial structure has been transformed into a
problem of equivalent surface currents radiating in a bounded layered media. Using a IE
technique in combination with the MoM these currents are obtained for the BCs imposed
in the original problem. With this result any other field or derived magnitude can be then
calculated, e.g. a multiport network characterization of the structure.

Due to the symmetry presented by a bounded layered media, the GF’s problem has been
reduced into a two-dimensional transverse boundary problem, in coordinates u1, u2 and a
one-dimensional transmission line problem in z direction. The former consists in deriving the
eigensolutions or modes satisfying Helmholtz equation in the transverse contour with certain
BCs, while the latter describes how these modes propagate in the layered media.

The formulation of the overall problem is thus based on two main ingredients which can be
treated independently. On one side the resolution of a transverse boundary problem, meaning
the derivation of modes and the solution to operators associated with the IE for a giving
transverse contour. On the other side, an efficient resolution of the equivalent transmission
line problem along the normal coordinate for a generic mode. These two auxiliary problems
will be the object of, respectively, the two next Chapter 3 and Chapter 4 in the thesis.
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3 Transverse Boundary Problem

3.1 Introduction

In this chapter we present the details of the IE-MoM formulation for the EM modeling of
printed circuits in laterally bounded media. This scheme encompasses a wide range of prac-
tical structures such as discontinuities in waveguides, planar circuits embedded in shielded
multilayered media or even 2-D printed periodic structures. Each of the problems enumerated
above has already been solved by other authors using IE-MoM techniques. Some examples
can be found in the work of [1, 2] applied to waveguide iris filters, or the techniques for boxed
printed circuits proposed in [3–5] or even the studies on infinite planar arrays or FSS in [6–8].
Nevertheless, our formulation introduces a unified approach applicable to all the aforemen-
tioned problems. Our method is based on a modal representation of the transverse boundary
problem and on the expansion of the equivalent surface currents by divergence-conforming
BFs. It starts with general and simplified forms of the integral operators. Then it establishes
a systematic procedure that particularizes the solution to a specific combination of transverse
BC and type of BFs.

This chapter is organized as follows. The first section commences with a review of the IE-
MoM formulation in connection with the techniques presented in §§2.3–2.5. The purpose is
to give a precise picture of the type of integral expressions to be solved and the role they play
within the overall IE-MoM technique. The next section develops the approach followed to
achieve a generic solution for these integrals. The formulation is then applied to rectangular
and circular perfect electric conductors BCs (i.e. waveguides) and periodic BC in order to
prove the generality, simplicity and elegance of this technique. Finally, the validity of the
approach is demonstrated confronting the results obtained using the presented technique and
other references from the literature.

3.2 Formulation

Consider a generic printed circuit structure transversally bounded by a surface ∂Ω, as depicted
in Fig. 3.1. By application of the equivalence principle the printed circuits are replaced by
magnetic M ∈ DH surface currents over ground planes or equivalent electric surface currents
J ∈ DE. Within the equivalent problem, the formulation of the EM behavior arises from the
enforcement of BCs over the currents surfaces D, resulting in a coupled system of IEs on the
unknown electric (on DE) and magnetic (on DH) equivalent currents [cf. §2.3].

We consider here a GF for laterally bounded media. As derived in §2.4, this GF can be
expressed as a series expansion of “guided” modes. Rewriting (2.19) for the sake of clarity,

23
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Figure 3.1: The cross-section (left) and longitudinal view (right) of planar electric (J) and mag-
netic (M) sources embedded in a medium with BCs imposed on an arbitrary cylindrical
surface ∂Ω

the GF is given by

↔
GPQ(r|r′) =

∑
i

PQ
i (z, z′)pi(u1, u2)q

∗
i (u

′
1, u

′
2), (3.1)

where ∗ denotes complex conjugate. Each modal term i in the series comprises the evaluation
of the transverse field components pi,qi = {ei,hi} in source and observer points and PQ

i is
the voltage/current calculated from the equivalent longitudinal transmission line model∗.
The equivalent electric and magnetic currents are expanded into a sum of BFs bk ≡ b(u′

1, u
′
2),

defined over domains DQk ⊆ DQ. Mathematically, this implies that

J =
∑

k

ikbk M =
∑

l

vlbl (3.2)

where ik, vl are unknown complex coefficients. By application of the MoM in conjunction
with the Galerkin procedure [cf. §2.5], the system of IEs is transformed into a linear system
of equations that can be written in matrix form as follows[

REE REH

RHE RHH

]
·
[

i

v

]
=

[
u

j

]
, (3.3)

where i,v and u, j are column vectors. The first contains the surface currents coefficients
defined in (3.2) and the second includes the results of the projection of the excitation fields
over every BF

uk =
�

DEk

bk · Ee dS jl =
�

DHl

bl · He dS. (3.4)

The four submatrices RPQ represent all the possible reactions between electric and magnetic
sources and are calculated according to [9]. The reaction between the kth BF expanding a

∗In the context of this chapter, this term is merely a weight factor in the series. The formulation and efficient
evaluation of the transmission line model will be widely discuss in Chapter 4.
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P-type current and the lth BF of Q-type is expressed as

RPQ(k, l) =
∑

i

L
(
PQ

i

)
CP(k, i)C∗

Q(l, i) (3.5)

where i goes through all the modes (eigensolutions of the transverse boundary problem). The
term L

(
PQ

i

)
represents the sum of the PQ

i values obtained from the transmission line models
associated to every GF involved in the reaction. This will account for the superposition of
GFs acting on both sides of ground planes when a reaction takes place over magnetic surfaces,
as in (2.11), or for a single GF when it affects electric surfaces, as in (2.7). The remaining
terms correspond to projections of kth BF over ith mode. More specifically, this is formulated
as follows

CP(k, i) =
�

DPk

bk(u1, u2) · pi(u1, u2) dS (3.6)

and this expression is known as a coupling or Overlapping Integral (OI).

The cornerstone of this approach lies in the method used to solve these integrals since it will
allow to deal, under a unified strategy, with different lateral BCs by selecting appropriate
modal functions, and with random shaped printed circuits. Therefore, in the forthcoming
sections, a special emphasis is made on the resolution of OIs.

In [10–12], the IE-MoM formulation uses entire domain BFs defined as resonant modes on
the source domains. Consequently, the OIs are integrals coupling eigensolutions from two
different boundary value problems, similar to those appearing in the MM technique, and are
solved with a procedure as in [13]. Nevertheless, most of the IE-MoM implementations use
sub-sectional BFs (e.g. rooftops [14] or Rao–Wilton–Glisson (RWG) functions [15]) since they
can easily model currents on an arbitrary shaped surfaces. Contrary to the previous cases,
to the author’s knowledge, the OIs with this kind of BFs have been solved with a different
method in each case, though a systematic and unified approach is still possible.

The method proposed here expresses the modal field components in terms of scalar potentials
derived from the transverse boundary problem and takes advantage of the zero curl and
constant divergence of the BFs to derive a general procedure. Notice that these properties
apply to a wide variety of sub-sectional BFs, ranging from classical rooftops or RWG functions
to more evolved definitions, like the generalized Poisson-Neumann polygonal basis [16].

All the combinations of OIs are reduced to common forms and transformed from surface to line
integrals over the contour of the BF’s domain. In particular, the OIs involving rooftops and
RWG BFs are developed using the same formulation. The validity of the resulting expressions
will also extend to any kind of transverse BCs if it is is definable in terms of modal functions.

3.3 Overlapping Integrals

This section presents a general formulation of OIs with BFs that exhibit constant divergence
and zero curl within its domain. These BFs are classified as divergence conforming BFs which
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Table 3.1: Transverse field components of a mode expressed in terms of scalar potentials.

[1/m] ei hi

TEmn ẑ ×∇tχmn/κmn −∇tχmn/κmn

TMmn −∇tχmn/κmn −ẑ ×∇tχmn/κmn

TEMm −∇tχ
0
m −ẑ ×∇tχ

0
m

subscript i ≡ (m, n) or (m) identifies a modal term.

are specially suited for Electric Field Integral Equation (EFIE) formulations [17, §9.13]. The
surface integrals resulting in these OIs can be expressed as line integrals along the boundary
of the region over which the surface integration is performed. Such reduction in the dimen-
sionality of the integration is specially convenient from a computational point of view when
the integrals are numerically evaluated. This can arise at least in two cases: when an analytic
solution is not available or the transverse boundary problem is computed numerically by some
integral equation expressed on the boundary ∂Ω [18–20], since in that case the modal eigen-
functions are computed only in the contour ∂Ω. The line integral formulation in that case is
directly applicable without computing the eigenfunctions at internal points of the surface Ω.
On the other hand, a systematic approach in the resolution of the OIs over polygonal sub-
domains is found with the contour integral representation as will be demonstrated in §3.4.2.
Moreover, new properties about the OIs solutions, which help to avoid the evaluation of some
specific cases, are also pointed out.

3.3.1 Definition

Recalling (3.6), an OI is a projection of every BF, denoted b, onto the electric or magnetic
transverse vector field components {e,h} of each mode. Considering the electric and magnetic
case and the classification of modes into Transverse Electric (TE),Transverse Magnetic (TM)
and Transverse Electromagnetic (TEM) [21, §2.1], this gives six different possible expressions
for the OIs, namely

Cτ
E =

�
DE

b · eτ dS (3.7a)

Cτ
H =

�
DH

b · hτ dS, (3.7b)

with τ = {TE,TM,TEM}.
A more convenient form for (3.7) is obtained by expressing the modal field components in
terms of scalar potentials [21]. The relations needed are detailed in Table 3.1, where the
scalar potentials χ (subscripts are omitted for simplicity) are eigensolutions, with associated
eigenvalues κ 
= 0, of the Helmholtz equation(

∇2
t + κ2

)
χ = 0 (3.8)
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with Dirichlet or Neumann BC on the transverse boundary ∂Ω. When κ = 0 (TEM case),
the scalar potentials are denoted with χ0 and are derived from the Laplace equation instead

∇2
tχ

0 = 0, (3.9)

where ∇2
t = ∇2 − ẑ∂ 2/∂z2.

Substitution of the expressions based on scalar potentials in Table 3.1 into (3.7) shows that all
the aforementioned types of OIs can be written in terms of the following two surface integrals
in χ (and analogously for χ0)

�
D

b · (ẑ ×∇tχ) dS =
�
D

(b × ẑ) · ∇tχdS (3.10a)

�
D

b · ∇tχdS. (3.10b)

The relation between these integrals and (3.7) is detailed in the two first columns of Table 3.2.
The expressions in (3.10) can be seen as the same surface integral over two different BFs,
namely b and bc = ẑ × b. Notice that these functions have complementary divergence and
curl, i.e. the curl of the first is the divergence of the second and viceversa:

(∇t · bc ) ẑ = ∇t × b (3.11a)

∇t × bc = (∇t · b) ẑ (3.11b)

3.3.2 Transformation Into Contour Integrals

In EFIE formulations, it is necessary to employ expansion functions that ensure a finite diver-
gence across domain boundaries, or equivalently BFs that maintain normal continuity between
subdomains [17, 9.13]. BFs having finite divergence and possibly discontinuous tangential
components are known as divergence-conforming BFs. A special subset exhibiting constant
divergence and zero curl is considered here. These properties are satisfied at least by rooftops,
RWG or generalized Poisson-Neumann polygonal basis [16] over retangular, triangular and
polygonal subdomains, respectively.

Let us proceed formally. Assume BFs being locally curl-free and with locally constant charge
density (constant divergence), i.e. any function b ∈ D satisfying

∇t × b = 0 (3.12a)

∇t · b = d (3.12b)

where d is a non-zero real constant and ∇t = ∇− ẑ∂/∂z.

The transformation of (3.10) into equivalent contour integrals is based on Green’s first identity

�
D

A · ∇tB dS =
�

∂D

Bν̂ · A dl −
�
D

B∇t · A dS (3.13)
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where {A,∇tB} denote two generic vector functions and ν̂, τ̂ = ẑ × ν̂ are the normal and
tangential unitary vectors over the integration contour ∂D.

Let us proceed first with (3.10a). A convenient substitution in (3.13) is

A = b × ẑ = −bc, B = χ

since the resulting surface integral in the identity (3.13) will have the divergence operator
applied to bc. After substitution and considering that ν̂ · (b × ẑ) = b · τ̂ and ∇t · (b × ẑ) =
(∇t × b) · ẑ, the integral can be rewritten as follows

�
D

b · (ẑ ×∇tχ) dS =
�

∂D

χb · τ̂ dl −
�
D

χ∇t × b · ẑdS.

Then, using (3.12a), the last integral term vanishes, leading (3.10a) to the following contour
integral �

D

b · (ẑ ×∇tχ) dS =
�

∂D

χb · τ̂ dl. (3.14)

The demonstration is analogous when (3.10a) is applied to the scalar potential χ0.

The transformation of the integral (3.10b) is carried out differently depending on whether it
involves χ or χ0. In the first case, the identity (3.13) is used with

A = b, B = χ,

and applying the property (3.12b), it reduces (3.10b) to

�
D

b · ∇tχdS =
�

∂D

χb · ν̂ dl − d
�
D

χdS.

Now, the remaining surface integral does not vanish and further developments are needed
in order to obtain a contour integral form. First, the scalar potential is expressed, using
Helmholtz equation (3.8), as a divergent field

χ = −∇2
tχ/κ2 = −∇t · (∇tχ)/κ2,

with κ 
= 0. Then applying the Gauss theorem, the resulting expression can be reduced to an
integral over the surface contour as

−κ2
�
D

χdS =
�
D

∇t · (∇tχ) dS =
�

∂D

∇tχ · ν̂ dl.

Gathering all these results leads to the following contour representation of (3.10b)

�
D

b · ∇tχdS =
�

∂D

χb · ν̂ dl +
d

κ2

�
∂D

∇tχ · ν̂ dl, (3.15)

for κ 
= 0.
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Table 3.2: Different representation of OIs.

Overlapping Surface Contour (b satisfies (3.12))

κCTE
E , −κCTM

H , −CTEM
H (with χ = χ0)

�
D

b · (ẑ ×∇tχ) dS
�
∂D

χbτ dl

−κCTM
E , −κCTE

H κ 
= 0
�
∂D

χbν dl + d
κ2

�
∂D

∂χ
∂ν dl

−CTEM
E

�
D

b · ∇tχdS

κ = 0
�
∂D

a∂χ0

∂ν dl

Notation: ∂χ
∂s

≡ ∇tχ · ŝ and b · ŝ ≡ bs for s = ν, τ .

In order to deduce a contour form for (3.10b) applied to χ0 (κ = 0), let us define an auxiliary
function a such that

b = ∇ta, (3.16a)

∇2
ta = d, (3.16b)

since b satisfies (3.12b). Then, we use the following substitution in (3.13)

A = ∇tχ
0, B = a,

to rewrite the integral (3.10b) for χ0 as

�
D

b · ∇tχ
0 dS =

�
∂D

a∇tχ
0 · ν̂ dl −

�
D

a∇2
tχ

0 dS,

valid despite κ = 0. Finally, since χ0 is a solution of the Laplace equation (3.9), the last
surface integral is zero and therefore the following equivalence holds

�
D

b · ∇tχ
0 dS =

�
∂D

a∇tχ
0 · ν̂ dl. (3.17)

A summary of the OIs and their equivalent contour integral representations, when b satisfies
(3.12), is given in Table 3.2. There, the notation is simplified with ∂χ

∂s ≡ ∇tχ · ŝ and b · ŝ ≡ bs

for s = ν, τ .

3.4 Basis Functions

Up to now, the only restriction we used for the BFs is that they are curl-free and with a
constant divergence. In this section we further specialize our OIs to linear subsectional BFs.
Using the appropriate parametrization, the variation of these functions along any side of a
subdomain, can be in general written as a polynomial function with constant coefficients.
Then, the OIs maybe further simplified to the evaluation of two simple line integrals.
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u1

u2

z

DQ
DQk

∂DQk

Pq

ν̂q τ̂ q

Figure 3.2: Discretization of planar surface with Q = {E,H}-type sources into D domains.

3.4.1 Rooftops and RWG Functions

Rooftops [14] and RWG [15] functions are linear subsectional BFs and constitute a common
choice for the expansion of currents in the IE-MoM formulation [see (3.2)]. The term “sub-
sectional” means that the BF’s support does not extend to the entire current’s surface DQ

[see Fig. 3.2] but to smaller domains D in which DQ is subdivided.

These BFs, denoted with b, are defined piecewise by means of two “half-BFs” g± on adjacent
subdomains D± and joined by a common side denoted as ∂DC as illustrated in Fig. 3.3. These
subdomains can be triangles (half-RWG function) or rectangles (half-rooftop), as represented
in Fig. 3.3. In the first case, gp models the current flowing radially from the pth node Pp

towards the cell’s common side ∂DC according to the following laws

gp =
ρp

2D
=

r − Pp

2D
(3.18a)

fp =
ρ2

p

4D
, (3.18b)

where fp = ∇t · gp, D is the area of the triangle and ± signs are suppressed for the sake of
clarity. When the subdomain is rectangular, the vector function gp is oriented parallel to the
pth side and can be defined as

gp =
τp

D
=

(r − Pp) · τ̂ p

D
τ̂ p (3.19a)

fp =
τ2
p

2D
, (3.19b)

where D is the area of the rectangle. We can observe that in both cases the vectors have linear
tangential component along the edges and a constant non-zero normal component over ∂DC,
as will be demonstrated later. Moreover, the properties (3.12) are satisfied with d = 1/D.

Finally, any vector BF b (resp. a) can be defined over D = D+∪ D− as

b = g+ − g−, a = f+ − f− (3.20)

where g±, f± are oriented in D± with vectors flowing towards ∂DC (by appropriate choice of
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index p in each case as in Fig. 3.3). The continuity of the current through ∂DC is maintained
by the constant normal component and the change of direction of one of the half-BFs [negative
sign in (3.20)].

In the following sections, the nodes and sides of any subdomain are enumerated counter-
clockwise with subscripts q = 0, 1, · · · N while the subindex p = 0, 1, · · · N will designate the
orientation of g (resp. f). Therefore, the common side for the pth half-BF can be readily
obtained as

q = [p + 1]N , (3.21)

where [x]y ≡ mod(x, y) = x − ny such that n = �x/y� if y 
= 0.

3.4.2 OIs for Linear Subsectional BFs

Let us define an affine transformation as parametrization function

σq : [0, 1] −→ R
2

t �
[

x(t)
y(t)

]
= Pq + Lqtτ̂ q = Pq + Lqt.

(3.22)

that maps every side q of a polygonal subdomain D into a normalized segment t ∈ [0, 1].
The position vector Pq locates the qth node, corresponding to the origin of the side with the
same index; Lq = Lqτ̂ q denotes the vector along the qth side and τ̂ q its unitary vector. The
integrals in Table 3.2 on D lead to a decomposition of the contour ∂D into segments ∂Dq

defined over each side q of the polygon. Given

dl = ‖σ′
q(t)‖dt = Lq dt,

ρp

∂Dq

p

∂DC

ν̂q

τ̂ q

q

Lp

p

∂Dp

τp

ν̂p

τ̂ p

g+

g−
p+

p−

∂DC

D+

D−

Figure 3.3: A half-BF g defined on a triangular (half-RWG function) and rectangular (half-rooftop)
subdomain D±. The arrows represent the vector function gp, the lines the contour plot
of the auxiliary function fp and the nodes and sides are enumerated counterclockwise.
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p

ρp

∂Dp+1

Lp

Lp+1t

τ̂ p+1 ν̂p+1

hp+1

Figure 3.4: Triangular path.

the OIs are then expressed in the form

�
∂D

· · · =
N∑

q=1

( �
∂Dq

· · · dl
)

=
N∑

q=1

Lq

( 1�
0

· · · dt
)
. (3.23)

Consequently, the solution of (3.23) is subject to the variation of BFs along each path in
function of the normalized variable t.

Variation of Half-BFs Along the Subdomain’s Edge ∂Dq

As mentioned previously, the normal vector component on a triangle is constant along ∂DC.
This can be easily demonstrated if we note that normal component of the radial vector on the
(p + 1)th side, as depicted in Fig. 3.4, corresponds to the triangle’s height hp+1 = ρp · ν̂p+1.
Taking the definition from (3.18) and writing the area as D = Lp+1hp+1/2 reveals that

gp · ν̂p+1 =
1

2D
ρp · ν̂p+1 =

1

Lp+1
.

In a triangular subdomain, the parametrization of the sides radial to the pth node is trivial
since they are parallel to ρp. The opposite side is obtained by projecting the radial vector
ρp = Lp + tLp+1 on the tangential unitary component directed along side p + 1 [Fig. 3.4].
The linear deviation of the tangential components along every subdomain’s edge is given as
follows

gp(σq) · τ̂ q =
1

2D

⎧⎨⎩
Lqt, q = p
Lq−1τ̂ q−1 · τ̂ q + Lqt, q = [p + 1]3
Lq (t − 1) , q = [p − 1]3

(3.24a)

The expression for the auxiliary function fp on a triangle, given in (3.18), requires the
parametrization of the radial distance ρp(t). Simple geometric relations derived from Fig. 3.4
show that

ρ2
p = L2

p + L2
p+1t

2 + 2Lp · Lp+1t.
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Therefore, the evaluation of the auxiliary function along the edge can be expressed as

fp(σq) =
1

4D

⎧⎪⎨⎪⎩
L2

qt
2, q = p

L2
q−1 + 2Lq−1 · Lqt + L2

qt
2, q = [p + 1]3

L2
q (t − 1)2 , q = [p − 1]3

(3.24b)

The normal vector component along ∂DC in a rectangle is constant and equal to the inverse
of the common side’s length, as in the triangular case. A direct evaluation of (3.19) yields a
constant and perpendicular vector at ∂DC, i.e. τ̂ p · ν̂p+1 = 1, that vanishes elsewhere. Ex-
pressing the area as D = LpLp+1 one obtains

gp · ν̂p+1 =
Lp

D
τ̂ p · ν̂p+1 =

1

Lp+1
.

The law that rules the change of the transverse component and the auxiliary function along
the sides of the rectangular domain can be easily deduced from the definitions of (3.19) and
(3.22) as

gp(σq) · τ̂ q =
Lq

D

⎧⎨⎩
t, q = p
0, q = [p ± 1]4
t − 1, q = [p ± 2]4

(3.25a)

and

fp(σq) =
L2

q

2D

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t2, q = p
1, q = [p + 1]4
0, q = [p − 1]4
(t − 1)2 , q = [p ± 2]4

, (3.25b)

respectively.

Finally, from (3.24) and (3.25) we can conclude that the variation of the pth half-BF along
the qth side of any of the polygonal subdomains (rectangular or triangular) can be expressed
in general in terms of t in the form

gp (σq) = [A1(p, q)t + A0(p, q)] τ̂ q +
δ[p+1]N ,q

Lq
ν̂q (3.26a)

fp (σq) = B2(p, q)t2 + B1(p, q)t + B0(p, q), (3.26b)

where Ai, Bi ∈ R are constant values, summarized in Table 3.3, for each combination of (p, q),
N refers to the number of sides and δ[p+1]N ,q is a Kronecker delta that equals one when q
coincides with the common-side.
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Integration Along the Subdomain’s Edge ∂Dq

Now, we are at point to simplify the OIs of Table 3.2 using (3.23) and choosing (3.26) to
designate the variation of a generic linear subsectional BF. The simplified representations for
the integrals on a qth path are

�
∂Dq

χgp · τ̂ q dl = Lq

1∑
n=0

An(p, q)I(n)
q (3.27a)

�
∂Dq

χgp · ν̂q dl = I(0)
q δ[p+1]N ,q (3.27b)

�
∂Dq

∂χ

∂νq
dl = Lq I ′(0)q (3.27c)

�
∂Dq

fp
∂χ0

∂νq
dl = Lq

2∑
n=0

Bn(p, q)I ′(n)
q (3.27d)

where

I(n)
q ≡

1�
0

tn χ(σq(t)) dt, (3.28a)

I ′(n)
q ≡

1�
0

tn ∇tχ(σq(t)) · ν̂q dt (3.28b)

for n = 0, 1, 2. Finally, the solution of the OI for the complete BF is straightforward by
subtracting the partial solutions, i.e. following the notation of (3.6):

�
D

b · pdS =
�

D+

g+ · p dS −
�

D−
g− · pdS, (3.29)

as can be deduced from (3.20).

Notice that the transition between the OI on the different BF considered here is seamless and
it is reduced to the election of appropriate constant values {Ai, Bi} in the formulation. In
addition, the generality in the transverse BCs is still preserved at this point.

3.5 Transverse Boundary Problems

In this section we will specialize the results of the previous section to three useful BCs, namely
perfect electric conductor (PEC) on a rectangular and circular contour (i.e. rectangular and
circular waveguide) and periodic BCs on a skewed contour.

The eigensolutions of these three different transverse boundary problems have many common
properties. An attempt to synthesize them has been done in Table 3.8. In general, the scalar
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Table 3.4: Perfect electric conductor (PEC) boundary conditions on ∂Ω.

Mode type TE TM TEM

Equation ∀(u1, u2) ∈ Ω (∇2
t + κ2

i )χi = 0 ∇2
tχ

0
i = 0

Boundary conditions ∈ ∂Ω ∂χ
∂n = 0 χ = 0 ∂χ0

∂s = 0

where ∂f
∂u

= û · ∇tf and ŝ, n̂ are tangential and normal vectors to ∂Ω.

potential for the ith mode will be denoted with χi. Each mode is also normalized with a scale
factor ξi. Thus, assuming fi(u1, u2) is an eigensolution of the problem, then

χi(u1, u2) = ξifi(u1, u2) =

[ �
Ω

fif
∗
i dS

]− 1
2

fi(u1, u2)

such that it satisfies an orthonormal relation between modes
�
Ω

χiχ
∗
j dS = δij , (3.30)

where δij is the Kronecker delta. In occasions, this factor is constant for all modes so we will
drop the subscript indices.

In what follows, the integrals (3.28), resulting from the OIs, will be solved for each particular
BC.

x

y

∂Ω

a

b

(a) Rectangular boundary.

ρ̂

ϕ̂

∂Ω

a

(b) Circular boundary.

Figure 3.5: Waveguide boundaries.

3.5.1 Rectangular Waveguide

Consider a uniform waveguide of rectangular cross section of width a and height b, as shown
in Fig. 3.5(a). The eigensolutions of the Helmholtz equation (3.8) with rectangular PEC
boundaries (Table 3.4) are given in Table 3.5.
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These two expressions for the scalar potentials can be rewritten into a single formula

χi = ξi

{
cos(kmx) cos(kny)
sin(kmx) sin(kny)

=
ξi

2
[cos(Δi) ± cos(Σi)] (3.31)

where the positive or negative sign applies to the TE or the TM case, respectively. The
arguments of the trigonometric functions are real values defined as

Σi = kmx + kny = κi · r, (3.32a)

Δi = kmx − kny = κ̄i · r (3.32b)

with κ̄i = kmx̂ − knŷ and r being the position vector. The gradient is calculated as

∇tχi = −ξi

2
[sin(Δi) ∇tΔi ± sin(Σi) ∇tΣi] = −ξi

2
[sin(Δi) κ̄i ± sin(Σi) κi] , (3.33)

since κi is a constant vector and then ∇t(κ · r) = (κ · ∇t)r = κ (analogously with κ̄).

OIs on Linear Subsectional BFs

An analytic solution to the integrals (3.28) with rectangular PEC boundaries can be found
by expressing (3.31) and (3.33) in terms of the normalized space defined with (3.22). Thus,
the arguments (3.32) on the qth side become linear functions of t

Σi,q = κi · σq(t) = (κi · Pq) + (κi · Lq)t, (3.34a)

Δi,q = κ̄i · σq(t) = (κ̄i · Pq) + (κ̄i · Lq)t. (3.34b)

Table 3.5: Scalar potentials for rectangular PEC boundaries [21].

χi(x, y) = {φmn, ψmn} and κmn [1/m]

TE ψmn =
√

εmεn
Ω cos(kmx) cos(kny)

TM φmn = 2√
Ω

sin(kmx) sin(kny)

with Ω = ab, κmn = kmx̂ + knŷ = mπ

a x̂ + nπ

b ŷ

εn = 1 (if n = 0), 2 (if n �= 0)
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Now, the direct substitution of these expressions into (3.31) and (3.33), transforms the inte-
grals (3.28) for each ith mode on the qth side into the following expressions

I
(n)
i,q =

1�
0

tn χi (x(t), y(t)) dt =
ξi

2

[ 1�
0

tn cos Δi,q dt ±
1�
0

tn cos Σi,q dt
]

(3.35a)

I
′(n)
i,q =

1�
0

tn ∇tχi (x(t), y(t)) · ν̂q dt =

− ξi

2

[
(κ̄i · ν̂q)

1�
0

tn sin Δi,q dt ± (κi · ν̂q)

1�
0

tn sin Σi,q dt
]
, (3.35b)

for n = 0, 1, 2. The remaining integrals have trivial analytic solution [cf (A-3),(A-4)].

3.5.2 Circular Waveguide

The eigensolutions of the Helmholtz equation (3.8) for PEC BCs (Table 3.4) on a circle, as
shown in Fig. 3.5(b), are given in Table 3.6. In general, we could write these functions as

χi = ξi Jm(κiρ) exp(jmϕ), (3.36)

where the real and imaginary parts are independent solutions representing orthogonal polar-
izations of the field. For each mode i, κia are calculated as non vanishing roots of the Bessel’s
function or its derivative, more specifically

κ′
mna = qmn ≡ nth zero of J ′

m(x), (3.37a)

κ′′
mna = pmn ≡ nth zero of Jm(x) (3.37b)

with indices n = 1, 2, . . ., m = 0, 1, . . ., for the TE and TM case respectively.

Table 3.6: Scalar potentials for PEC circular boundaries [21].

χi(ρ, ϕ) = {φmn, ψmn} and κi = {κ′
mn, κ′′

mn} [1/m]

TE ψmn =
√

εm
Ω

qmn√
q2
mn−m2Jm(qmn)

Jm(κ′
mnρ)

(
cos
sin

mϕ

)
TM φmn =

√
εm
Ω

1
Jm+1(pmn) Jm(κ′′

mnρ)

(
cos
sin

mϕ

)
with Ω = πa2, and κ′

mn = qmn

a , κ′′
mn = pmn

a

εn = 1 (if n = 0), 2 (if n �= 0)
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A more convenient representation of (3.36) uses a truncated series of exponentials in cartesian
coordinates [22]

χi = ξiJm(κiρ) exp(jmϕ) ≈ jmξi

N

N−1∑
l=0

exp

(
jl

2mπ

N

)
exp (−jκi Tl · ρ) (3.38)

where
Tl · ρ = x cos (2πl/N) + y sin (2πl/N)

and N − 1 > κir + N0 with N0 being a small integer. A few terms of the series are enough to
reach a good estimation of the function [22].

The gradient of χi is also calculated following (3.38) and can be simplified to

∇tχi =
jmξi

N

N−1∑
l=0

exp

(
jl

2mπ

N

)
∇t [exp (−jκi Tl · ρ)]

=
jmξi

N

N−1∑
l=0

exp

(
jl

2mπ

N

)
[−jκiTl exp (−jκi Tl · ρ)] . (3.39)

OIs on Linear Subsectional BFs

Simplified expressions for (3.28) with circular PEC boundaries are found straightforward by
direct substitution of (3.38) and (3.39) into (3.28) as

I
(n)
i,q =

1�
0

tn χi (ρ(t), ϕ(t)) dt =

=
jmξi

N

N−1∑
l=0

exp

(
jl

2mπ

N

) 1�
0

tn exp [−jκi Tl · (Pq + Lqt)] dt

=
jmξi

N

N−1∑
l=0

exp

[
j

(
l
2mπ

N
− κiTl · Pq

)] 1�
0

tn exp (−jκi Tl · Lqt) dt, (3.40a)

and

I
′(n)
i,q =

1�
0

tn ∇tχi (ρ(t), ϕ(t)) · ν̂q dt =

=
−jm+1ξiκi

N

N−1∑
l=0

exp

[
j

(
l
2mπ

N
− κiTl · Pq

)]
(Tl · ν̂q)

1�
0

tn exp (−jκi Tl · Lqt) dt, (3.40b)

where the path was defined by (3.22) as

ρ(t) = σq(t) = Pq + Lqt.
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In summary, the solution to any of the integrals in (3.28) for the ith mode and qth side are
given by

I
(n)
i,q

I
′(n)
i,q

}
=

jmξi

N

N−1∑
l=0

exp

[
j

(
l
2mπ

N
− κiTl · Pq

)]⎧⎪⎪⎨⎪⎪⎩
1�
0

tn exp (−jκi Tl · Lqt) dt

(−jκiTl · ν̂q)
1�
0

tn exp (−jκi Tl · Lqt) dt

(3.41)

with n = {0, 1, 2}. The solutions are trivial for the remaining integrals [(A-1)].

3.5.3 Periodic Boundary

Suppose a periodic structure with a general skewed lattice of planar objects situated in the
xy plane and illuminated with an arbitrary polarized plane wave propagating with

k + k cos θẑ = k sin θ cos φ x̂ + k sin θ sinφ ŷ + k cos θẑ, (3.42)

as represented in Fig. 3.6(a).

x

y

z

a1

a2

θ

φ

k + k cos θẑ

(a) A 2-D general skewed lattice illuminated by a plane
wave [23].

α

x̂

ŷ

a1

a2

k1

k2

∂Ω

(b) Representation of the direct {ai} and recipro-
cal {ki} lattice bases system.

Figure 3.6: General two-dimensional (2-D) skewed lattice of planar objects.
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Floquet Modes for a General Skewed Lattice

The scalar potentials of the Floquet modes are eigensolutions of the 2-D Helmholtz equation

(∇2
t + κ2)χ(ρ) = 0 (3.43)

with periodic BCs
χ(ρ + ρmn) = χ(ρ) exp(−jk · ρmn). (3.44)

In the previous equation, ρ = xx̂ + yŷ sweeps any position on the unit cell’s surface Ω and

ρmn = ma1 + na2 (3.45)

is the translation vector in the skewed lattice.

Using separation of variables, the solution can be expressed as follows:

χmn = ξ exp(jκmn · ρ) (3.46)

where ξ = 1√
Ω

, κmn = kmn − k, and

kmn =mk1 + nk2 =

=
2mπ

a1
x̂ +

(
2nπ

a2 sinα
− 2mπ

a1 tanα

)
ŷ, (3.47)

is the translation vector of the reciprocal lattice. The vector bases expanding (3.45) and (3.47)
are represented in Fig. 3.6(b). They satisfy the following relation of orthogonality [24]

ki · au = 2πδiu (3.48)

for i, u ∈ {1, 2} and δiu being the Kronecker delta.

In the case of normal incidence (θ = 0), the modes TEMx and TEMy replace the modes
TM0,0 and TE0,0 in the GF, respectively. These are defined by the scalar potentials χ0

s that
are now eigensolutions of the Laplace equation with periodic boundary conditions. Notice
that, with normal incidence, the scalar potentials of the modes TE0,0 and TM0,0, according
to Table 3.7, become constants. Hence, this would produce a zero field which means that the
reflected wave, in normal direction, would not exist. Therefore, the actual formulation of this
particular case is treated separately in Table 3.7 as TEMu modes.

OI on Linear Subsectional BFs

The TE/TM case is addressed first. The gradient of this scalar potential, omitting the indices
m and n, can be expressed as

∇tχ = jκχ. (3.49)

‡Only for normal incidence (θ = 0), the modes TM00 and TE00 become TEMx (x-polarized) and TEMy

(y-polarized), respectively.
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Table 3.7: Scalar potentials for skewed periodic boundaries.

χi(ρ) and κi [1/m]

TE/TM χmn = 1√
Ω

exp (jκmn · ρ)

TEMu (θ = 0)‡ χ0
u = u√

Ω
u = x, y

with Ω = |a1 × a1|, κmn = kmn − k and kmn = 2mπ

a1
x̂ +
(

2nπ

a2 sin α − 2mπ

a1 tan α

)
ŷ

Then, using the variables substitution defined in (3.22)

κi · σq(t) = (κi · Pq) + (κi · Lq)t, (3.50)

the integrals in (3.28) are simplified into

I
(n)
i,q = ξ exp

(
jκi · Pq

) 1�
0

tn exp
(
jκi · Lqt

)
dt (3.51a)

I
′(n)
i,q = j(κi · ν̂q)I

(n)
i,q (3.51b)

where the remaining integrals have analytic and trivial solution [cf. (A-1)].

In the TEM case, only occurring for normal incidence, the evaluation of the OIs is simpler.
It suffices to project the path into the u component (meaning x or y components). The
derivative, in this case is constant. In summary,

χ0(t) = ξ(Pq · û + Lq · ût) (3.52)

∇tχ
0(t) = ξû (3.53)

where û = x̂, ŷ. The solutions of (3.28) for (3.52) are straightforward:

I
(n)
0,q = ξ

(
Pq · û
n + 1

+
Lq · û
n + 2

)
(3.54a)

I
′(n)
0,q = ξ

û · ν̂q

n + 1
(3.54b)

for n = 0, 1, 2.
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3.6 Strategy Used for the Resolution of OIs.

In previous sections, a method for the systematic resolution of OIs has been demonstrated.
This approach is applicable to a wide variety of problems built up from the combinations
of a transverse boundary problem and a type of BFs. The diagram in the following page
represents the backbone of the approach and intends to clarify the general strategy followed
in each case.

Recall that an OI is essentially describing the projection of the pth BF with the ith mode
associated to the transverse problem. Therefore we start with two parallel paths (lower
part of the diagram) where proper identification and adequate operations are preformed in
parallel on the pth BF and the ith mode. Then these paths converge into the common main
branch of the diagram (upper part) where we can identify three common steps, in which the
formulation is decomposed. The first, labeled with ©1 , consists of the evaluation of a set of
line integrals, listed in (3.27), on every side of the integration surface ∂Dq. These integrals
are calculated along the surface’s contour ∂D =

∑
∂Dq and the sum of each one, weighted

with the side’s length, provides the corresponding contour integral. This is done for every
pair of subdomains D± constituting the integration surface D = D+ ∪ D−. The step ©2 is
now achieved. Finally, the calculated contour integrals are used in the identities of Table 3.2
to obtain the required type of OI in step ©3 . Note that this three-step procedure is always
performed independently of the imposed of BCs and linear subsectional BFs used. These
details are actually introduced as parameters for the line integrals in ©1 . A BF is defined
by means of a set of k = 1, · · · , N coefficients {Apq(k), Bpq(k)} for both types, rooftops
or RWG BFs. On the other side, the formulation of any transverse boundary problem is
reduced to the resolution of two basic line integrals (3.28), denoted as {I(n), I ′(n)}, on the
pertinent scalar potential χi. In this work, as indicated in the diagram, we present analytical
solutions for these integrals for three common transverse boundary problems: rectangular
waveguide, circular waveguide and general periodic lattice. Nevertheless, the formulation is
also applicable to any other case, whether the modes are calculated analytically (e.g. coaxial
or eliptical waveguide) or numerically (e.g. waveguide with random-cross section [18]).

The organization of this approach allows a fast and easy implementation of various types of
problems using the same backbone for the software. The specialization to a certain BC is thus
only carried out at the bottom part of the diagram, with routines providing the corresponding
basic line integrals. On the other hand, this approach allows a simple transition between RWG
or rooftop BFs reducing it to the selection of appropriate constant coefficients. As a direct
consequence, a simple and unified technique can be used in the treatment of problems using
meshes that include rectangular and triangular cells. Finally, the rest of the process is the
common branch, which is followed from bottom to top.

In addition, the reduced complexity and systematic of the final solution also allows an easy
check of the numerical stability of the algorithm’s formulation for all the different problem
types. Moreover, the implementation errors are drastically reduced by suppressing the redun-
dancy (i.e. common parts of the formulation) in the programming strategy.
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3.7 Numerical Results

This section is devoted to the simulation of some simple structures to demonstrate the validity
of the approach previously presented.

In Fig. 3.7 we show an example of a rectangular strip conductor inside three different trans-
verse BCs, namely within a rectangular or circular PEC waveguides or as unit element of a
2D periodic lattice. The three geometries are simulated using the same software tool with
only minor modifications in the treatment of each case. Hence, the strip surface is modeled
keeping the same mesh throughout all the geometries. Two mesh schemes are considered.
The equivalent electric currents are expanded with RWG or rooftops BFs [§3.4.1].

a1

a2 l

w

PEC

(a) Rectangular waveguide
of a1×a2 = 7.6×15.2 mm2.

l

w

a

(b) Circular waveguide
with radius a = 7.0 mm.

a1

a2 l

w

PBC

(c) Cell of a1 × a2 = 7.6 ×
15.2 mm2 in a 2-D periodic
lattice with α = 90◦.

Figure 3.7: A rectangular strip conductor of w × l = 2.38 × 13.3 mm2 of zero thickness with three
different transverse boundary conditions.

The first structure, in Fig. 3.7(a), is excited with a mode TE01 of the rectangular waveguide.
The insertion and return losses, simulated with different methods, are compared in Fig. 3.8.
The two first responses, shown with solid and dashed lines, correspond to this method using
RWG and rooftop BFs, respectively. Another IE formulation, based on the method in [25],
is also used as reference. Finally, the structure has been simulated with a MM/Generalized
Transverse Resonance (GTR) by Ruiz-Cruz [26], which is specially suited for waveguide prob-
lems. The bandwidth simulated here is multimode, propagating up to 17 modes at 45 GHz.
The cutoff frequency of the fundamental mode, TE01, is 9.8 GHz and the next mode, TE10

starts to propagate around 19.7 GHz. All four simulations show a good agreement despite
the fact that the MM/GRT method is slightly shifted up in magnitude.

The scattering parameters simulated for the structure in Fig. 3.7(b), are plotted in Fig. 3.9.
The response corresponds to TE11 mode vertically polarized (y) and the monomode band
spans from 12.56 to 16.41 GHz (TE11-TM01) as can be noticed from the abrupt change in the
response.

Finally, the unit cell, delimited with dashed lines in Fig. 3.7(c), is repeated periodically
(as ma1x̂ + na2ŷ, m, n ∈ Z) in the xy-plane shaping a lattice of free standing strips. Fig. 3.10
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Figure 3.8: Scattering of the TE01 mode from a strip inside a rectangular waveguide in Fig. 3.7(a).
The presented method using only rooftops (solid line) or RWG BFs (dashed line), IE
method of [25] (dotted line) and MM/GTR technique of [26] (dashed-dotted line).
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Figure 3.9: Scattering of the TEy
11 mode (y-polarized) from a strip inside a circular waveguide as in

Fig. 3.7(b). S11 = S22 (solid line) and S21 = S12 (dashed line).

shows the reflection coefficient of a y-polarized plane wave (TE00) impinging the periodic struc-
ture (strips) with angles θ = 1◦, φ = 1◦. These results are produced by simulations with two
different types of BFs and compared with the results reported in [27]. Very good agreement
can be observed.

Finally, Fig. 3.11 illustrates a FSS used inside a rectangular waveguide, as proposed by [28].
Here, the waveguide is analyzed entirely filled with dielectric of εr = 3.8, showing good
agreement with the reference results from [25].
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Figure 3.10: Reflection coefficient for a TE00 Floquet mode (y-polarized) impinging the periodic
lattice Fig. 3.7(c) with angles θ = 1◦, φ = 1◦. This method using only rooftops (solid
line) or RWG basis functions (dashed line) and simulations from [27] (dotted line).
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(a) FSS iris in a WR-90 waveguide [28] filled with dielectric
εr = 3.8.
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Figure 3.11: Geometry and frequency response for the TE10 mode in the WR-90 waveguide (22.86×
10.16 mm): this method (solid lines) and method of [25] (dashed lines).
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3.8 Conclusion

This chapter presents an unified approach for the evaluation of a transverse boundary problem
in the frame of an IE-MoM technique. Essential to this method is the strategy used for
the resolution of OIs combining zero-curl and constant-change BFs and a modal function
derived from the transverse boundary problem. The integrals are then specialized to linear
subsectional BFs defined over rectangular or triangular domains with a seamless transition
between the two. Finally, as an example of application, the OIs for rectangular and circular
PEC boundaries as well as for periodic lattices have been derived, obtaining analytic solutions.

This technique avoids having a specific formulation for each type of problem. Moreover,
it offers a unified and versatile approach that, on one hand eliminates redundancy in the
formulation and on the other hand simplifies each particular problem to the evaluation of
constant coefficients or basic line integrals.

The approach has been applied to the EM simulation of a variety of circuits ranging from
rectangular or circular waveguides with PEC walls to periodic structures with general skewed
lattices. The numerical results obtained using the presented technique have been compared
to the results found in literature and obtained using different solvers. The full usefulness of
the presented approach is evident since not only the agreement with the reference results is
excellent, but our technique is equally valid for different boundary conditions. The reference
results, however, are obtained using techniques specialized to a given BC at a time. Moreover,
this approach is equally valid and easily extended to other lateral bounds whose modal vector
functions are analytically (or numerically) known.
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Appendices

Analytic Solution for Some Basic Integrals

Let us define the constants a ∈ C, m, c ∈ R and n ∈ N. The analytical solution of the basic
integrals presented throughout this chapter are the following:

I(a, n) =

1�
0

tn exp(at) dt =

=

⎧⎪⎨⎪⎩
1

an+1

[
exp (a)

(
an − nan−1 + n(n − 1)an−2 − · · · + (−1)nn!

)
− (−1)nn!

]
, for a 
= 0;

1
n+1 + a 1

n+2 + a2

2
1

n+3 + · · · , for |a| → 0;
1

n+1 , for a = 0.

(A-1)

1�
0

tn exp
(
j(c + mt)

)
dt = exp(jc) I(jm, n), (A-2a)

1�
0

tn sin(c + mt) dt = Im

1�
0

tn exp
(
j(c + mt)

)
dt, (A-2b)

1�
0

tn cos(c + mt) dt = Re

1�
0

tn exp
(
j(c + mt)

)
dt. (A-2c)

Explicit solutions are given for the integrals (A-2b) and (A-2c) for the case n = 0:

1�
0

sin(c + mt) dt =

{
[cos(c) − cos(c + m)] /m, for m 
= 0;

sin(c), for m = 0;
(A-3a)

=

{ [
2 cos(c) sin2(m/2) + sin(c) sin(m)

]
/m, for m 
= 0;

m cos(c)/2 + sin(c), for m → 0;
(A-3b)

1�
0

cos(c + mt) dt =

1�
0

sin(c +
π

2
+ mt) dt (A-4)

and n = 1:

1�
0

t sin(c + mt) dt =

1�
0

t cos(c − π

2
+ mt) dt (A-5)
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1�
0

t cos(c + mt) dt =

{
[cos(c + m) − cos(c)] /m2 + sin(c + m)/m, for m 
= 0;

cos(c)/2 for m = 0;
(A-6a)

=

{
sin(c + m)/m −

[
2 cos(c) sin2(m/2) + sin(c) sin(m)

]
/m2, for m 
= 0;

cos(c)/2 − m sin(c)/2, for m → 0;
(A-6b)

The case “b” in the solution of (A-3) and (A-6) offers a formulation with a stable behavior
when m tends to zero. In the first case (m 
= 0), has been reformulated to avoid the difference
operation and the solution for m = 0 has been replaced for an expression valid in the proximity
of zero in order to provide a smooth transition.

The problem arising in the difference operation is made evident in the example represented in
Fig. A.1. The roundoff error committed in the subtraction of the two functions is amplified
with the division by a small number [29, §1.14]. In Fig. A.1 we represent the evaluation of
the solution for (A-3) using (A-3a) and (A-3b) denoted with f and f̂ , respectively. For values
of m > 10−5, both formulations agree in more than ten significant digits but degenerates
drastically as m → 0.
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Figure A.1: Evaluation I(m) =
1�
0

sin(π/2 + mt) dt for small values of m, using the expression given

in (A-3a) (denoted with f and plotted with • symbol) and the formula (A-3b) (denoted

with f̂ and represented with ◦). The difference between them is also plotted below.
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[12] M. Bozzi, L. Perregrini, A. Álvarez Melcón, M. Guglielmi, and G. Conciauro, “MoM/BI-RME
analysis of boxed MMICs with arbitrarily shaped metallizations,” IEEE Trans. Microwave Theory
Tech., vol. 49, no. 12, pp. 2227–2234, Dec. 2001.

[13] G. Figlia and G. Gentili, “On the line-integral formulation of mode-matching technique,” IEEE
Trans. Microwave Theory Tech., vol. 50, no. 2, pp. 578–580, Feb. 2002.

[14] A. Glisson and D. Wilton, “Simple and efficient numerical methods for problems of electromagnetic
radiation and scattering from surfaces,” IEEE Trans. Antennas Propagat., vol. 28, no. 5, pp. 593–
603, Sep. 1980.

[15] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,”
IEEE Trans. Antennas Propagat., vol. 30, pp. 409–418, May 1982.

[16] L. Knockaert, J. Sercu, and D. de Zutter, “Generalized Poisson-Neumann polygonal basis func-
tions for the electromagnetic simulation of complex planar structures,” IEEE Trans. Microwave
Theory Tech., vol. 52, pp. 954–961, Mar. 2004.



54 Chapter 3: Transverse Boundary Problem

[17] A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. New
York: IEEE Press, 1998.

[18] C. Kim, S. Yu, R. Harrington, J. Ra, and S. Lee, “Computation of waveguide modes for waveguides
of arbitrary cross-section,” in Microwaves, Antennas and Propagation, IEE Proceedings H, vol.
137, no. 2, Apr 1990, pp. 145–149.

[19] G. Conciauro, M. Bressan, and C. Zuffada, “Waveguide modes via an integral equation leading to
a linear matrix eigenvalue problem,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 11, pp.
1495–1504, Nov 1984.

[20] ——, “Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem
(correction),” IEEE Trans. Microwave Theory Tech., vol. 33, no. 9, pp. 839–839, Sep 1985.

[21] N. Marcuvitz, Waveguide Handbook, ser. Radiation Laboratory. New York: McGraw Hill, 1941.

[22] R. H. MacPhie and K.-L. Wu, “Scattering at the junction of a rectangular waveguide and a larger
circular waveguide,” IEEE Trans. Microwave Theory Tech., vol. 9, pp. 2041–2045, Sept. 1995.
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4 Layered Media

4.1 Introduction

The previous chapter developed a formulation for a general transverse boundary problem
considering a homogeneous medium. In this chapter we extend and complete this formulation
for printed circuits in bounded layered media.

As shown in Chapter 2, solving bounded layered media implies the resolution of an equivalent
transmission line model (TLMo), where the source becomes a lumped generator and every
layer corresponds to a transmission line (TL) section. Consider a general bounded layered
medium consisting of N dielectric layers as shown in Fig. 4.1. For every mode arising in the
transverse boundary problem, the equivalent TLMo is obtained by substituting each dielectric
with a TL section of the same height. The propagation constant γ [1/m] and the characteristic
impedance Z [Ω] of every TL section is determined according to the dielectric constants {ε, μ},
the frequency ω/(2π) and the mode cutoff wavenumber κ [1/m] (also denoted as spectral
variable). A procedure to find a solution to this circuit problem can be easily derived from
the circuit theory.

Although this problem has been addressed by several authors in the past [1–3], we will show
that none of these techniques happened to be stable for every mode and in every possible
condition (propagating, evanescent, lossy, exactly at cutoff, etc.) Moreover, these classical
formulations give rise to lengthy expressions that hide the physical insight and darken fur-
ther analytical developments. The numerical routines based on these formulations become
programmer-time intensive since they are error prone and difficult to implement [3].

In this chapter, we present a stable and efficient TLMo that obviates all the problems detected
in approaches so far known by the author. The chapter starts by introducing the notation and
foundations needed to derive the TLMo formulation. Then we present alternate equivalent
expressions of the TLMo that allow new interpretations of the problem and give different
physical insights. Through the stability study of the existing TLMo algorithms, we describe
some critical conditions and propose techniques to avoid unstable results in these cases. This
knowledge is used as basis to define a new stable and efficient TLMo algorithm. The new
formulation allows exploring some interesting phenomena like the resonances appearing in
dielectric-filled cavities. Finally, the efficiency of the proposed technique is verified by the
simulation of a realistic multilayer filter.
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Figure 4.1: Source radiating in a bounded layered medium and the equivalent circuit for each mode.

4.2 Transmission Line Model

In the following section we will address the formulation of a TLMo as represented on the right
hand side of Fig. 4.1. The foundations and the notation of the following developments are
based in previous works from Michalski [2] and Llorens [4, §2.4].

4.2.1 Formulation

In order to solve the equivalent circuit in Fig. 4.1 we will first tackle the formulation of a single
transmission line (TL). In Fig. 4.2 we have represented a TL described, from the electrical
point of view, by its characteristic impedance Z and propagation constant γ. Recalling §2.4,
the voltage V and current I of a wave at any point z of the TL follows the Telegraphers
equations:

dV

dz
= −ZγI (4.1a)

dI

dz
= − γ

Z
V. (4.1b)



Section 4.2: Transmission Line Model 57

+

V (z)

−

I(z)

� a

�b

ς0 z

{Z, γ}

Figure 4.2: Voltage and current along a transmission line.

Any linear combination of exponential functions {e±γz} is solution of the homogeneous equa-
tions (4.1). Thus, the voltage and the current in a TL can be written as a superposition of
traveling waves:

V (z) = a e−γ(z−ς) + b e+γ(z−ς) (4.2a)

ZI(z) = a e−γ(z−ς) − b e+γ(z−ς), (4.2b)

where a, b are constants (with respect to the variable z) representing the complex amplitudes,
measured at z = ς, of waves traveling along positive and negative z-axis, respectively. Analo-
gously, the wave in the TL can also be expressed in terms of standing waves since hyperbolic
functions can be found as linear combinations of exponentials. The equivalent standing wave
representation is expressed as follows:

V (z) = A cosh γ(z − ς) − B sinh γ(z − ς) (4.3a)

ZI(z) = A cosh γ(z − ς) + B sinh γ(z − ς) (4.3b)

where A = a + b and B = a − b.

� a��b
↼
ρ ⇀

ρ

z < z′ z′ < zz′

Figure 4.3: Interaction between source (vertical arrow) and observer (circle) points in a loaded TL.

These expressions are used as starting point for the resolution of the equivalent inhomogeneous
problem [cf. (2.15)] that considers lumped generators (sources) at a given point on the TL.
This situation is illustrated in Fig. 4.3. A vertical arrow at z′ represents a source point where a
given generator is connected. It excites the waves in the TL that propagate in both directions
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reaching two observers, situated above (z′ < z) and below (z < z′) the source, with amplitude
a and b, respectively. The voltage and current induced at the observer points must satisfy
(4.1) and therefore can be expressed as in (4.2). In particular, when z′ < z they can be
written as

V (z) = a (1 +
⇀
ρ ) (4.4a)

ZI(z) = a (1 − ⇀
ρ ) (4.4b)

and if z′ < z, as

V (z) = b (1 +
↼
ρ ) (4.5a)

−ZI(z) = b (1 − ↼
ρ ) , (4.5b)

where
↼
ρ ,

⇀
ρ are the reflection coefficients (ratio between reflected and incident waves) seen at

the left and the right of the observers represented in Fig. 4.3, respectively. Notice that the
exponential functions do not appear in (4.4) or (4.5) since the amplitudes are measured at
the observer positions (i.e. ς = z, such that γ(z − ς) = 0). Moreover, the negative sign in
the last equation was introduced in order to keep the orientation of the current along the z
positive axis.

These equations, can be written in a compact fashion to deal simultaneously with the voltage
and current as

P (z) = s a (1 + σ
⇀
ρ ) , z′ < z (4.6a)

P (z) = s b (1 + σ
↼
ρ ) , z < z′ (4.6b)

with P = {V, I} and

σ =

{
+1, P = V
−1, P = I

s =

{
1, P = V
±1/Z, P = I (if z ≷ z′) , (4.7)

where the positive (negative) sign applies if z > z′ (z < z′).
We can observe from (4.6) that any change in the position of the source point will only affect
the wave amplitudes, since the reflection coefficients depend on the impedance seen by the
observers. Therefore, the wave solution for the inhomogeneous problem P (z, z′) will be like
(4.6) where a ≡ a(z′) and b ≡ b(z′).
Fig. 4.4 represents the waves in the vicinity of the source, showing the discontinuity produced
between forward and backward waves at z′. Analogously to (4.7), introducing the following
variables

σ′ =

{
+1, P ′ = V
−1, P ′ = I

s′ =
1

2

{
u, P ′ = V
Z ′j, P ′ = I

(4.8)

for the source, generalizes the formulation for both the voltage and current generators as
shown in Fig. 4.4(c). Finally, using the reflection coefficients

↼
ρ ′, ⇀

ρ ′ seen around the source, it
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Figure 4.4: Representation of P ′-type excitations: (a) parallel current (P ′ = I); (b) series voltage
generator (P ′ = V ) and (c) symbolic representation of a source in a TL. These relations
are demonstrated in Appendix.

is proved in Appendix that the waves generated at z′ give

a′ = s′
1 − σ′↼ρ ′

1 − ↼
ρ ′⇀ρ ′ b′ = −s′

σ′ − ⇀
ρ ′

1 − ↼
ρ ′⇀ρ ′ . (4.9)

Now, the wave reaching any observer point within the TL can be obtained propagating a′, b′

as

a = a′e−γ(z−z′) b = b′e−γ(z′−z) (4.10)

provided that (4.2) applies.

↼
ρ ′ ⇀

ρ ′↼
ρ

�b′ ��b

s′

+

−

z′z

(a) z < z′.

s′

+

−

z′ z

↼
ρ ′ ⇀

ρ ′ ⇀
ρ

�� a′ a�

(b) z′ < z.

Figure 4.5: Source and observer within the same layer.

Finally, substituting (4.9) into (4.10) and using the resulting expression into (4.6), a closed
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form for the solution of the inhomogeneous equation in a TL section is given as follows

PP ′
(z, z′) = +ss′

1 − σ′↼ρ ′

1 − ↼
ρ ′⇀ρ ′ e−γ(z−z′) (1 + σ

⇀
ρ ) , z′ < z (4.11a)

PP ′
(z, z′) = −ss′

σ′ − ⇀
ρ ′

1 − ↼
ρ ′⇀ρ ′ e−γ(z′−z) (1 + σ

↼
ρ ) , z < z′. (4.11b)

The cases considered in the above equation are depicted in Fig. 4.5.

4.2.2 Intra-layer Interaction

The last section provided us with a solution when a source and an observer are inside a loaded
TL [cf. Fig. 4.3]. Consider now a TL section corresponding to one layer of a multilayered
medium situated between ς0 and ς1. Let both source position z′ and observer position z, be
within this layer z, z′ ∈ [ς0 ς1], as represented in Fig. 4.6. The TL, of characteristic parameters
{γ, Z}, is now loaded at both ends with the rest of the structure. This is measured in terms

of a reflection coefficient {
↼

Γ,
⇀

Γ} for the upper and lower interfaces, respectively. It is easily
demonstrated that these coefficients can also be obtained at any point z of the TL as

↼
ρ =

↼

Γe−2γ(z−ς0) ⇀
ρ =

⇀

Γe−2γ(ς1−z) (4.12)

and that its product remains constant all along the TL:

↼
ρ ′⇀ρ ′ =

↼

Γ
⇀

Γt = 1 − D, (4.13)

where t = e−2γh and D a complex constant.

Equation (4.11) can now be written in terms of the parameters of Fig. 4.6 using the relations
in (4.12) and (4.13) to provide a solution for the intra-layer interaction. This solution can be
written as follows

PP ′
(z, z′) =

ss′

D
e−γ|z−z′|

⎧⎨⎩ +
(
1 − σ′↼Γe−2γ(z′−ς0)

)(
1 + σ

⇀

Γe−2γ(ς1−z)
)

, z′ < z

−
(
1 + σ

↼

Γe−2γ(z−ς0)
)(

σ′ −
⇀

Γe−2γ(ς1−z′)
)

, z < z′
(4.14)

where P, P ′ = {V, I} denote all the observer and source combinations that interact within a

TL-section defined by the characteristic parameters {γ, Z} and with the BCs {
↼

Γ,
⇀

Γ}.

4.2.3 Inter-layer Interaction

The formulation will be now extended to a situation in which the source and observer are
placed in different layers. The difference with respect to the previous case lies in the trans-
mission of the wave between the two points. Here, the wave must be propagated through
different layers taking into account the interfaces between adjacent TL sections.

Consider the source and observer placed in two separate layers, say {i′} and {i}, within
a multilayered media (see Fig. 4.7). Let a′ denote the wave amplitude generated at the
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Figure 4.6: TL section with source and observer interaction in the same layer z, z′ ∈ [ς0 ς1].
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Figure 4.7: Source and observer in different sections of a layered media.

source point and a the amplitude after reaching the observer. Therefore, the transmission is
formulated as

a′e−γ′(ς′1−z′) ⇀

Ti′,i e−γ(z−ς0) = a, i′ < i (4.15a)

and analogously in the complementary case (i.e. if z < z′)

b = e−γ(ς1−z)
↼

Ti,i′ e
−γ′(z′−ς′0) b′, i < i′, (4.15b)

where (4.10) is used in the transmission through the lines and
⇀

Ti′,i,
↼

Ti,i′ specify the trans-
fer functions between the interfaces of the sections {i′} and {i} and viceversa, respectively.

Expressions for
⇀

Ti′,i,
↼

Ti,i′ are derived in Appendix by imposing continuity of the voltage and
current through the interface. These are given by

⇀

Ti′,i =
⇀
τi

i−1∏
k=i′+1

⇀
τkθk

↼

Ti,i′ =
↼
τi′

i′−1∏
k=i+1

↼
τkθk, (4.16)

where
⇀
τj (

↼
τj), as defined in (A-7a), account for the discontinuity in the upper (lower) interface

of the jth section and θ = exp (−γh). Hence, the inter-layer interaction can be readily
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formulated by analogy with (4.14), giving

PP ′
(z, z′) =

ss′

D′

×

⎧⎪⎨⎪⎩
+
(
1 − σ′↼Γ′e−2γ′(z′−ς′0)

)
e−γ(ς′1−z′) ⇀

Ti′,i e−γ(z−ς0)
(
1 + σ

⇀

Γe−2γ(ς1−z)
)

, i′ < i

−
(
1 + σ

↼

Γe−2γ(z−ς0)
)

e−γ(ς1−z)
↼

Ti,i′ e
−γ(z′−ς′0)

(
σ′ −

⇀

Γ′e−2γ′(ς′1−z′)
)

, i < i′.
(4.17)

Prior to the application of these equations, the reflection {
↼

Γ,
⇀

Γ} and the transition
↼
τ,

⇀
τ coeffi-

cients at the interfaces can be calculated using an iterative algorithm detailed in the Appendix.

4.3 Alternate Expressions for the TLMo

In the previous section, we have derived the inhomogeneous solution using a traveling wave
formulation. This, however is not the only possibility. For example, in the homogeneous
solution we have shown two different approaches: one in terms of traveling waves (4.2), and
other with standing waves (4.3). In occasions, hybrid expressions are preferred but it is not
always easy to explore all the possibilities.

Hence, we have investigated two different formulations for (4.14) and (4.17). The first leads us
to a bilinear form that separates the dependence in z and z′. This can be useful, for example,
in the integration of z-dependent sources as introduced by Llorens del Ŕıo in [4, §2.5]. It also
puts in evidence how to combine different expressions by means of linear transformations of
the bilinear bases. The second formulation explores a decomposition into a multiple reflection
series, which is essentially more useful in acceleration techniques.

4.3.1 Bilinear Form

We have previously shown that the inhomogeneous solution can be written as

PP ′
(z, z′) = a(z′) e−γz + b(z′) e+γz. (4.18)

It can be demonstrated, by virtue of the reciprocity principle, that the z-constants a, b have
the same dependency with respect to z′, meaning that [5, §6.4]

a(z′) = ξ1e
−γz′ + ξ2e

+γz′ b(z′) = ξ3e
−γz′ + ξ4e

+γz′ . (4.19)

Substituting these expressions into (4.18), PP ′
(z, z′) can be represented in the following bi-

linear form

PP ′
(z, z′) =

[
e−γz e+γz

]
·
[

ξ1 ξ2

ξ3 ξ4

]
·
[

e−γ′z′

e+γ′z′

]
= xt · ξ · x′ (4.20)
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where the superscript “t” denotes the transpose operator. We can distinguish two different
basis∗, depending on z and z′, and four constant coefficients ξi which are determined from
the BCs. It is readily verified that simple manipulations of (4.14) or (4.17) provide the same
type of expression. For instance, (4.14) can be rewritten as

PP ′
(z, z′) =

ss′

D′ T (i, i′)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
e−γ(z−ς0) e−γ(h+ς1−z)

]
·
[

1 −σ′↼Γ′

σ
⇀

Γ −σ
⇀

Γσ′↼Γ′

]
·
[

e−γ′(ς′1−z′)

e−γ′(h′+z′−ς′0)

]
, i′ < i

[
e−γ(ς1−z) e−γ(h+z−ς0)

]
·
[

−σ′ ⇀

Γ′

−σσ′↼Γ σ
⇀

Γ′↼Γ

]
·
[

e−γ′(z′−ς′0)

e−γ′(h′+ς′1−z′)

]
, i < i′

(4.21a)

or using a short notation as

PP ′
=

ss′

D′ T (i, i′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt

0 ·
[

1 −↼
u ′

⇀
u −⇀

u
↼
u ′

]
· x′

1, i′ < i

xt
1 ·
[

1 −⇀
u ′

↼
u −↼

u
⇀
u ′

]
· x′

0, i < i′
(4.21b)

where xi is a column vector of exponential functions

x0 =

[
e−γ(z−ς0)

e+γ(z−ς0)

]
x1 =

[
e−γ(ς1−z)

e+γ(ς1−z)

]
, (4.22)

the transmission through intermediate layers is given by

T (i, i′) =

{
⇀

Ti′,i, i′ < i

−σ′ ↼

Ti,i′ , i < i′
, (4.23)

and

↼
u = σ

↼

Γt,
⇀
u = σ

⇀

Γt. (4.24)

The matrices in (4.21) can be transformed by means of a change of basis

xt · ξ · x′ = yt · (Mt · ξ · M) · y′

provided that x = M · y. For example, a useful transformation changes the exponential into
hyperbolic basis:

xk =

[
+1 +1
+1 −1

]
· yk k = 0, 1 (4.25)

∗Eigensolutions of the homogeneous equation of (4.1) for z and z′.
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where we have denoted

y0 =

[
+ cosh(γ(z − ς0))
− sinh(γ(z − ς0))

]
y1 =

[
+ cosh(γ(ς1 − z))
− sinh(γ(ς1 − z))

]
. (4.26)

With this procedure a seamless combination of exponential (4.22) and hyperbolic (4.26) bases
on the source and/or observer coordinates is possible. This is specially useful in the design
of stable algorithms, as will be discussed later. In order to show this concept, the right hand
side of (4.21a) has been transformed into four equivalent formulations, leading to the following
expressions:

xt
i ·

[
1 −u′

u −uu′

]
· x′

j (4.27a)

yt
i ·

[
1 + u −u′(1 + u)
1 − u −u′(1 − u)

]
· x′

j (4.27b)

xt
i ·

[
1 − u′ 1 + u′

u(1 − u′) u(1 + u′)

]
· y′

j (4.27c)

yt
i ·

[
(1 + u)(1 − u′) (1 + u)(1 + u′)
(1 − u)(1 − u′) (1 − u)(1 + u′)

]
· y′

j (4.27d)

where u represents
↼
u when i′ < i and

⇀
u if i < i′.

Obviously, further choices are possible. An interesting one obtains a matrix ξ with measures
of voltages and currents V, I at the interfaces of the TL sections. This expression, for z > z′,
is given by

PP ′
(z, z′) =

s

sinh(γh) sinh(γ′h′)

×
[

sinh(γ(ς1 − z)) sinh(γ(z − ς0))
]
·
[

V I
0,0′ V I

1,0′

IV
0,1′ IV

1,1′

]
·
[

sinh(γ(ς ′1 − z′))
sinh(γ(z′ − ς ′0))

]
(4.28)

where the elements in the matrix, in general PP ′
i,i′ ≡ PP ′

(ςi, ς
′
i), corresponds to the magnitude

P at the interface ςi when a P ′-type source excites at ς ′i. This result can be understood by
using an analogy with the ABCD matrix formalism [6, §4.9] where the constants weighs of
the hyperbolic functions are actually measures of V, I at the TL interfaces.

4.3.2 Decomposition in Multiple Reflections

Another more revealing form of the TL solution is found by decomposition into multiple
reflections [2]. This concept can been used, for example, in the acceleration of the GF [7].
It provides a knowledge about the asymptotic behavior of the spectral domain GF that can
be exploited in the method of averages, or to extract quasi-static parts from the spectral
kernels. In the context of this work, the purpose of this section is twofold: first, to deduce
this decomposition from our formulation and second, as a backbone for discussions about
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resonances and modal series accelerations that will take place in later chapters.

The decomposition of (4.14) can be readily achieved by adding and subtracting the exponential
function as:

PP ′
(z, z′) = ss′

⎧⎪⎪⎨⎪⎪⎩
e−γ|z−z′| + 1

D

4∑
k=1

Ake
−γdk , z′ < z

− σ′
(

e−γ|z−z′| + 1
D

4∑
k=1

Bke
−γdk

)
, z < z′

(4.29)

where we denoted

A1 = σ
⇀

Γ B1 = −σ′⇀Γ d1 = 2ς1 − |z + z′| (4.30a)

A2 = −σ′↼Γ B2 = σ
↼

Γ d2 = |z + z′| − 2ς0 (4.30b)

A3 =
↼

Γ
⇀

Γ B3 = A3 d3 = 2h − |z − z′| (4.30c)

A4 = A1A2 B4 = B1B2 d4 = 2h + |z − z′| (4.30d)

and di > 0 are distances. The first term in (4.29) represents the direct ray between the
source and the observer point, while the other terms embrace the rays that undergo partial
reflections at the upper and lower interfaces before reaching the observation point as illustrated
in Fig. 4.8. Actually the infinite number of rays reflected in the interfaces [6, §3.2] can be

↼

Γ
⇀

Γ
s s′

ς0 ς1

h

z′z

d0

d1

d2

d3

d4

Figure 4.8: Paths followed by each ray component in the multiple rays decomposition.

recovered in the formulation by considering the sum of a geometric series as

1

D
=

1

1 −
↼

Γ
⇀

Γt
=

∞∑
i=0

(↼
Γ

⇀

Γt
)i

=

= 1 +
↼

Γ
⇀

Γe−2γh +
↼

Γ2
⇀

Γ2e−4γh + · · · (4.31)

provided that |
↼

Γ
⇀

Γt| = |
↼

Γ
⇀

Γ| < 1†.

†This condition is always satisfied by propagating modes not being at resonance condition [cf. §4.6].
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4.4 Stability

The stability, together with the efficiency, plays a major role in the design of a numerical
algorithm, and the TLMo is not an exception. It is difficult, if not impossible, to define a
systematic procedure to design/analyze the stability of a method. However some guidelines
are given following [8, §1.18]. In our case, the review of different TLMo algorithms, found in
the literature, revealed some unstable formulations that would cause erroneous results.

4.4.1 Review

In TLMos, the danger of overflows and underflows is found in two types of formulations:

• Methods based on impedance/admitance. Some authors, e.g. [9], use a formulation
based on impedance functions. The latter is an unbounded function since it tends to
infinity as the current vanishes (open circuit BC). An analogous situation arises with an
admittance formulation in a short circuit. Hence, it is more advisable to use reflection
coefficients which, in most conditions‡, are bounded functions.

• Highly attenuated waves. This problem arises with the exponential functions inherited
from the reflected wave part in the traveling wave solutions (4.1). Formulations using
the so called wave amplitude transmission line matrix [6, §4.9] or simply transmission
line matrix, in [3, (3)] and [10, (37)], can suffer from over/underflows due to fast growing
positive exponential functions. This occurs when the wave is highly attenuated or in
other words, for large values of the exponential argument αz, provided that γ = α + jβ
with α ∈ R

+ and β ∈ R. This type of functions can be avoided by selecting a new
reference point “ς” [cf. (4.1)] for the reflected wave component, as can be observed in
the expressions (4.14) and (4.17) that include only decreasing exponential functions.

The highly attenuation condition also affects a standing wave formulation, based on hyper-
bolic functions (4.26). The latter are asymptotically exponential functions that tend to infin-
ity as αz increases. Nevertheless, an early instability arises before this formulation reaches
overflow. To understand this phenomena, let us consider an evanescent wave in a TL with
{γ, Z} = {α, jX(α)} where X ∈ R. Without loss of generality, the voltage and current in the
TL can be obtained by means of a standing wave formulation§ for z ∈ [0, h] as:

V (z) = +v cosh(γz) − Zi sinh(γz) (4.32a)

ZI(z) = −v sinh(γz) + Zi cosh(γz), (4.32b)

where v = V (0), i = I(0) are constants. Considering the high attenuation condition in the
line, αh � 1, the impedance Zin seen at the TL’s input equates the characteristic impedance
Z. Consequently, the constants v and Zi become the same. More specifically, calculating the

‡It can happen that |ρ| > 1 if the reference impedance is complex (see Appendix).
§We have chosen an equivalent to the so called voltage-current transmission matrix or ABCD matrix [6, §4.9].
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Figure 4.9: Computation of a decreasing exponential using hyperbolic functions f̃ = cosh(x)−sinh(x)
(dashed line with dot markers) and the exact formula f = e−x (solid line). Note: Results
equal to zero are plotted as 10−11.

impedance using [6, (3.52)]

Zin ≈ Z = jX(α) ⇒ v = Zini = Zi,

provided that tanh (αh) ≈ 1. Finally, as expected for an evanescent wave, (4.32) decreases
exponentially as

V (z), ZI(z) ∝ [cosh(γz) − sinh(γz)] = e−γz. (4.33)

The left and right hand side of the equality in (4.33) are mathematically identical but not
numerically when αz � 1, as it follows from the plots in Fig. 4.9. The origin of this instability
is found in the loss of precision in the subtraction operation combined with the accuracy in
the evaluation of hyperbolic functions with big arguments. Notice that from γz ≈ 18 both
formulas diverge and γz > 19 , the difference is directly giving zero. Moreover, the evaluation
of still larger values for x will produce overflow in the hyperbolic functions, which will result
in Inf-Inf=NaN.

The bi-layer problem analyzed in Fig. 4.10 emphasizes the importance of considering this
instability in the formulation of the TLMo. The structure, represented in Fig. 4.10(a), consists
of two TL sections in between two ground planes. The attenuation and the electric length
for every layer are plotted Fig. 4.10(b) at the operating frequency. The wave propagates
approximately 0.7 wavelengths in medium ©1 and in the medium ©2 it becomes evanescent
and attenuates. The variations of the current and voltage with respect to z are given in
Fig. 4.10(c)-(d). Two formulations are considered, namely, a standing wave approach using
(4.32) and our traveling wave-based formulation. The results plotted show how the former
breaks down while the latter tends smoothly to the short circuit condition (V = 0 and ∂I

∂z = 0).

Zeros in the current and voltage functions can be also source of inaccuracies. We have already
dealt with one case while discussing about the impedance/admitance formulation. Another
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Figure 4.10: Comparison between a method based on a standing-wave formulation (solid • line)
and this method (dashed line) when the wave is highly attenuated. Voltage/Current
distribution for κ ≈ 0.59π and k0 ≈ π

5
mm−1 (TE50,21-mode in a 92×92 mm2 waveguide

at 30 GHz) generated by a current source injected at the interface between ©1 and ©2 .
The multilayered configuration is: εr1 = 30, h1 = 1.54 mm (high permittivity dielectric);
εr2 = 1, h2 = 12.83 mm (TL section under cutoff ). This structure is short-circuited at
both ends and μr = 1 in all dielectric layers.

situation emerges in the formulation proposed by [2, (67)], where the incident wave, at the
interface, is actually obtained from the knowledge of the voltage, a = v/(1 + ρ), with the
reflection coefficient ρ and the voltage v measured at the same reference plane. As a matter
of fact, the above formula is perfectly stable except when ρ → −1 or equivalently, when the
reference plane sees a short-circuit. In that case, the numerator and denominator tend both to
zero. Analogously, a current-based formulation of the incident wave [1], i.e. a = Zi/(1 − ρ),
has the same behavior with an open-circuit condition at the reference plane (i = 0 and
ρ = +1). Is this numerically accurate and/or stable? This will depend on many factors like
the machine precision or the roundoff errors committed during the evaluation of i, v and ρ
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[8, §2.3]. Nonetheless, it is an unnecessary risk that can be easily avoided by using instead
a = v + Zi/2.

4.4.2 Cutoff Condition

Another condition that produces uncertain results in the TLMo algorithms happens when the
propagation constant γ equals zero. In waveguide terminology, this is commonly known as the
“cutoff condition” and it is achieved when κ = k. If this is the case in a TL, its characteristic
impedance Z gets limiting values

lim
γ→0

Z = lim
γ→0

{
jωμ
γ = ∞ for TE mode
γ

jωε = 0 for TM mode
, (4.34)

that forces the reflection coefficient to a constant

lim
γ→0

ρ(z) = lim
γ→0

V (z) − ZI(z)

V (z) + ZI(z)
= ∓1 (4.35)

regardless of the actual impedance seen at z. In other words, with this definition of reflec-
tion coefficient¶, the information about the impedance (boundary conditions) is missing and
therefore it is not possible to evaluate the current and the voltage. Is this a problem derived
from the mathematical formulation or is it the consequence of a particular physical effect?

In order to find some answers, we will come back to the Telegraphers equations (4.1):

∂V

∂z
= −γZI (4.36a)

∂I

∂z
= − γ

Z
V (4.36b)

where the constants, that determine the distributed elements {Zs, Yp} of the TL, are expressed
in terms of γ as

Zγ = Zs =

{
jωμ if TE
γ2

jωε if TM
[Ω/m]

γ

Z
= Yp =

{
γ2

jωμ if TE

jωε if TM
[S/m], (4.37)

according to the identities in Table 3.8. Let us now derive the formulation from (4.36) for
both cases simultaneously‖, that is:

γ 
= 0 and γ = 0. (4.38)

¶i.e. Defined as in (A-14) and taking the TL’s characteristic impedance Z as reference.
‖Subsequent equations keep the same order, i.e. the equation on the left(right) hand side assumes γ �= 0(= 0).
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Then, equations (4.36) specialized to TE waves can be expressed as follows{
∂V
∂z = −jωμI
∂I
∂z = − γ2

jωμV

{
∂V
∂z = −jωμI
∂I
∂z = 0

. (4.39a)

We can already observe how the variation of I is decoupled from V in the cutoff case, which
leads to a linear variation of the voltage and a constant current through the TL. We can
compare both sets of equations next:{

V = ae−γz + be+γz

I = γ
jωμ

(
ae−γz − be+γz

) {
V = Az + B

I = −A
jωμ

(4.39b)

provided that a ≡ a(γ), b ≡ b(γ), A, B ∈ C are constants with respect to z and that they
satisfy ( ∂2

∂z2
− γ2

)
P = 0

∂2

∂z2
P = 0, (4.40)

for P = {V, I}. Results in (4.39b) show that the TL becomes a distributed series inductance
of μ [H/m] at cutoff or a lumped series inductance L = μh [H] if considered interface-to-
interface, as represented in Fig. 4.11. This demonstrates that we can still evaluate the voltage

{γ, Z}

γ → 0

L = μh

h

ς0 ς1

(a) TE

{γ, Z}

γ → 0

h

ς0 ς1

C = εh

(b) TM

Figure 4.11: TL at cutoff condition.

and current at any point of the TL even at cutoff condition. Therefore, the answer to the
previous question is that the problem detected in (4.35) is actually derived from the definition
of the reflection coefficient.

Let us study the convergence taking place between the TL solutions in (4.39b) as γ → 0. For
values of γ � 1 we can approximate the exponentials with two terms of a Taylor expansion
e γz ≈ 1 + γz. This will reduce the expressions on the left side into linear functions of z.
Then, identifying terms in both equations shows how the function converges to the constants
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a

S{γ, Z} γ → 0 ζζ

⇀

Γ
⇀

Γ

aa �� ��

Figure 4.12: Adapting TL section to a new reference impedance ζ.

A and B:

γ[b − a]
γ[a + b]

}
γ→0−−−−−−→

{
A
B

Now, dividing the equations above and recalling the definition of reflection coefficient ρ = b
a

shows that

ρ(γ) − 1

ρ(γ) + 1

γ→0−−−−−−→ A

B
∈ C (4.41)

which indicates that this ratio tends to a constant as γ → 0, regardless of the actual value of
the impedance. This is another proof to justify that the definition of reflection coefficient can
not be used under the cutoff condition.

The same conclusions can be deduced analogously from the TM case, where (4.36) is given
by {

∂V
∂z = − γ2

jωεI
∂I
∂z = −jωεV

{
∂V
∂z = 0
∂I
∂z = −jωεV

(4.42a)

and the TL solutions are{
V = ae−γz + be+γz

I = jωε
γ

(
ae−γz − be+γz

) {
V = −A

jωε

I = Az + B
. (4.42b)

All the methods presented so far are based on reflection coefficients and consequently they
become unstable in the proximity of a cutoff condition. It would be desirable to find a
technique that avoids this problem without implying a drastic modification of our algorithm.

The basic idea consists of re-normalizing the formulation of the reflection coefficient to a
suitable reference impedance within the TL sections under cutoff condition. This is equivalent
to considering these sections as “black boxes” with scattering parameters referred to a new
non-zero and finite impedance ζ, selected arbitrarily. In fact, this method will only affect the
“shift” operation (A-8) within the TL because the new reference impedance does not coincide



72 Chapter 4: Layered media

with the characteristic impedance of the TL. Instead, this is now calculated as follows:

a −→ S21

1 − S11

⇀

Γ
a (4.43)

S11 +
S2

21

⇀

Γ

1 − S11

⇀

Γ
←−

⇀

Γ, (4.44)

where S are the new scattering parameters of the TL referred to ζ. Hence, the reflection {
↼

Γ,
⇀

Γ}
and the transition {↼

τ,
⇀
τ}∗∗ coefficients at the interfaces can still be calculated using the same

iterative procedure as before [see Appendix]. Once these interface coefficients are available,
the solution can be again found using the formulas (4.14) or (4.21a) by using the appropriate
combination of (4.27) such that a hyperbolic formulation is used when either the source or the
observer layers are close to cutoff condition. This is advisable in order to guarantee a stable
transition in the vicinity of the cutoff. Recalling the traveling wave formulation from (4.2) in
terms of the standing wave coefficients a, b, the following expressions{

V = (a + b) cosh γz + (b − a) sinh γz

ZI = γ
jωμ

[
(a − b) cosh γz + (a + b) sinh γz

]
show a smoother transition when γ → 0 since cosh (γz) ≈ 1 and sinh (γz) ≈ γz and therefore,
the relation (4.41) is directly obtained without combination of the standing wave coefficients,
unlike in the exponential formulation.

Let us apply this technique for the resolution of a three-layer medium in between two infinite
conducting plates, as presented in Fig. 4.13. The chart in Fig. 4.13(b) shows that layer ©2
satisfies the cutoff condition. On the other hand, sections ©1 and ©3 incorporate some losses
and the waves propagate suffering a small attenuation. The voltage and current induced in
the medium are represented in Fig. 4.13(c) and Fig. 4.13(d) for the two types of generators
considered. The plots show how the wave solution goes through the layer ©2 with constant
or linear variation. It should be noted that, without any special treatment, the calculation
of this response would not be possible. The wave in the rest of the structure shows the
expected behavior taking into account the electric length of each section and the short-circuit
terminations.

∗∗Here, the factor θ is substituted by S21

1−S11

⇀
Γ

as indicated in (4.43).
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Figure 4.13: Voltage/Current amplitude (solid/dashed lines) for κ ≈ 0.25π and k0 ≈ π

30
mm−1

(TM1,2-mode in a 21 × 8 mm2 waveguide at 5 GHz) generated by a voltage source
injected at the interface between ©1 and ©2 . The multilayered medium is: εr1 = 131 −
j0.3, μr1 = 1, h1 = 2.81 mm (lossy 0.4λg section); εr2 = 19.4, μr2 = 3, h2 = 2 mm (line
at cutoff ); εr3 = 124 − j, μr3 = 1.2, h3 = 3.77 mm (lossy 0.6λg TL). The structure is
short-circuited at both ends.



74 Chapter 4: Layered media

4.5 Algorithm

Based on the discussion presented in the previous sections we summarize here an algorithm
for the systematic evaluation of the TLMo in a multilayered medium problem. This procedure
has to be repeated for every frequency ω/(2π) and κρ values††:

1. Initialization.

• Define a TL from each layer section: {ε, μ} → {Z, γ}
– if γ � 1 then evaluate {S11, S21} of the TL with reference ζ.

• Iterative computation of {
↼

Γ,
⇀

Γ} and {↼
τ,

⇀
τ} from the outermost interfaces according

to §4.8.

– if γ � 1 then use (4.43) instead of (A-8).

At this point, the values {
↼

Γ,
⇀

Γ} and {↼
τ,

⇀
τ} are pre-calculated for every TL section.

2. The voltage/current for a voltage/current generator can be now calculated.

• Search the TL sections including z and z′ and retrive: i, i′.

• Evaluation of PP ′
(z, z′):

– If intra-layer interaction use (4.14).

– If inter-layer interaction use (4.21a).

– In any of the above cases, if γ � 1 then modify the formulation according to
the choices in (4.27): if i (resp. i′) satisfies γ � 1 use y (resp. y′).

The reciprocity relations (Appendix) can also be used to reduce the number of evaluations
when only discrete evaluations (e.g. only in the dielectric interfaces) are required [11].

This algorithm is used in the resolution of the multilayered problem illustrated in Fig. 4.14.
The voltage and current induced along the TLs by any type of excitation is calculated. The
chart in Fig. 4.14(b) shows the propagation characteristics throughout the 10 layers of the
structure. The problem combines a selection of critical cases, namely a section at cut-off (©6 ),
two very-thin conductive layers (©4 and ©8 ), a TL with high losses (©2 ), an evanescent wave
(©10) and a number of sections with stationary waves. The wave, in all cases, is excited‡‡ in
the interface between ©5 and ©6 . It goes through the section at cut-off with constant value
or linear variation. In the thin conductive layers V and ∂I/∂z tend to zero but are able to
cross the layer before they lose all the energy. Finally, the voltage and current also satisfy the
short circuit conditions at both ends of the structure.

††In general, κρ is a continuous and complex value, but here it is discretized into the real the cutoff wavenumber
κi of every mode, such that γ2 = κ2

i − ω2με.
‡‡The finite discontinuity for II and V V is not clearly seen in Fig. 4.14(d) and Fig. 4.14(d) because the modulus

hides the change in sign in the function.
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(c) Measured voltage for current excitation.
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(d) Measured current for current excitation.
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(e) Measured current for voltage excitation.
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(f) Measured current for voltage excitation.

Figure 4.14: Voltage/Current distribution for for κ ≈ π

21
and k0 ≈ π

30
mm−1 (TE10-mode in a

21×8 mm2 waveguide at 5 GHz) generated by a current source injected at the interface
between media ©5 and ©6 . The multilayered configuration is: εr1 = 4.59 − j0.3, h1 =
15.026 mm; εr2 = 4.59 − j3 · 104, h2 = 1 mm (0.012Ωcm low resistivity silicon); εr3 =
9.88, h3 = 25.72 mm; εr4 = 1 − j2.14 · 108, h8 = 1 mm (copper sheet); εr5 = 4.59,
h5 = 33.809 mm; εr6 = 2.04, h6 = 2 mm; εr7 = 5.22 − j, h7 = 20.176 mm; in ©8 copper
sheet again; εr9 = 3.45 − j0.002, h9 = 12.641 mm and εr10 = 1.65, h10 = 5 mm. The
structure is short-circuited at both ends and μr = 1 in all cases.
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4.6 Resonances

Consider the structure described in Fig. 4.15. It consists of a quarter-wavelength stub in
shielded microstrip technology. The response of the circuit has a transmission zero at
2.75 GHz, as shown in Fig. 4.16, and two additional resonances at 2.3 and 3.5 GHz, re-
spectively. The former is produced by the microstrip circuit where the λg/4 open-ended stub
short-circuits the main line and avoids the transmission of power between the two ports. The
phase difference in the reflection waves at each port [see S11, S22 in Fig. 4.16(b)] is due to the
position of the stub (notice that l + w/2 
= a/2) within the line. The additional resonances,
are not caused by the printed circuit but by the resonant modes of the cavity.

a
b

w
s

l

Δ

Δ w s l

23 4.6 18.4 41.4 mm

Dielectric Height [mm] R. Permitt. Losses
i hi εri tan δei

2. Air 9.83 1.0006 0
1. Duroid 5870 1.57 2.33 0.0012

• Cavity: a = 92, b = 92 mm; PEC
• Microstrip: 50 Ω (εeff = 1.94) in PEC

Figure 4.15: Description of Parallel Stub [12].
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Figure 4.16: Frequency response simulated with this method (solid line), with commercial software
(dashed line) and measurements from [12] (in gray and only available in magnitude).

The complete EM behavior of the dielectric filled cavity is defined by its GF. As discussed
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in §2.4, the GF computation is reduced to the calculation of a two-line equivalent TLMo for
every mode of the rectangular waveguide. Hence, the resonances are found when a pole arises
in the equivalent TLMo at the same time that a mode is excited, i.e. the resonances must
be produced simultaneously transversally and longitudinally. A glance to the expressions
developed in §4.2 reveals that these poles are produced in (4.14) [equivalently (4.17)] when
(4.13) equals zero, provided a non-vanishing numerator. Rewriting the reflection coefficient
in terms of impedance (A-14) shows that the loads in the interface must satisfy the following
relations:

D′ = 1 − ↼
ρ ′⇀ρ ′ = 0 ⇔

↼

Z = −
⇀

Z R ≥ 0−−−−→ j
↼

X = −j
⇀

X . (4.45)

The last identity coincides with the classical definition of circuit resonance. It can be inter-
preted as parallel LC resonator at the layers interface.

Let us now proceed with the analysis of our two-layered structure in Fig. 4.15. The spectral
components here are discretized to the modes of the transverse rectangular waveguide, mean-
ing that the continuous spectrum κρ is sampled with the modal cutoff wavenumbers κmn.
IN this structure, a mode is resonant when it satisfies the following characteristic equation,
derived from (4.45):

F(κρ) ≡ Z1 tanh(γ1h1) + Z2 tanh(γ2h2) = 0, (4.46)

derived from the resonance condition (4.45) and where Zi ≡ Zi(κρ) and γi ≡ γi(κρ). The
function F has been evaluated in the complex spectrum plane κρ/k0 at 3.5 GHz and repre-
sented in Fig. 4.17. The zeros of the function can be identified by concentric contour plot
showing the magnitude and the equi-phase lines that join poles with zeros in F . Along the real
axis, we have also represented the samples corresponding to the rectangular modes. Hence we
can visually identify a resonant mode when a zero of F coincides with a modal sample κmn.
At 3.5 GHz, this is actually happening in Fig. 4.17(a) where two degenerate modes, TM12

and TM21, are resonant in the cavity and therefore are responsible for the upper resonance
identified in the circuit response of Fig. 4.16. Analogously, it can be demonstrated that the
lower resonance at 2.3 GHz is produced by the TM11 mode.

The impedance Z loading both sides of the interface plays a major role in the resonance
condition. A general representation of Z = jX is given in Fig. 4.18 for the TE (dashed line)
and TM (solid line) cases. The plots show the variation of the normalized reactance X/η0

against the real part of the normalized continuous spectrum κρ/k0. The point Reκρ/k0 =
√

εr

determines the cutoff condition that separates propagating (Reκρ/k < 1) from evanescent
(Re κρ/k > 1) waves. We have specialized the formulation for each of these intervals in
Table 4.1. In the propagating region, the function alternates between inductive and capacitive
values, as highlighted in Fig. 4.18 . The impedance zeros and poles are given by the electric
length of the short-circuited TL that reaches nλg/2 and (2n− 1)λg/4, respectively. Both the
TE and TM functions follow the same pattern and they converge to each other as Reκρ/k0

tends to zero. In the evanescent region, the impedance is permanently inductive (capacitive)
for TE (TM) waves.

Specializing the function in Fig. 4.18 for two TLs with different dielectrics εr, the characteristic
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Figure 4.17: Magnitude and phase of the characteristic function at 3.5 GHz in the C-plane (contour
plot) and mode wavenumbers (positive real eigenvalues κ̄2

mnk2
0 = (mπ/a)2 + (nπ/b)2)

of the rectangular waveguide (dots).
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Figure 4.18: Variation of the normalized reactance in function of real values of κρ/k0.

Re
κρ

k
= ωc

ω
< 1 = 1 > 1

γ jβ = jk0

p
εr − (κρ/k0)2 0 α = k0

p
(κρ/k0)2 − εr

Z R = η

(
k/β

β/k
∞/0 ±jX = ±jη

(
k/α TE

α/k TM

Z = Z tanh(γh) jR tan(βh) k0h / 0 ±jX tanh(αh)

Notation: η = η0/
√

εr =
p

μ/ε and k = k0
√

εr = ω
√

με

Table 4.1: Expressions for the propagation constant, characteristic impedance and general impedance
for different intervals of κρ/k, assuming κρ ∈ R (see Fig. 4.18).

equation (4.46) will reach a solution within two overlapping inductive-capacitive regions. In
principle, simultaneous overlapping may occur all along the Reκρ/k0 axis, therefore producing
multiple resonances at a given frequency. Recalling our discussion about Fig. 4.17(a), we
can observe that the zero falls inside the interval

√
εr2 < Re κρ/k0 <

√
εr1. According to

Fig. 4.18, this means that the resonant field is confined in the Duroid dielectric (subscript
1) since the wave is attenuating in the air (subscript 2). This behavior is identified with
surface waves in unbounded problems [13, §6.1][14]. On the contrary, if the zero is located in
Re κρ/k0 < min(

√
εri) it would produce the resonance of guided modes propagating all along

the cavity. The remaining case, namely Reκρ/k0 > max(
√

εri), will not contain zeros since
the impedance remains, as shown in Fig. 4.18, purely inductive or capacitive.

Finally, we will track the position of the zero in the complex plane [Fig. 4.17(a)] with respect
to the frequency in order to predict the resonances in the circuit response. Let us consider
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for this experiment the structure in Fig. 4.15 substituting the square by a rectangular cavity
of dimensions a = 92 mm, b = 1.1a. In the upper plot of Fig. 4.19 we have represented
the variation of the aforementioned TM zero along the real part of the spectral component.
Thus, each intersection with a rectangular mode will locate the resonant frequency. The lower
plot shows the simulated frequency response of the circuit having resonances produced by the
microstrip and cavity simultaneously. As in the previous example, the lower resonance is
produced by the TM11 mode but the upper ones are split in two since the modes TM12 and
TM21 are not degenerated now.

After the analysis of resonances in multilayered boxed printed circuits we believe that the
combination of resonant modes in printed circuits and cavities may have a potential use in
filter design.

4.7 Application

In order to validate the method developed throughout this chapter we have selected a Broad-
side Coupled Filter proposed in [9, §5.2.3]. It consists of a multilayered filter composed of strip
resonators printed on suspended dielectrics inside the cavity. This design provides a compact
realization of a bandpass filter using vertical coupling and quarter wavelength resonators. An
illustration and the details of the structure are given in Fig. 4.20. There are three types of
resonators, denoted with C1, C2 and C3, and printed on the dielectric. One end-edge of the
resonators C2 and C3 is grounded to the cavity wall. The filter is excited by means of coaxial-
type ports connected to the strips of type C1. This is illustrated by means of arrows and the
labels P1 and P2 at the top and bottom of the structure.

The frequency response, in magnitude and phase, for this filter is represented in Fig. 4.21.
The simulations have been carried out with our method and a commercial software [16] finding
a good agreement between both responses. We have used a symmetric rectangular mesh for
the strip resonators in order to avoid the inaccuracies (S11 
= S22) introduced in the response
simulated with the commercial software, despite the fact that the device is symmetric.

The efficiency of our algorithm can be demonstrated after examination of the time required
per simulation. The comparison has been performed setting two benchmarks that use different
mesh schemes, and therefore different number of unknowns. The simulations were carried out
using a MAMBO software, based on this method, and the commercial tool Ansoft Designer�
[16]. The simulation times for the aforementioned setups and using the same computer are
presented in Fig. 4.22. The time marks for our method are given in two parts corresponding
to the initialization time and the time per frequency. The former is due to the operations
required to apply the acceleration technique [cf. §5.3.1]. The results obtained demonstrates
the efficiency of the TLMo even in structures with a large number of layers. Notice, that
the simulations carried out with our method, for a comparable precision, are already faster
than the commercial software from the first frequency point despite the fact that the schemes
included a higher number of unknowns.
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4.8 Conclusion

In this chapter, an stable and efficient algorithm to solve the TLMo, which has an essential
role in the formulation of a layered media has been derived. The algorithm is based on
a traveling wave approach and provides solution for all the combination of voltage/current,
source/observer positions and inter/intra layer interactions in the multilayered structure using
a general notation.

Two alternate formulations were also presented to tackle with other analytical approaches. A
bilinear form, that reduces the formulation to four constants, derived from the BCs, and two
bases, separable in source z′ and observer coordinates. The whole set provides a very flexible
tool allowing to transform independently the formulation of the source and observer bases.
We have also decomposed our TLMo equations into multiple reflections in order to provide
physical insight to the formulation.

We have paid special attention to the stability of the algorithm. A review of current TLMo
approaches reveals critical cases where a special treatment is required. This chapter introduces
criteria to deal with these critical situations and uses the acquired knowledge to build our
final algorithm.

The resonances in the scattering parameters appearing in dielectric-filled cavities attracted
our attention: instability or a physical phenomenon? The first choice can be discarded as this
effect was associated to the resonance of modes inside the layered media and identified in the
formulation of the equivalent TLMo. Based on a particular circuit structure, we have explored
which conditions produce these resonances, and how the field behaves at every resonance. The
knowledge of these mechanisms could be applied to filter synthesis by exploiting the printed-
circuits and the multilayered-cavity resonances simultaneously.

Finally, a realistic multilayered filter composed of eleven layers was simulated using our algo-
rithm and a commercial solver. The simulations a) confirmed that a layered media involves
an important computational burden in currently available methods and b) demonstrated that
we have overcome this problem with the presented algorithm, which showed, for a comparable
accuracy, a high efficiency with respect to widely used commercial solvers.
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Appendix

Reciprocity

The solutions to (4.1) satisfy reciprocity relations [17, p.194]

V I(z′, z) = V I(z, z′) (A-1a)

IV (z′, z) = IV (z, z′) (A-1b)

II(z′, z) = − j

u
V V (z, z′) (A-1c)

V V (z′, z) = −u

j
II(z, z′) (A-1d)

that can be used advantageously to reduce the number of evaluations in the TL problem.

Voltage/Current and Incident/Reflected Waves

The relation between voltage/current and incident/reflected waves can be derived from (4.2).
The direct and reciprocal transformations are the following:

v = a + b
Zi = a − b

2a = v + Zi
2b = v − Zi

(A-2)

where v = V (ς), i = I(ς).

Excitation

Consider lumped current and voltage generators placed at the source point z′, as illustrated
in Fig. 4.4.

A �
b′ �

� a′

�Bj

i− i+

z′

(a) s′ = Z′j/2.

A �
b′ �

� a′

�B

++

+

−−

z′

u

v− v+

(b) s′ = u/2.

Figure A.1: Lumped current and voltage generators.

It is well known that the current and voltage waves are risen by j [A] (a) and u [V] (b),
respectively. But, what is the effect in terms of wave amplitudes? The answer can be found
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by using the previous assertion and the identities (A-2). Therefore, a current generator as
depicted in Fig. 4.1(a) satisfies{

i+ = i− + j
v+ = v− ⇒

{
a′ − B = A − b′ + jZ

a + B = A + b′

or considering a voltage generator [Fig. 4.1(b)] we can formulate:{
i+ = i−

v+ = v− + u
⇒
{

a′ − B = A − b′

a + B = A + b′ + u
.

Then, by summation and subtraction of the above equations, we can find the scattered waves
A, B:

A = a′ − s′ B = b′ + σ′s′ (A-3)

where

s′ =
1

2

{
u, P ′ = V
Z ′j, P ′ = I

σ′ =

{
+1, P ′ = V
−1, P ′ = I

. (A-4)

Hence, the reflection coefficients at both ends of the source, can be expressed in terms of the
scattered waves leaving the source as

↼
ρ ′ =

a − s′

b′
⇀
ρ ′ =

b′ + σ′s′

a
. (A-5)

Finally, combining the expressions in (A-5), the waves scattered in the sources are given by

a′ = s′
1 − σ′↼ρ ′

1 − ↼
ρ ′⇀ρ ′ b′ = −s′

σ′ − ⇀
ρ ′

1 − ↼
ρ ′⇀ρ ′ . (A-6)

The expressions above only depend of the generator (s′) and the source’s load at z′

(i.e. {↼
ρ ′, ⇀

ρ ′}).

Discontinuity in the Interface

The variation of the wave amplitude a and the reflection coefficient Γ along z are piecewise
continuous functions in a multilayered medium due to finite discontinuities produced at the
interfaces between adjacent TLs.

To determine this discontinuty, we base our demonstration on the continuity of voltage
and current function at every point of a source-free TL. Hence, considering the interface
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Figure A.2: Wave and reflection coefficient propagation (a) through an interface between adjacent
TLs and (b) along a TL.

in Fig. 4.2(a), the continuity equations can be written using the identities of (A-2) as

a(1 + Γ) = τa(1 + ρ)

1 − R

1 + R
a(1 − Γ) = τa(1 − ρ)

where R is the Fresnel reflection coefficient [18, §2.1.2] calculated from the characteristic
impedance of the adjacent TLs∗. After some simple manipulations in the above equations, τ
can be found in terms of Γ and the latter in terms of ρ:

τ =
1 − RΓ

1 − R
(A-7a)

Γ

R
=

1 + ρ/R

1 + ρR
(A-7b)

where it is easily verified that Γ → R and τ → (1 + R) as |ρ| → 0. As a matter of fact, the
function ρ is calculated by shifting the reflection coefficient from the next interface in the way
shown in Fig. 4.2(b):

a −→ aθ (A-8a)

Γt ←− Γ (A-8b)

with

θ = e−γh t = θ2 = e−2γh.

Iterative Evaluation of Characteristic Coefficients at the Interfaces

Regarding the results of the previous subsection, the evaluation of the {Γ, τ} directed towards

positive {
⇀

Γ,
⇀
τ} and negative {

↼

Γ,
↼
τ} z-axis can be performed iteratively starting from the BCs

∗Represents the reflection coefficient in the interface when the second TL is infinite or matched.
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Figure A.3: Transition between adjacent TLs.

(defined in terms of reflection coefficients
↼

ΓL and
⇀

ΓR) imposed on the outermost interfaces.

Let us consider two TLs, denoted with i and j from Fig. A.3, representing in general two
adjacent TLs of a multilayered structure. The values for Γ and τ at each interface can be
obtained in the following order:

ai → aj · · · ←
⇀

Γi ←
⇀

Γj ← · · · ←
⇀

ΓR (A-9)

bi ← bj

↼

ΓL → · · · →
↼

Γi →
↼

Γj → · · · (A-10)

where the transition from one element to the next is performed using (A-7) and (A-8). More
specifically:

⇀
τj =

aj

ai
=

1 − Rji

⇀

Γi

1 − Rji
θi

⇀
τi =

bi

bj
=

1 − Rij

↼

Γj

1 − Rij
θj (A-11)

and

⇀

Γi =

⇀

Γjtj + Rji

1 +
⇀

Γjtj Rji

↼

Γj =

↼

Γiti + Rij

1 +
↼

Γiti Rij

(A-12)

where

Rji =
Zj − Zi

Zj + Zi
= −Rij

Zj

Zi
=

1 − Rji

1 + Rji
(A-13)

denote the Fresnel reflection coefficient.

About the Reflection Coefficient

According to the definition of incident and reflected waves, given in (A-2), the reflection
coefficient Γ is calculated with respect to the characteristic impedance Z of the current TL.
The value of Z is in general complex (e.g. lossy TL or evanescent waves in TL under cutoff)
which makes Γ an unbounded function. Hence, given a reference impedance Z, let us derive
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what impedances Z will keep the reflection below/over unity.

Suppose an impedance Z = R + jX = ρe jϕ. The reflection coefficient with respect to a
complex impedance Z = R + jX = re jφ is calculated as

Γ =
Z − Z

Z + Z
=

p − 1

p + 1
(A-14)

where p = Z
Z = ρ

r e j(ϕ−φ) is the normalized impedance. In this general definition we can
not guarantee that the reflection coefficient will remain bounded to one. The region in the
normalized p-plane that satisfies |Γ| ≤ 1 is defined by

|p − 1| ≤ |p + 1|.

Considering the complex plane in Fig. 4.4(a), the latter condition is satisfied by all p values in
within the real positive semiplane Re p > 0 (shaded region). A glance to Fig. 4.4(a) suffices to
verify that the ray |p−1| will always be shorter than the ray |p+1| in this region. Analogously,
the p-regions for |Γ| ≥ 1 can be deduced from the illustration.

Taking into account the phase of p in the positive semiplane changes within |ϕ − φ| < π

2 , we
can deduce the following equivalent limits on the impedance phase:(

−π

2
+ φ
)

< ϕ <
(

π

2
+ φ
)

. (A-15)

The previous condition determines the region of impedances in the Z-plane mapping to |Γ| <
1, provided that R ≥ 0. This has been illustrated in Fig. 4.4(b) with a shadowed surface.
Given a reference impedance, its phase φ will define the line (dashed line) that delimits the
different impedance regions and where |Γ| = 1. Over one semi-infinite perpendicular line
(with angle φ, here in the first quadrant), the phases of the actual and reference impedance
are the same and therefore

|Γ| =

∣∣∣∣ρ − r

ρ + r

∣∣∣∣
or eventually |Γ| = 0 if the magnitude coincide too. In other the semi-infinite perpendicular
line (with angle π + φ, here in the forth quadrant), the phase difference reaches π, thus

|Γ| =

∣∣∣∣ρ + r

ρ − r

∣∣∣∣
which tends to infinity with identical modules ρ = r. In order to get this point within the
plane of realizable impedances (R ≥ 0) the reference impedance must have a phase π

2 ≤ φ ≤ π.

Finally, in Fig. 4.4(b), we have evaluated |Γ| for an impedance with constant magnitude.
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Figure A.4: Determination of impedance regions giving |Γ| � 1 in function of the reference
impedance.
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École Polytechnique Fédérale de Lausanne, Switzerland, 1998, thèse No. 1901.
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5 Analysis of Multilayered Boxed Printed
Circuits

He who loves practice without theory is

like the sailor who boards ship without a

rudder and compass and never knows

where he may cast.

(Leonardo da Vinci)

The current trends in Radio Frequency (RF) and microwave circuits and high speed electron-
ics search for high-performance, adequate EMC behavior, low cost and miniaturized chip-type
passive devices. These specifications can be matched by multilayered printed circuits inte-
grated inside metallic enclosures for mechanical and environmental protection [1].

We will denote in general these structures, illustrated in Fig. 5.1, as multilayered boxed printed
circuits∗. It contemplates a good part of passive components found in the omnipresent MMICs,
frequently encountered in industry, such as filters, phase shifters, power dividers, etc.

This EM problem motivated the implementation of a dedicated software tool for the efficient
analysis of these topologies. The simulation tool we developed was called MAMBO, which stands
for siMulation of Arbitrary Multilayer BOxed printed circuits [2].

The structure in Fig. 5.1 is a particular case of printed circuit in bounded layered media.
Hence, the EM simulation of these devices can be performed using a specialization of our
generic method, described in previous chapters, for perfect electric boundary conditions on a
rectangular contour. The formulation for this type of boundaries was already developed in
§3.5.1, providing an analytical solution. Moreover, the linear subsectional basis functions are
very well suited for the modeling of currents on arbitrarily shaped printed circuits. In addition,
a realistic simulation must also incorporate the effect of losses in the structure. A multiport
network characterization of the device can use the strategy described in §2.6, provided that
the ports access are small coaxial-type feeding lines attached to the cavity walls.

The first part of this chapter presents a review of the most relevant published works concern-
ing numerical techniques based on IE for the time-harmonic EM analysis of planar circuits
including shielding effects. Based on this review, we present an outline a mathematical formu-
lation in connection with the methods developed in previous chapters. A key concept in the
method are the modal series which correspond to the reaction terms filling the MoM matrix.
Questions about the acceleration of these series and its convergence will cover a big part of

∗Although some terms as shield, cavity, packaging of metallic enclosure can be used as synonymous of box.
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Figure 5.1: Transverse (a) and longitudinal (b) cross section views of a multilayer boxed printed
circuit.

the discussions. Then the modeling of losses will be addressed. It follows with details about
the network characterization and the connection of lumped elements to the printed circuits.
Finally, the chapter is closed with an extensive set of simulations of test-structures. This will
serve to validate the method and to demonstrate the degree of accuracy and achieved per-
formance by comparison with prototype measurements or simulations carried out with other
EM solvers.

5.1 Review of Integral Equation Methods

The efficient evaluation of the GF is the key for the success of an IE technique. In our case,
the multilayered cavity GF can be formulated mainly by means of two equivalent methods,
namely, a modal expansion [3] or a set of images [4]. Other methods are usually refinements
or clever combinations of these two techniques.

In the first case, the GF is expressed as a series expansion of rectangular waveguide modes.
Assuming G is a generic (field or potential) GF component, this expansion comprises a double
infinite trigonometric Fourier series

G =
∑
m,n

G̃(km, kn)f(km, x, x′)g(kn, y, y′), (5.1)

where f, g are products of trigonometric functions and km, kn are discrete spectral components.

By virtue of Poisson’s formula [5], an equivalent formulation for the Fourier series above can
be found. Here, the effect of the side walls is represented by an infinite set of periodically
spaced image sources radiating in a laterally unbounded medium [4, 6].

Both formulations, the Modal Expansion (ME) and the set of Images (IM), as presented
in Table 5.1, have more advantages under certain conditions. The singular behavior in the
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Formulation Singular Behavior for R → 0 BCs on the cavity walls

Modal Sum By augmenting the number of
modal terms

Naturally satisfied by each mode

Set of Images
Preserved on each image source

By increasing the number of images

Table 5.1: Quantitative comparison between modal and image-based formulations.

vicinity of the source is inherited from the equivalent quasi-static problem (low frequency) in
the IM. The spectra of this singular response is represented by the tail of the ME providing
a low convergent series. On the other hand, the BCs are achieved by each term of the ME
while it is necessary to sum up a high number of images in the IM to fulfill them on the box
walls.

The ME approaches are typically accelerated by extracting and evaluating separately the
quasi-static (QS) part in the sense of Kummer’s transformation [7]. In [8] the evaluation of
the QS part is accelerated by obtaining an analytic sum of one of the double infinite series
into exponentially decaying Bessel functions.

This strategy is also followed by hybrid approaches which take advantage of the dual rep-
resentation of Table 5.1 and evaluate the QS part using image theory [9, 10]. The so-called
Ewald technique can be also framed in this kind of hybrid methods. It has been tradition-
ally used to accelerate the convergence of periodic problems [11] although it has also being
applied, for instance, in an empty cavity problem [12]. The GF is transformed into two series
with gaussian convergence, one involving images and the other one modal functions. The
Ewald technique can be applied to the multilayer shielded structure [13], being computation-
ally more expensive as it involves the approximation of spectral domain by the Generalized
Pencil-of-Function method [14].

The ME series is also summed up efficiently using the Fast Fourier Transform (FFT) algorithm
[15, 16] but it is only applicable to uniform meshes. Other numerical techniques are available
for series accelerations as referred in Table 5.2.

The IM formulation allows the lateral wall effects on the circuit response to appear as a cor-
recting term which can be added or removed from the unbounded case [17]. Some refinements
of this method are made with the Truncated Set of Images technique [18] which sums up
the images using weighting functions to satisfy the BCs on the walls with a truncated set of
images.

A summary and references to all the methods involving ME and IM is presented in Table 5.2.
Further improvements on this algorithm can also be achieved by adding other features like
a wideband estimation of the EM response by means of a reduced order model of the multi-
layered media response [19] or reducing the number of unknowns of the MoM matrix by using
higher order or entire domain BFs like in [20, 21] and [22–25].
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5.2 Formulation

The EM problem of Fig. 5.1 is formulated in terms of an EFIE where, unlike to §2.3, here
an impedance (Leontovich) BC [32, p. 137] is imposed on the printed circuit surfaces. Hence,
the new IE is given by

ẑ × Ei +
↔
GEE ∗ J = ZsJ (5.2)

where the incident field Ei is localized at the edge ports of the microstrip lines (§2.6), Zs is

the surface impedance of the printed circuit and
↔
GEE represents the transverse components of

the dyadic GF accounting for the metallic box and the multilayered media (§2.4 and §3.5.1).
This modification of the EFIE will account for the ohmic losses in the metallizations of the
planar circuit, as will be discussed in §5.4.

The resolution of the (5.2) is carried out by application of the MoM and the Galerkin proce-
dure, as explained in §2.5. Some remarks follow.

The surface currents J on the printed circuits are approximated by a superposition of linear
subsectional basis functions {bk} ∈ Dk (§3.4.1) as

J =
∑

k

ikbk, (5.3)

where {ik} [A] are unknown current coefficients. This technique discretizes the surface of any
arbitrary shaped circuit into rectangular and/or triangular cells forming a mesh

⋃
k Dk = D.

The final MoM matrix is obtained by the difference of densely populated matrix Z and a
sparse matrix Λ. The algebraic system of equation is the following

u = [Z − Λ] · i, (5.4)

where u and i are column vectors that contain the excitation (§2.6) and the unknown current
coefficients, respectively. The first matrix corresponds to a generalized impedance matrix
containing the reactions [(2.24) in §2.5] taking place in basis functions expanding currents on
a PEC surface. Each term of this matrix is evaluated as follows

REE(k, l) = Zkl =
�

Dk

bk(r )
�
Dl

↔
GEJ(r|r′)bl(r

′) dS dS′ = 〈bk,
↔
GEJ ∗ b′

l 〉. (5.5)

The effect of losses in the metallizations is included in the second matrix Λ. Every entry of
this matrix integrates every pair of BFs as

Λkl = Zs

�
Dk∩Dl

bk(r )bl(r
′) dS. (5.6)

This matrix is sparse because all non-overlapping subsectional basis function will vanish.

Finally, solving the linear system (5.4) provides the solution to the unknown currents (5.3).
This result is used to determine (see §2.6): a) the induced surface currents for a given exci-
tation scheme (2.26b) and b) a multiport network characterization of the circuits in terms of
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scattering parameters S (2.34).

5.3 Modal Series

In a transverse boundary problem, as demonstrated in Chapter 3, the explicit calculation of
GF is not needed since the reaction terms (5.5) can be directly formulated [33]. In general,
the reaction between two BFs k, l belonging to any type of sources was anticipated in (3.5) of
§3.2 as

RPQ(k, l) = 〈bk,
↔
GPQ ∗ b′

l 〉 =
∑

i

L
(
PQ

i (ω, zk, zl)
)
CP(k, i)C∗

Q(l, i). (5.7)

The reaction is therefore formulated as series extended to all the eigenmodes of the transverse
boundary problem (here, a rectangular waveguide) and we will refer to it as modal series.
The index i enumerates each mode in the spectrum sorted following an order of increasing
cutoff frequencies. Each term of the series can be separated in two parts according to the
dependency on the longitudinal (z) or transverse (x, y; x′, y′) coordinates. The first part, PQ

i ,
determines the propagation of the ith mode along the z-axis (§2.4). It is computed using a
transmission line model (TLMo) for each mode and frequency, as discussed in Chapter 4. The
second part consists of the product of the OIs defined over the ith mode and the source and
observer BFs, respectively. It should be underlined that the source and observer contributions
are separated and frequency independent. The analytic solution to these integrals were also
derived in Chapter 3.

The major disadvantage is that the modal series are slowly convergent [5, 29], specially when
the reaction takes place between two nearby BFs (|r − r′| → 0). Some arguments that
explain this behavior can be found in the discussion presented in Table 5.1. The sum of
slowly converging series is performed using special acceleration techniques based on Kummer’s
transformation and will be treated in the following sections.

5.3.1 Kummer’s Transformation

Ernst Kummer’s method [7, 34] is a classical series acceleration technique that may be used
to accelerate the convergence of modal series. The idea is to subtract from a given convergent
series

∑
ai another equivalent series

∑
bi, whose sum B =

∑
i≥0 bi is well known, provided

that both series’ terms are asymptotically proportional

lim
i→∞

(
ai

bi

)
= c 
= 0, (5.8)

with a non-zero constant c. Applying the Kummer’s transformation on
∑

ai as

∞∑
i=0

ai = c

∞∑
i=0

bi + c

∞∑
i=0

(ai − bi) = cB +

∞∑
i=0

(
1 − c

bi

ai

)
ai, (5.9)
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expresses the series sum in terms of a new series, on the right hand side, which converges
faster since 1 − cbi/ai tends to 0 as i tends to infinity [35].

Before transforming the series sum, let us first rewrite (5.7) using a reduced notation:

R =
∞∑
i=0

gi CiC
′∗
i , (5.10)

where gi ≡ G̃PQi(ω, zk, z
′
l) corresponds to the spectral domain GF and Ci ≡ CP(k, i),

C ′
i ≡ CQ(l, i) complex values representing the solutions to the OIs over observer and source

BFs, respectively. Suppose an equivalent series

R̂ =
∑

bi =
∞∑
i=0

ĝi CiC
′∗
i . (5.11)

Using an asymptotic function of the spectral domain GF satisfying (5.8) as

lim
i→∞

(
giCiC

′∗
i

bi

)
= lim

i→∞
gi

ĝi
= 1 (5.12)

allows us to apply the Kummer’s transformation (5.9) on (5.10) and evaluate the reaction as

R = R̂ +
∞∑
i=0

(gi − ĝi) CiC
′∗
i = R̂ + R̃, (5.13)

where R̃ converges faster. The equivalent series R̂ is called quasi-static and R̃ is denoted as
the dynamic series. These names will be justified later. Usually, this transformation is done
separately for series comprising groups of TE and TM modes resulting in four different series,
namely, two quasi-static and two dynamic.

5.3.2 Asymptotic Sequences

Actually, there is an infinite number of sequences {ĝi} approaching asymptotically {gi} but
not all of them can build an equivalent series whose sum is known or presents an advantage
with respect to the original series. Here, we will rather discuss the approach followed in
[8, 33, 36, 37] aiming to give a wider perspective about the series acceleration: its advantages
and limitations.

In order to define a suitable {ĝi}, we must first recall from Chapter 4 that the ith mode
component of the spectral domain GF {gi} is calculated by solving an equivalent transmission
line problem. Depending on the source, it corresponds to the voltage (resp. current) V (ω)
(resp. I(ω)) frequency response of the equivalent circuit problem between the interfaces z and
z′ to a current (resp. voltage) excitation.

Suppose that an electric source excites the structure of Fig. 5.2(a) at z′. The equivalent circuit
problem, as represented in Fig. 5.2(b), is therefore excited with a current generator (u = 0 V,
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z

z′

{ε−r , μ−
r }

{ε+
r , μ+

r }

(a)

+⇔
z′

u
j

{γ−
i , Z−

i }

{γ+
i , Z+

i }

(b)

Figure 5.2: Simplified scheme for the resolution of a quasi-static problem. (a) Evanescent field at the
interface between two layers; (b) Equivalent circuit consisting of two semi-infinite TLs.

j = 1 A). For each mode, the spectral GF component is calculated as the voltage induced
at the same point z = z′ (i.e. ĝi ≡ V̂i). In addition, this calculation will assume that the
propagation constant for each mode is equal to its cutoff wavenumber:

γi = κi. (5.14)

The circuit is easily reduced to the parallel connection of the transmission line impedances
loading the generator. Substituting the values of Z± for the TE or TM waves (Table 3.8),
the voltage response at z = z′ can be expressed as

V̂ TE
i (ω) =

jωμe

κi
(5.15a)

V̂ TM
i (ω) =

κi

jωεe
(5.15b)

where
εe = ε0

(
ε+
r + ε−r

)
μe = μ0

μ+
r μ−

r

μ+
r + μ−

r

are dielectric constants of an equivalent homogeneous dielectric medium. The resulting se-
quence

{ĝi} = {V̂ TE
i (ω), V̂ TM

i (ω)}

is actually asymptotic to {gi}. To demonstrate this, let us tend both sequences with i → ∞†

†Modes sorted by increasing cutoff frequency.
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until
κi � k = ω

√
με, (ωn � 1)

ensures that the modes achieved are evanescent. These modes represent a quasi-static EM
behavior since they do not propagate. The wave is instead attenuated exponentially in the
proximity of the source at the rate of

γi = αi = κi

√
1 − ω2

n ≈ κi

(
1 − ω2

n

2
− ω4

n

8
· · ·
)

(5.17)

nepers per unit length, as deduced from Table 3.8. The evanescent modes are reactive and
have a localized effect that is influenced only by the media near the source, as depicted in
Fig. 5.2(a). Under these circumstances the sequence {ĝi} converges to {gi}, provided that
(5.14) corresponds to the first term of the Taylor expansion of (5.17).

Let us consider the TM waves generated by an electric source on a two-dielectric filled cavity
of square cross-section as shown in Fig. 5.3. Fig. 5.3(a) shows how the asymptotic V̂i (dashed
lines) tend to the voltage Vi sequences (in solid lines) as κi increases. When the dielectric
thickness is doubled (2h), the difference between Vi and V̂i drops faster. The reason is that
by separating the lower ground plane avoids reflections of the “less attenuated” evanescent
modes and the quasi-static conditions simulated in Fig. 5.2(a) are matched earlier.
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(a) Voltage induced in z = z′ @11GHz: Vi are solid
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(b) Relative error by the limit (5.12) definition,
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i (×) sequences.

Figure 5.3: TM-voltage response generated by a current excitation with two different substrate thick-
ness: h and 2h. Dielectric filled cavity (h = 0.4 mm, εr = 9.9) with a 25.4 × 25.4 mm2

cross-section and height 4 mm.

Another factor that shall influence the attenuation of the evanescent modes is the dielectric
constant of the substrates. For a given frequency, a decrease of εr will rise the cutoff-frequency
in the dielectric and therefore increase the wave attenuation. Under these circumstances, the
quasi-static conditions are also achieved faster as can be verified in the plots of Fig. 5.4.
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Figure 5.4: Relative error by the limit (5.12) definition, with respect to V̂i when the substrate per-
mittivity is εr = 9.9 (solid line) or ε1/4 (dashed line).

It is reasonable that the asymptotic sequence may be improved by augmenting the order of
the approximation (5.14) and taking instead two terms of (5.17) as

γi = ki

[
1 − 1

2

(
ω
√

με

κi

)2
]

. (5.18)

The new asymptotic sequences are plotted with × markers in Fig. 5.3 and are expressed by [33]

V̂
(1),TM
i = V̂ TM

i − E

2

jωμ0

κi
(5.19)

where E is a constant. This approach produces a small improvement in the convergence
rate that, in our opinion, is not worthwhile compared to the added complexity of the new
expressions.

Finally, equivalent expressions for (5.15) can be found for magnetic sources [37] by exciting
the circuit of Fig. 5.2(b) with the voltage generator (u = 1 V, j = 0 A) and collecting the
current wave at the same point.
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5.3.3 Quasi-static Series

The quasi-static series in a reaction taking place at z = z′ with an electric source is obtained
by substituting the asymptotic sequences (5.15) into (5.11):

R̂E(k, l) = jωμeA
TE(k, l) +

1

jωεe
BTM(k, l) (5.20a)

and analogously, with a magnetic source as

R̂H(k, l) =
1

jωμe
BTE(k, l) + jωεeA

TM(k, l) (5.20b)

where the series

A(k, l) =
∑

i

1

κi
C(i, k)C∗(i, l) (5.21a)

B(k, l) =
∑

i

κi C(i, k)C∗(i, l) (5.21b)

are frequency independent.

The analysis of the series arising in a real problem, including hundreds of BFs, would be
cumbersome and the results difficult to interpret. Instead, the scenario has been simplified to
a canonic test structure that contains a few BFs placed as illustrated in Fig. 5.5.

x

y

a

b

a/20

b/25

a/20

b/30

a/30

b/15

45◦

#1

#2

#0

(a) Transverse view.

#1 #2#0

{εr, μ0}
z′

z

x, y

(b) Longitudinal view.

Figure 5.5: Test structure for series convergence studies. Rectangular PEC cavity 92×92×11.4 mm3

filled with a dielectric with permittivity εr = 2.33(1 − j0.0012) and height h = 1.57 mm.

The transverse view of the structure, given in Fig. 5.5(a), shows three rectangular domains
with sides A ∝ a, B ∝ b subdivided into rectangular or triangular cells. Three linear subsec-
tional BF (§3.4.1), symbolically represented with arrows, are defined over this simple mesh,
namely a half-rooftop on the domain no. 0, a rooftop on no. 1 and a RWG BF on domain
no. 2.
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jωμeA
TE
M B TM

M 10−2/(jωεe)

0–0 5.6653j 0.0014 − 1.6103j
1–1 1.4212j 0.0030 − 3.5577j
2–2 3.3407j 0.0027 − 3.1760j

Table 5.3: TE (TM) quasi-static series sums @2.5GHz up to M=1′001′129 (998′872) terms.

The MoM matrix resulting from this test problem consists of a three-by-three symmetric
matrix, the latter being due to reciprocity. Hence, the study can be reduced to only six out
of nine series filling the matrix. In this problem, the interaction between BFs take place on
the same interface, therefore the series are subject to the decomposition in quasi-static and
dynamic part as defined in (5.13). Let us study the quasi-static part of the TE and TM modal
series at ω/(2π) = 2.5 GHz.

The magnitude of the partial sums† of the quasi-static series, calculated with (5.20a), are
represented in Fig. 5.6 for the TE and TM contributions, respectively. The representation
of the six reactions is divided into two groups, namely the “self” and “cross” interactions
depending whether the reaction takes place with itself or a different BF. The results show the
series sums tend to a constant value as the number of modal terms added increases, which is
a sign of convergence. The values achieved and the type of convergence differs for the self and
cross interactions. In the first case, the reaction takes place within the same cell, resulting
in larger values than those occurring between distant cells. The series arising in the self-
interactions converge uniformly (absolute convergence) while in the cross-interactions exhibit
an oscillatory behavior (Fourier convergence) that, in fact, converges faster than the previous
case. Comparing the results obtained in these two groups reveal that the self-interaction series
are the most critical. They have the slowest convergence and a non-converged sum, provided
that they reach larger values, would cause an error in the MoM matrix with a significant
impact in the linear system solution.

Within the self-interactions group, a first glance at Fig. 5.6(a) and Fig. 5.6(c) shows that the
TM series converge slower compared to the equivalent TE case. This is corroborated by the
comparison presented in Fig. 5.7. The figure of merit used there is a relative error with respect
to a large sum, more specifically:

εM (Sm) =

∥∥∥∥Sm − SM

SM

∥∥∥∥ , (5.22)

where SM denotes the series sum up to M � m terms. These reference sums are summarized
in Table 5.3.

In conclusion, the most critical quasi-static series, considering the classification suggested
throughout this section, corresponds to the TM series arising in the self-interactions in the
MoM.

†Meaning |Sm| = |
mP

i=0

ai|.
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(c) Self-interactions with TM series.
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Figure 5.6: Evolution of the partial sums in the quasi-static series. Self-interactions: 0–0 (�), 1–1
(×) and 2–2 (•); Cross-interactions: 0–1 (∗), 0–2(+) and 1–2(◦).

5.3.4 Dynamic Series

The dynamic series are obtained by subtracting the quasi-static series (5.20a) from the original
modal series, as demonstrated in (5.13).

Consider the dynamic series in the aforementioned test structure in Fig. 5.5. The partial sums
of the TE and TM dynamic series are represented in Fig. 5.8. As expected from Kummer’s
transformation (§5.3.1), these series exhibit a fast convergence compared to the quasi-static
ones. The plots display series having about three to five times improvement in the convergence
rate between them. The type of convergence is analogous to the quasi-static case. The self-
interactions have absolute convergence and a Fourier convergence is observed in the cross-
interactions. Studying the results from the TE and TM contributions, again we find that the
TM series are delayed with respect to the TE series requiring, in this case, about the double
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Figure 5.7: Rate of convergence for the TM/TE quasi-static series. The curves represent εM with
respect to the values presented in Table 5.3 for each case. Only self-interactions are
represented for the TE (dash lines) and TM (solid lines) series: 0–0 (�), 1–1 (×) and
2–2 (•).

of terms to converge.

Next example follows from the discussion in §5.3.2, where the convergence of the dynamic
series was associated to the definition of the asymptotic sequence (i.e. the sequence in the
quasi-static series). Consider the TM series of the dynamic part for the rooftop #1 defined
at the center of our test structure (Fig. 5.5). This series will be calculated using two different
types of asymptotic sequences, namely V̂ TM

i (5.15) and V̂ TM∗
i (5.19), already studied in §5.3.2.

The evolution of the dynamic series sum is represented in Fig. 5.9(a) and the convergence is
monitored in Fig. 5.9(b) using a differential relative error defined as

δΔ(Sm)=
∥∥∥∥Sm − Sm−Δ

Sm−Δ

∥∥∥∥ , (5.23)

where Δ is a fixed integer step.

The series is calculated in problems using two different dielectric thicknesses, h and 2h, in order
to move away the reaction from the ground planes. The results confirm that the convergence
rate is improved in the second case, as predicted during the discussion in §5.3.2. We can also
observe a small improvement with the second order asymptotic sequence V̂ TM∗

i , although it

is not so significant to justify its use in the quasi-static series. We have rather preferred V̂ TM
i

that can be calculated easily.

To conclude this example we can state that the convergence rate of the dynamic series is related
to the rate of convergence of the asymptotic sequences (V̂i and V̂ TM∗

i ). This speed is specially
dependent on the proximity of the BFs (z′) to the ground plane and, in a minor degree, the
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(c) Self-interactions with TM series
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Figure 5.8: Sequence of partial sums for the TE/TM dynamic series. Self-interactions: 0–0 (�),
1–1 (×) and 2–2 (•); Cross-interactions: 0–1 (∗), 0–2 (+) and 1–2 (◦).

dielectric material joining them (Fig. 5.4). Therefore, problems with high-permittivity and
thin substrates over ground planes will deteriorate the convergence of these series.

5.3.5 Convergence

Up to this point, we have studied the series on a specific problem defined in Fig. 5.5 and we
have performed some observations about its convergence. But the question now is, can we
generalize this behavior to any scenario? For example, is there an impact of the position or
size of the BF’s domain on the convergence? and is it a dominant factor?

A partial answer is found straightforward in the series formulation (5.7) which shows that the
size and position of the BFs are, in fact, implicit in the OIs. Therefore, there is an influence
on the convergence of the series but its importance remains for the moment unknown.
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Figure 5.9: (a) Partial sums of dynamic series for two substrate thickness: h (solid) and 2h (dash).

Dynamic series constructed with the asymptotic form: V̂ TM
i (•) or V̂ TM∗

i (◦). (b) Differ-
ential error δ20 measured on the imaginary part the dynamic series sum for two substrates
with different thicknesses (only V̂ TM

i case is plotted here).

In order to find some answers to the second question we will perform some numerical experi-
ments on our test structure. For the sake of clarity, we will only consider the worst converging
series which corresponds, according to the previous sections, to the self-interaction TM quasi-
static contribution. Therefore, the results could be extrapolated to the rest of the series since
this represents the most limiting case.

Position:

Initially, we will analyze the series convergence of BFs defined at different positions, within
the same plane, of the cavity. In Fig. 5.10 the position of the domains #1 and #2, with
different orientation, are shifted in diagonal from the center to the cavity’s corner. The series
arising in the three different configurations are calculated up to M = 998′872 terms. These
sums are complex numbers, due to the dielectric losses, and are displayed in Table 5.4. The
first and second experiments with the domains # 1 and 2, respectively, correspond to the
initial configuration of the test structure (Fig. 5.5), so the values here agree asymptotically
with the final sums obtained in Fig. 5.6(c).

In Fig. 5.10, we plot the relative error (5.22) with respect to the reference sums given in
Table 5.4. Aside from slight oscillations in the last experiment, the position of the cell does
not show an important influence on the convergence of the series.
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Experiment No. 1 (center) B TM
M × 10−2/(jωεe) No. 2 (lower node) BTM

M × 10−2/(jωεe)

1 (•) [0.5a, 0.5b] 0.0030 − 3.5577j [0.52a, 0.52b] 0.0027 − 3.1760j
2 (◦) [0.75a, 0.25b] 0.0030 − 3.5575j [0.8a, 0.8b] 0.0027 − 3.1772j
3 (×) [0.97a, 0.03b] 0.0028 − 3.3903j [0.92a, 0.92b] 0.0026 − 3.1323j

Table 5.4: Sum of TM quasi-static series up to M = 998′872 terms @2.5 GHz for different cell’s
positions.
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Figure 5.10: Relative error in the convergence of the quasi-static TM series for different cell’s posi-
tions. The position and orientation of the cells are indicated with different markers.

Size:

In a new configuration, depicted Fig. 5.11(a), we analyze the impact of the size of the BFs on
the convergence. To proceed, we first define the relative surface of a domain as

rS =
AB

ab
, (5.24)

where A, B and a, b are the lengths of the sides in the rectangular domains and the box
cross-section, respectively.

In addition to the original scenario in Fig. 5.5, two more are considered by doubling (k = 2)
and halving (k = 1/2) the dimensions A and B, simultaneously. According to the reference
dimensions, the relative surface of each domain in function of the scale factor is

Domain No. 1 No.2 No.3

rS = k2

500
k2

600
k2

450 .

with values k2 = {1, 22, 1
22 } for each experiment. A study of the convergence for the quasi-

static TM series is represented in Fig. 5.11. The relative error (5.22) is referred to the values
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B TM
M × 10−2/(jω0εe)

No. k = 1/2 k = 1 k = 2

0 0.0027 − 3.2198j 0.0014 − 1.6103j 0.0007 − 0.8049j
1 0.0060 − 7.1070j 0.0030 − 3.5577j 0.0015 − 1.7793j
2 0.0053 − 6.3472j 0.0027 − 3.1772j 0.0013 − 1.5812j

Table 5.5: Sum of TM quasi-static series up to M = 998′872 terms @2.5 GHz for different cell’s sizes.

in Table 5.5, and the differential error (5.23) is evaluated with a step Δ = 24.
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Figure 5.11: Convergence εM , δN of the quasi-static TM series arising in the self-term interactions
when the domains are scaled as with k = 0.5, 1, 2 @2.5 GHz. The different sizes con-
sidered of every domain are indicated with gray colors, from the smallest in black until
the bigger in lighter gray.

The analysis of these plots reveals that an increase (decrease) on the relative surfaces rises
(drops) the relative error in the first 2′000 modes keeping afterwards a constant slope. The
differential error also shows faster convergence in the cases with bigger rS. Consequently, we
can state that the convergence rate is highly influenced by the relative surface rS of the cells.
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5.3.6 Reaction Between Two Interfaces

Having a circuit structure printed on different layers represents an excellent example to study
the convergence of the reaction series resulting in the interaction between BFs on different
interfaces (i.e. with z 
= z′).
The goal of this section is to monitor the series convergence and to analyze the factors that
determine this behavior in order to end up justifying the direct summation method adopted
in this case.

Let us consider the test structure used so far but arranged in two different layers, as illustrated
in Fig. 5.12. Our analysis will take into account the interactions between one source (labeled
#1′), defined on the first interface (at z′), and two observers (#1 and #2) defined on the
second interface (at z).

x

y

a

b

a/20

b/30

a/30

b/15

45◦

#1

#2

(a) Transverse view.

z′

z

x, y

r h
#1′

#1 #2

(b) Longitudinal view.

Figure 5.12: Test structure. Rectangular cavity 32 × 16 × 4.08 mm3 filled with two dielectric slabs
(hd = 0.51 mm, εr = 2.33(1 − j0.0012) ) separated by an air gap (h = 3.06 mm).

In order to understand the convergence of these interactions, we must recall the formulation
of the modal series (5.7) and rewrite them in a simplified form.

In this sense, the MoM reaction between BFs o = {1, 2} and 1′ is given by:

REE(o, 1′) =
∑

i

Vi(z, z′, ω)Ci(o)Ci(1
′). (5.25)

In this equation, the OIs Ci are real values depending on the BF’s footprint (x, y dependence)
and the mode, while the term Vi incorporates the z and frequency dependence (ω) of the
series. This function represents the voltage amplitude of the ith mode induced in z (upper
layer) when it is excited in z′ (lower layer). Notice then that according to the discussion in
§5.3.2, its variation on different modes (i-dependence) will determine the convergence of the
series.

Fig. 5.13 represents the variation of this function against different TM and TE modes. The
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plots in the figure correspond to the variation of the air gap distance h that separates the
two interfaces in Fig. 5.12(b). We can observe that in general the strength of the function is
reducing exponentially with the cutoff wavenumber. Moreover, an increment (reduction) of the
gap distance h increases (decreases) this attenuation. This is caused by the natural attenuation
expected in the evanescent modes (considered in large i series indices) which increases with
the distance. It can be verified visually that the voltage function tends asymptotically to a
single forward evanescent wave (represented in dashed lines) which is formulated as

Vi(z, z′) ≈ e−κi|z−z′| = e−κirh, (5.26)

where r = 1
10 , 1

8 , · · · , 8, 10 is a real constant considered in this example to change the height
of the gap.
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Figure 5.13: Voltage induced in the observer BFs (at z) by TE/TM-waves generated at source BF
(at z′) and for different gap thickness (r h).
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Consequently, the attenuation of this factor guarantees the fast convergence of the reaction
series (5.25), as can be verified in Fig. 5.14. These plots show the partial sums resulting from
the direct evaluation of the TE and TM series, when small gap distances are considered. The
accompanying figures show the incremental error caused with 20 terms in the sum. The series
are converging and the speed is deteriorating with smaller gaps due to the factors discussed
previously. Again, a substantial difference in the convergence is found between the TE and
TM series.
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Figure 5.14: Convergence of TM/TE series (reaction #1′–#1) for small gap thickness: h(•), h/2(◦),
h/4 (×), h/6 (+), h/8 (∗) and h/10 (�). In the figures, the variable m is the number
of TE (resp. TM) modes.

This difference is registered in Fig. 5.15, where ratio between the partial errors for the TE
and TM series are represented under two different scenarios with a gap thickness of h and
h/2. The TE series shows about one and two orders of magnitude faster convergence rate.
We believe that these plots represent actually the tendencies in the convergence behavior of
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these inter-layer reactions so we will avoid representing the remaining possible combinations.

For the moment, we have only considered the interaction between #1′ and its dual #1. Is
there a big impact if we modify the position and orientation of the observer BFs? Just to
ensure that this is not the case we have represented in Fig. 5.16 the interaction #1′–#2 for
the different gap thickness: h/2, h and 2h.

5.3.7 General Assessment Modal Series

About the reactions at the same level (z = z′): A Kummer’s transformation is applied to
accelerate the series arising in these reactions. This technique transforms the original series
in the sum of four new series, namely the quasi-static and dynamic part extended separately
to every TE and TM mode. The convergence mechanisms of the modal series obtained with
this study we could underline the following points:

• Among the four series involved in the evaluation of a MoM matrix element, the TM
quasi-static part has the slowest convergence.

• The convergence of the series corresponding to the self-interaction terms (diagonal of the
MoM matrix) have an uniform convergence.The precision of this calculation critically
determines the accuracy of the system solution.

• The dynamic series converges several times faster compared to the quasi-static terms.
Among them, the TE case has faster convergence.

• The relative surface of the rooftop’s domains have an important influence in the series
convergence. Small values of rS in a mesh deteriorates the convergence rate of the MoM
entries and therefore the computational time.

About the reactions at the different level (z 
= z′): The convergence of the series arising in
z 
= z′ interactions:

• is guaranteed by the evanescent modes attenuation,

• is fast and justifies the direct evaluation of the series,

• deteriorates with small separation |z − z′| between source and observer;

• TE series converge faster than TM series.

• The shape of the source and observer cells is not determinant for theses series conver-
gence.

The only risk at this type could be the simulation of highly attenuated waves. Nevertheless,
the algorithm presented in §4.2 but not present any numerical instabilities [§4.4] in this case,
contrary to other formulations.
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Figure 5.15: Comparison between the convergence achieved in the TM and the TE series against the
number of modal terms considered in the sum: h(gray-•) and h/10(black-◦).
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Figure 5.16: Convergence of TM series (reaction #1’–#2) with the following gap thickness: h(•),
h/2(◦), 2h (×). The variable m is the number of TM modes.
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5.4 Losses

This section is a succinct presentation of the approaches used in our simulation tool to model
losses in multilayered boxed printed circuits. The losses in dielectrics are treated rigourously
(from a macroscopic point of view) while in the metals, except for the upper/lower cavity
covers, an approximate perturbation method has been adopted instead. Nevertheless, the
latter method is accurate enough for the type of devices targeted for simulation. A summary
of the origin of losses and the approaches followed to model each case is presented in Table 5.4.

5.4.1 Metallic Enclosure

A multilayered cavity, illustrated in Fig. 5.1, can be seen as a rectangular waveguide filled
with dielectrics pilled up along the z-axis and short-circuited at both ends by metallic plates,
corresponding to the cavity covers at z = 0 and z =

∑N
i=1 hi. The formulation of losses

follows the same strategy. The lateral walls are modeled as a rectangular waveguide losses
and those produced on the top and bottom covers are taken into account as resistive loads to
the propagation of this waveguide modes.

Lateral Walls

Due to the finite conductivity of the metal, a volume current density flows within the cavity
wall producing a tangential component of the electric field. Consequently a PEC BC can not
be applied anymore, that is, Etan 
= 0. This introduces substantial differences with respect to
the lossless case [38]:

• The new boundary value problem solution (even with lossless dielectric) allows complex
eigenvalues. That is, the κi associated to each mode becomes in general complex-valued.

• The cutoff frequency does not separate transmission from attenuation (as with lossy
dielectrics)

• A good approximation for thick conductors (when the field does not traverse the con-
ductor) can be achieved by a boundary problem involving different media [39]. The field
solution, in this case, requires hybrid modes (to accomplish simultaneously the electric
and magnetic field z-components) and therefore, the TE, TM and TEM decomposition
is not valid anymore.

• The new characteristic modal set is not orthonormal as in the lossless case since this
property was a mathematical consequence of the PEC BC on the waveguide’s wall.

Consequently, a rigorous solution to the lossy problem [39][40, p. 324] can not be extrapolated
from the lossless problem and would need a completely different and cumbersome approach
even for the simplest geometry. An approximate method, based on a perturbation of the
lossless case [41, p. 24], is therefore preferable since our interest is focused on devices fabri-
cated with low-loss conductors. This theory is commonly named after the Russian physicist



Section 5.4: Losses 117

T
y
p
e

L
o
ca

ti
o
n

M
o
d
el

S
h
o
rt

D
es

cr
ip

ti
o
n

S
u
b
st

ra
te

lo
ss

es
D

ie
le

ct
ri

cs
E

q
u
iv

al
en

t
co

m
p
le

x
p
er

m
it

ti
v
it
y

/

p
er

m
ea

b
il
it
y.

A
tt

en
u
at

io
n
/d

el
ay

α
d

+
jβ

fo
r

ea
ch

m
o
d
e

of
th

e
w

av
eg

u
id

e.

L
a
te

ra
l
w

al
ls

L
eo

n
to

v
ic

h
B

C
s

on
th

e
w

av
eg

u
id

e

cr
os

s-
se

ct
io

n
fo

r
ea

ch
m

o
d
e.

A
tt

en
u
at

io
n

co
effi

ci
en

t
α

c
as

so
ci

at
ed

to

ea
ch

m
o
d
e

of
th

e
w

av
eg

u
id

e.

O
h
m

ic
L
os

se
s

C
av

it
y

T
o
p
/b

o
tt

om
co

v
er

B
C

s
at

z
=

co
n
st

.

L
oa

d
s

th
e

tr
an

sm
is

si
on

li
n
e

m
o
d
el

,
fo

r

ea
ch

m
o
d
e,

w
it

h
it

s
w

av
e

im
p
ed

an
ce

:

Z
w
(σ

,ω
).

P
ri

n
te

d
C

ir
cu

it
s

IE
fo

rm
u
la

ti
on

w
it

h
L
eo

n
to

v
ic

h

(I
m

p
ed

an
ce

)
b
ou

n
d
ar

y
co

n
d
it

io
n
s

on

p
ri

n
te

d
ci

rc
u
it

su
rf

ac
es

.

S
ep

ar
ab

le
M

oM
m

at
ri

x
:

fu
ll
y
-p

op
u
la

te
d

lo
ss

le
ss

m
at

ri
x

+
sp

ar
se

lo
ss

y
m

at
ri

x
.

T
a
b
le

5
.6

:
Q

u
an

ti
ta

ti
ve

d
es

cr
ip

ti
on

of
lo

ss
m

o
d
el

s.



118 Chapter 5: Analysis of Multilayered Boxed Printed Circuits

Leontovich and is adequate for the evaluation of losses in waveguides that satisfy the following
conditions:

• good conductive walls: which permits the approximation of deriving the tangential
electric field from the tangential magnetic field resulting in the lossless problem.

• when the frequency is not too close or below the cutoff value : the estimation of
α is based on the power loss law, that is, 2αcP = PL which associates the diminution of
the power flow along the waveguide P (left side expression) to the power loss in the walls
PL. If a mode is under cutoff (in the lossless case), the power flow becomes zero and
therefore the above formulation is not applicable anymore since α → ∞. Nevertheless
in this case, the attenuation of the evanescent wave is usually dominant.

• if the skin depth is considerably smaller than the wall thickness and greater

than the average surface irregularities: the field can not “see” through the wave-
guide walls or the surface roughness [42].

Let us assume a rectangular waveguide, with dimensions a × b and wall conductivity σ, that
satisfies the above conditions. The Leontovich approximation adds an attenuating term αc[
nep·m−1

]
to the propagation constant γ of each mode. Given a mode with indices (m, n) and

cutoff wavenumber κ2 = k2
m + k2

n , these attenuation constants are deduced in [41, pp. 57-60]
and presented here in a simplified form:

αTM
c (ωn) =

2R
η0

[
k2

m/a + k2
n/b

κ2D(ωn)

]
(5.27a)

αTE
c (ωn) =

R
ab η0

[
εnk2

ma + εmk2
nb

κ2
D(ωn) +

εna + εmb

ω2
n D(ωn)

]
(5.27b)

where

εn =

{
1 n = 0
2 n 
= 0

.

The equations (5.27) are frequency dependent due to two terms. The first one is the charac-
teristic resistance that is expressed as

R =
k0η0

2
δs ∝

√
ω
[
Ω
]

(5.28)

and is proportional to the penetration depth

δs =

√
2

ωμ0σ

[
m
]
, (5.29)

the wavenumber k0 = ω
√

μ0ε0 [m−1] and the intrinsic impedance in the vacuum η0 =√
ε0/μ0 ≈ 120π [Ω]. The second term corresponds to the following factor:

D(ωn) =

√
1 − ω−2

n (5.30)
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that we have denoted as “dispersion factor” since it is responsible for the dispersion in the
waveguide. It has been defined with respect to ωn = ω/ωc, the frequency normalized to the
cutoff frequency of the current mode. Equations (5.27) are only valid over cutoff frequencies
ωn > 1.

Top/Bottom Covers

The existence of the top and bottom cavity covers in the lossy case is modeled as two semi-
infinite layers of lossy dielectrics to attenuate the modes propagating along the z-axis. There-
fore, the equivalent transmission line model for the GF loads the circuit’s ends with resistive
impedances [{ZR, ZL} ∈ C in Fig. 4.1]. Their values correspond to the modal impedance of a
conductive dielectric with relative permittivity [40, §2.2]

εr = 1 − j
σ

ωε0
(5.31a)

and consequently, a loss tangent

tan δr =
σ

ωε0
. (5.31b)

Therefore, the propagation constant and the characteristic impedance for each mode in these
“fictitious infinite” layers are affected.

5.4.2 Printed Circuits

The approach used to model the losses in the printed circuit metallizations, as for the lateral
walls of the cavity, is based on the Leontovich approximation and therefore, the constraints
described in §5.4.1 apply here too.

Nevertheless, in this case the method is directly used in the formulation of the IEs by imposing
the so-called Leontovich or Impedance BCs (§5.2), which states that the total tangential E-
field on the circuit’s surface Ω (i.e. the sum of the impressed and the scattered fields) must be
equal to the induced surface currents modified by an impedance factor‡. Formally, this can
be written as

ẑ ×
(
Ei

t + Es
)

= ZsJs, (5.32)

where

Zs =
1 + j

σδs

with the penetration depth defined in (5.29).

Rewriting here, the MoM system matrix (5.4)

v = (Z − Λ) · i, (5.33)

outlines that the losses are incorporated into the problem as a correction term to the lossless
MoM matrix. Due to the nature of the matrices involved, this could be also interpreted in a

‡In fact, this term represents an approximation of the actual transverse E-field on the conductive surface.
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Figure 5.17: Mapping of a rectangular/triangular cells into a u − v normalized domain.

circuit language as: “the losses are incorporated as complex impedances and added in series
to the lossless circuit”.

Using linear subsectional BFs (§3.4.1) makes the losses matrix Λ sparse, since the integral
in each term (5.6) will be zero if the BFs do not overlap. The non-vanishing terms can be
calculated from the integral between two half-BFs as follows

�
D∩D′

b · b′ dS = ±
�
Δ

g± · g′± dS, (5.34)

provided that b = g+ − g− is decomposed in half-BFs and they overstrike in the region
Δ = D

⋂
D′. Analytic solution to (5.34) can be found using a transformation of the surface

of integration D into a normalized surface. This mapping is represented, for rectangular and
triangular domains, in Fig. 5.17. The solution to these integrals follow.

Integration Over Rectangular Cells

There are four orthogonal orientations of a half-rooftop g in a rectangular subdomain D
[cf. Fig. 3.3]. Considering two half-rooftop randomly oriented in the same domain, then
(5.34) can be reduced to four types of integrals. Any combination of half-rooftops oriented
perpendicularly gives zero. Symbolically representing the half-rooftop orientation with arrows,
this could be written as follows

�
Δ

g(�) · g′(⇒) dS =
�
Δ

g(⇒) · g′(�) dS = · · · = 0. (5.35)

Nonetheless, if they are parallel we can distinguish two cases. First, when they have the same
orientation, the integral is given by

�
Δ

g · g′ dS = Δ

1�
0

1�
0

|g|2 dudv =
L2

3Δ
, (5.36)

where Δ is the area of the rectangle and L = {|u|, |v|} is the length corresponding to the
rectangle’s common side (§3.4.1). The second case arises when the half-rooftops are defined
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on opposite common sides:

�
Δ

g(∠) · g′( ∠) dS = Δ

1�
0

1�
0

g(∠)g′( ∠) dudv =
L2

6Δ
, (5.37)

where the ∠, ∠symbols represent the linear variation of the half-rooftop within the cell.

Integration Over Triangular Cells

Using the local coordinate system (u, v) of the normalized triangular surface, shown in
Fig. 5.17, any half-RWG can be defined as [cf. (3.18)]

gi =
1

2Δ
[(u − αi)u + (v − βi)v] (5.38)

where Δ is the triangle’s surface and the constants αi, βi = {0, 1} define the local origin,
or in other words, the relative orientation of the half-RWG within the triangle. After some
algebraic manipulations, the analytic solution of the overlapping integral between two generic
rooftops i, j on a triangular cell is given by

�
Δ

gi · gj dS =
1

4Δ

[
|u|2 (αiαj − 2/3(αi + αj) + 1/2) +

|v|2 (βiβj + 1/6) + u · v (αiβj + αjβi − 2/3(βi + βj))
]
. (5.39)

5.4.3 Losses in Dielectrics

The electric (magnetic) type of dissipation in homogeneous isotropic substrates is introduced
in the formulation by means of a complex permittivity (permeability) [39, 40, 43, 44]. These
values will be considered constant in our band of interest (DC to microwave frequencies) and
can be expressed, relative to the vacuum permittivity ε0 (permeability μ0), as follows

εr =
ε

ε0
= ε′r − jε′′r = ε′r(1 − j tan δe), (5.40a)

μr =
μ

μ0
= μ′

r − jμ′′
r = μ′

r(1 − j tan δm), (5.40b)

where tan δe and tan δm are the electric and magnetic loss tangents, respectively. Having done
this characterization of the dielectrics, we can procede with the resolution of the transmission
line model as described in §4.5.
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5.5 Network Characterization.

From the engineering point of view, one of the most useful results corresponds to the network
characterization of the circuit under investigation. This characterization should also consider
special cases where certain ports are loaded or interconnected by means of lumped elements
or in general any other type of multiport network. In particular, short-circuiting some parts
of the structure is commonly employed in printed circuits. In this type of technology, this is
typically achieved by means of two techniques, namely, a direct ohmic contact of the circuit
to the lateral cavity walls or by means of via holes.

This section explores different approaches to model these scenarios starting with the solution
of the IE-MoM problem, as described §5.2. We will also present how these techniques, in con-
junction with an equivalent circuit of the vertical wire connection, can be used to approximate
the via-hole effect.

5.5.1 Ports Loads and Interconnections

The design of printed circuits may require using lumped elements in the circuit or the inter-
connection of different ports. For example, a resistor interconnecting two ports balances a
Wilkinson power divider [45, §7.3] or lumped capacitors loading a combline filter [see §5.6.4]
are used to reduce the resonators length. The characterization of these problems can be
treated at a network level and, therefore, reduced to the connection of different multiport
networks, as represented in Fig. 5.18.

ap �
bp �

p
ac �
bc �

c

�ad�bd

d

�a
q

�
b

q

q

S T
M

Figure 5.18: Connection of two multiport networks. The multiport network defined with S is asso-
ciated to the EM problem and T incorporates external circuits or interconnections.

Once the ports are identified in the printed circuit, the scattering parameters can be derived
from the solution of the EFIE-MoM problem by following the procedure described in §2.6.
The resulting matrix is denoted here with S.

At this point, the ports could be loaded or interconnected by means of lumped elements or
in general any other multiport network, as soon as their scattering parameters are available.
The procedure to follow is represented in Fig. 5.18. Let us denote with T the scattering
matrix of an external circuit to be connected to the printed circuit network S. Without loss
of generality, the connection is carried out between each pair of ports c = [c1, c2, · · · , cN ] and
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d = [d1, d2, · · · , dN ] belonging to both circuits, respectively, and reducing the network to a
new (P + Q)-ports scattering matrix M. The latter refers to the scattering parameters for
the remaining ports p = [p1, p2, · · · , pP ] and q = [q1, q2, · · · , qQ].

The connection of these two networks may be performed using the technique explained in [46,
§2.10]. First the matrices are rearranged such that[

bp

bc

]
=

[
Spp Spc

St
pc Scc

]
·
[

ap

ac

]
(5.41a)

[
bq

bd

]
=

[
Tqq Tqd

T t
qd Tdd

]
·
[

aq

ad

]
(5.41b)

where “t” denotes transpose matrix and ai,bi are vectors containing the incident an reflected
wave amplitudes for every set of ports. Then, the resulting M scattering matrix is calculated
as

M =

[
Spp 0

0 Tqq

]
+

[
Spc 0

0 Tqd

]
·
[
−Scc I

I −Tdd

]−1

·
[
St

pc 0

0 T t
qd

]
(5.42)

where I,0 are the identity and a null matrices, respectively. This procedure can be repeated
successively for every additional T network to be connected. Nonetheless, if the number of
networks is not large, this operation can be performed in a single iteration by generating a
super-matrix gathering all the terms, as illustrated in Fig. 5.19(b).

1

2

3

S

(a) Matrix S connected with
three networks.

1

2

3

4

5

6

T

(b) Example of a super-matrix T

Figure 5.19: Example of connection of multiple network using a single matrix T .

This example starts assuming the connection of an inductance, a capacitor and a three-port
network to the original S matrix circuit, as illustrated in Fig. 5.19(a). One possibility is to
proceed successively connecting each new component by (5.42). Alternatively, this can be
done in a single step. It suffices to gather all the external elements in a single scattering
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matrix, as represented in Fig. 5.19(b), having the following shape

T =

⎡⎣ ΓC 01×2 01×3

0 SL 02×3

0 03×2 S3

⎤⎦ , (5.43)

where ΓC is the reflection coefficient presented by the parallel capacitor and SL,S3 are the
scattering parameters for the series inductance and the three-ports circuit, respectively.

On the other hand, if the circuit only requires loading ports, e.g. as the capacitance loading
S in Fig. 5.19(a), it would be more advantageous to use the following formula [47]:

Mij = Sij +
N∑

k=1

SikΓkSkj

1 − SkkΓk
(5.44)

where Γk is the reflection coefficient of the kth load.

Finally, special care must be taken in the definition of internal ports (i.e. inside the cavity)
since it has been demonstrated that numerical parasitic elements arise due to the application
of a localized excitation (§2.6) far from the ground/reference plane (i.e. the cavity walls)
[48, 49]. Here we take advantage of the contour formulation of integrals in §3.3.2 to vanish
the potential at the edge of the port cell, producing a artificial ground that avoids parasitics.

5.5.2 Connections to Ground.

The connections to ground are frequent in the printed circuit structures. These are normally
achieved in at least two different ways a) direct ohmic contact with the lateral cavity wall, or
b) via-hole to ground. The first case can be achieved with this formulation by adding a half-
basis function at the contact region in order to allow the current flow from the printed circuit
to the cavity walls. Using image theory we can see how the currents component parallel to the
wall vanishes while those perpendicular are reinforced. On the other hand, the formulation
of this chapter represent a constraint to accurately model via holes since only planar currents
are considered. Nevertheless, an approximation can be applied by creating instead a port and
loading it with an equivalent circuit of the vertical wire, as discussed in the previous section.

In order to show both techniques we will ground the microstrip stub of the structure in
Fig. 4.15 from §4.6. In addition, the height b of the box cross-section has been halved in order
to avoid spurious resonances from the cavity. A grounded stub of a quarter wavelength will
produce the complementary response in this structure, i.e. a full transmission between ports.

In Fig. 5.20 we illustrate four different scenarios where the microstrip stubs are connected to
ground and the circuit layout has different offsets kΔ for k = 0.2, 0.5, 0.9, 1. In the three first
scenarios, the stub is loaded with an equivalent inductance that emulates the effect of four
microstrip via holes [50]. The layout is shifted towards the upper wall and, in the last scenario,
the short is produced directly by ohmic contact on the lateral cavity wall. The responses of
these circuits are very similar and produce a transmission zero around 2.7 GHz, as shown in
Fig. 5.21. The cavity resonance, caused by the TM10 mode, is still present at 3.5 GHz. The
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differences between the responses of these circuits are presumably due to the capacitive load
of the cavity walls on the printed circuit, specially at the stub end.
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Figure 5.20: Different scenarios with grounded stubs.
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Figure 5.21: Comparison between the responses of the structures in Fig. 5.20.
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5.6 Applications

Extensive numerical experiments have been carried out to assess the performance and validity
of the theory presented hitherto. In this section, the results of the numerical simulations using
our approach are compared to simulations obtained with other numerical solvers and with
measurements for a set of carefully chosen benchmark structures. Studies of convergence, in
terms of modal series and mesh density, accuracy and performance, by comparing simulation
times with other solvers, have been performed for every test-structure. However, in order to
keep a reasonable document size, only some of them are presented here.

5.6.1 Coupled-lines Filter

The first structure consists of a coupled-line bandpass filter in microstrip technology. This
circuit, described in Fig. 5.22, is an excellent test case and being extensively used as bench-
mark to validate other IE-based methods [8, 22, 51] is a proof of it. This device presents
three main points of interest: a) lossy dielectrics and finite conductivity in metals, b) thin
dielectrics and c) strong coupling between adjacent resonators through a small gaps.

Box size

L1

L1

L2

L2

L3

S1

S1

S2

S2

S3

W

W = 0.355 mm
L1 = 2.900 mm
L2 = 2.708 mm
L3 = 2.887 mm
S1 = 0.100 mm
S2 = 0.613 mm
S3 = 0.802 mm

εr

a = 25.4 mm
b = 25.4 mm

(*) Figure not scaled.

Dielectric Height [mm] R. Permitt. Losses
i hi εri tan δei

2. Air 3.6 1.0006 0
1. - 0.4 9.8 0.003

• Cavity: a = 25.4, b = 25.4 mm; ρCu = 1.82 μΩ·cm
• Microstrips: Copper ρCu = 1.82 μΩ·cm

Figure 5.22: Description of Coupled Lines Filter [8, 22, 51].

This device is specially lossy and therefore a good candidate to validate the approach discussed
in §5.4. Based on the description of loss models in Table 5.4, we have distinguished three types
of loss sources: losses in dielectrics, printed circuits and finally cavity. In order to see the
relative effect of each one in the filter response we have performed several simulations with
different scenarios. Starting from a lossless simulation, each scenario incorporates a new type
of losses with respect to the previous one. Hence, in Fig. 5.23 the first simulation do not
consider losses (thin solid line), then the dielectric losses are taken into account (dotted line).
Its effect is better observed in the insertion losses. Nonetheless, the biggest variation on the
frequency response is detected when the ohmic losses in the printed circuit are included (gray
solid line). Finally, the last curve (tick solid line) corresponds to the simulation of all the
losses in the circuit, including metallic enclosure (thick). The difference with respect to the
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previous response (gray solid line) is not significant meaning that losses in the cavity are not
important compared to the other types of losses. This can be justified by the fact that the
resonant field is mainly concentrated in the strips resonators and not in the cavity.
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(a) Return Losses.
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Figure 5.23: Influence of Losses. Lossless (thin solid line), + dielectric (dotted line), + Cu strips
(gray solid line), + Cu cavity (thick solid line).

The coupling between strip resonator in the filter has an important effect in the electric circuit
response [45, §8.7]. The accuracy in the simulation of couplings will depend on the mesh of
the printed lines and the convergence achieved in the modal series (i.e. in the reaction terms
of the MoM). This second aspect, is also compromised in this case due to the small thickness
of the dielectric [cf.§5.3.4].

Let us consider three different schemes, as represented in Fig. 5.33, with different mesh den-
sities. In all three cases, a rectangular cells mesh extends over the strip resonators with a
density of ≈ 20 div/λ along the lines. A rectangular mesh will describe more ”naturally the
surface current flow along straight lines and it is dense enough to shape its variation [52]. The
lines’ widths, on the contrary, are divided differently in each case increasing its density from
one up to three cells per width.

Before comparing the responses of each mesh scheme, the modal convergence in each problem
must be guaranteed. The number of modes for the quasi-static and dynamic series has to
be determined. Due to the large amount of BFs, a convergence study of every entry of
the MoM matrix would be cumbersome. Therefore, we will base the convergence study on
the relative variation of the scattering parameters. The procedure consists of performing
successive simulations where, starting from an initial guess, the number of modes in the series
are risen until any significance variation is detected in the resulting scattering parameters.
With this method we search the minimum number of modes necessary for stable results, first
for the quasi-static part and then, keeping this results, we proceed with the dynamic part.
The figure of merit for the convergence is defined with an error function that measures the
relative square error in the S parameters between two consecutive simulations averaged over
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Figure 5.24: Three mesh schemes with rectangular mesh with lines of ≈ 20 div/λ

N frequency samples. This error function is expressed as

E =
1

N

N∑
i=1

P∑
k=1

∣∣∣∣Si(k) − S0i(k)

S0i(k)

∣∣∣∣2 (5.45)

where i and k extends to the N frequency samples and the P elements of the S matrix,
respectively. The subscript 0 denotes the previous iteration which is taken as a reference.

The parameters used in this process are the following:

ΔQs ΔDy N Eth

× 1.2 × 1.05 14 0.005

where Eth is the threshold error that determines when the algorithm stops, and ΔQs, ΔDy

represents the increment in the number of modes of the quasi-static and the dynamic series,
respectively. Here, the bandwidth was split into two intervals covering [9,10.2] GHz and
[10.4,11] GHz and samples were taken uniformly with steps of 0.2 and 0.1 GHz, respectively.

The error function (5.45) resulting on each iteration is represented in Fig. 5.25 for every mesh
scheme. The size of cells are reduced from one scheme to the next and therefore, according to
previous studies (§5.3.5), the number of modes needed for convergence is bigger. Consequently,
the number of modes for the quasi-static series obtained in one scheme is used as initial guess
for the next one. We can observe how the error is decreasing as the number of modes in the
simulation is increased.

The previous study provided us with the number of modes that guarantees a stable response
in all three scenarios considered. With these parameters, the simulated responses are shown
in Fig. 5.26. The simulations show how the filter bandwidth increases as the number of cells
in the lines width augments, which is normally due to a stronger coupling between resonators.

In Fig. 5.27, the response simulated with our method using the mesh of Fig. 5.33(c) is plotted
over a the measurements of a prototype presented in [51]. The comparison shows excellent
agreement between both responses, which validates our approach for the simulation of this
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Figure 5.25: Representation of the error in the scattering parameters as a function of the number of
modes in mesh (a)(•), (b) (◦) and (c) (×) from Fig. 5.33.
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(a) Insertion Losses vs Frequency
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(b) Return Losses vs Frequency

Figure 5.26: Simulations with different mesh densities: Single cell (dotted line), two cells (dashed
line), three cells (solid line) per width.

filter.
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Figure 5.27: Comparison between measurements (solid lines without symbols) and simulations of the
return losses (solid line with •) and insertion losses (solid line with ◦).
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5.6.2 Multilayered Bandpass Filter

The next design, described in Fig. 5.28, corresponds of a coupled-line bandpass filter in a
multilayered configuration and it is based on a design proposed in [22]. The filter is composed
of two thin dielectrics disposed at both ends of the cavity and separated by an air gap. These
dielectrics are used as support for the planar circuits that are printed at the side in contact
with the air. The layouts are also illustrated in Fig. 5.28. The labels C1 and C2 denote the
layout corresponding to the top and bottom circuits, respectively.

C1

C1

C2

C2

L1

L1

L2

L2

L3

L4

S1 S2

W

a

b
W = 1.49 mm

L1 = 15.000 mm

L2 = 23.980 mm

L3 = 24.016 mm

L4 = 27.400 mm

S1 = 0.170 mm

S2 = 1.085 mm

RT/Duroid 5870

Vacuum

RT/Duroid 5870

Dielectric Height [mm] R. Permitt. Losses
i hi εri tan δei

3. RT/Duroid 5870 0.51 2.33 0.0012
2. Air 3.06 1.0 0
1. RT/Duroid 5870 0.51 2.33 0.0012

• Cavity: a = 32, b = 14.82 mm in BeCu alloy
(ρBeCu ≈ 8.21μ·cm).
• Microstrips: ρCu = 1.82 μΩ·cm

Figure 5.28: Description of Three-layers Bandpass Filter.

This structure provides a suitable test case to validate the transmission line model (§4.5) that
accounts for the layered media, as well as the interaction between sources at different height
levels (§5.3.6). A prototype of this design has also been built and measured. The materials
used in the fabrication, specially the metallic components, are quite lossy and therefore a
preliminary study of the losses will also be carried out. The influence of losses in the filter
response is represented in Fig. 5.29. This study follows the same criteria considered in the
previous test-structure, that is, to successively introduce the losses effect.

It can be observed that the impact of ohmic losses on the printed circuit increases considerably
the insertion losses. Here, the influence of the cavity losses is more significant than in the
previous structure. This is not only due to the lower conductivity of the metal (lossy ground
plane) but also to the cross-coupling between C1 and C2. The latter takes place in vertical
direction and therefore the field is guided through the rectangular cross-section of the cavity.
This justifies the difference between the two last responses (gray and thick black solid lines).

A prototype of this design has been built in the laboratory and Fig. 5.31 provides an overview
of the fabrication process. Measured responses of the prototype is compared with our simula-
tions in Fig. 5.30. A narrow frequency span is to monitor the filter bandwidth is plotted for
magnitude in Fig. 5.30(a). The phase for the reflection coefficients Sii = S11, S22 is plotted in
Fig. 5.30(c) while Fig. 5.30(c) shows the phase for the transmission coefficients Sij = S12, S21.
Finally, the filter response is also compared in a wider frequency span in Fig. 5.30(b).

The comparison in the bandpass shows a frequency shift in-band smaller than 2% with respect
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Figure 5.29: Influence of Losses. Lossless (thin solid line), + dielectric (dotted line), + Cu strips
(gray solid line), + BeCu cavity (thick solid line).

to the center frequency and the error in the insertion losses is at most 5 dB for values below
-40 dB. The responses in wide-band also show a good matching between simulation (black)
and measurements (gray). The difference in the transmission zero around 5.1 GHz can be
justified by the tolerances in the air gap height [see fabrication process in Fig. 5.31] since a
variation there can change the cross-coupling path that produces such a zero.
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(b) Wide span.
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(c) Phase Sii.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

Frequency [GHz]
(d) Phase Sij .

Figure 5.30: Frequency response obtained with simulation (black line) and measurements (gray line).
Scattering parameters S11, S12 (solid line) and S22, S21 (dashed line).
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Layout printed on substrate after pho-
tolithography and wet-etching process.
The backside of the dielectric is metal-
lized.

The substrate is cut according to the box
dimensions into two dielectric layers: C1

(bottom) and C2 (top). The coaxial con-
nectors (Huber+Suhner 82 SMA-50-0-41)
are aligned to the edge of C1 and weld to
the feeding microstrip lines.

Using an auxiliary piece as support, the
second layer C2 is now weld to the con-
nector at the proper height h2. The auxil-
iary piece is then removed and the air gap
expected between substrates is accurately
achieved.

In order to complete the enclosure, lateral
walls are now joined to the structure. The
electric connection between the different
walls of the cavity is done by welding from
the outer side to keep straight the inner
folds. This completes the assembling of
the prototype.

Final view and dimensions of the proto-
type.

Figure 5.31: Assembling of the prototype



Section 5.6: Applications 135

5.6.3 Ring Resonator

The following benchmark, illustrated in Fig. 5.32, is a slow-wave bandpass filter using a single
ring resonator coupled through a gap. This design was proposed in [53] but in an open
microstrip structure. Other authors [24, 25] have used the same circuit enclosed inside a
perfect magnetic walls box, to simulate the finite thickness of a dielectric. Here, we use the
dimensions of the latter box but imposing perfect electric boundaries instead.

Figure extracted from [53].

ls s la lb lc w0 w1

12.070 0.200 12.376 6.500 5.456 1.158 0.300

Dielectric Height [mm] R. Permitt. Losses
i hi εri tan δei

2. Air 5.0 1.0006 0
1. RT/Duroid 6010 1.27 10.5 0.0024

• Cavity: a = 24.752, b = 40.828 mm; PEC.
• Microstrips: ρCu = 1.82 μΩ·cm

Figure 5.32: Description of Ring Resonator.

The novelty of this filter with respect to the other test cases lies on the shape of the printed
circuit. An accurate modeling of the currents on the microstrip circuit requires a hybrid
mesh combining triangular and rectangular cells. The triangles are used to model the flow in
junctions and bends while the straight microstrip lines are meshed using rectangles.

Let us consider three mesh schemes represented in Fig. 5.33. Each configuration is generated
with a different density. The first mesh, in Fig. 5.33(a), segments the lines into approx.
10 Div./λ using two cells in the main line’s width. In the second configuration, in Fig. 5.33(b),
the the lines are more densely segmented into approx. 25 Div./λ. Finally, Fig. 5.33(c) is like
the previous but with a refined mesh in the coupling lines and along the ring resonator.

The response simulated for each mesh configuration is presented in Fig. 5.34, provided that
the convergence of the modal series is achieved. The comparison shows very small differences
between the different mesh schemes. Only a very small variation can be observed between the
low-density mesh case corresponding to the scheme (a) and the rest.

The accuracy of our approach has been checked using as reference the response obtained by
simulation with a commercial software [54]. The comparison of Fig. 5.35 shows an excellent
agreement between both simulations.

Finally, Fig. 5.36 illustrates the induced currents on the printed circuits at two frequencies
when the circuit is excited with one watt of available power (14.4 V on 50 Ω). The first plot,
in Fig. 5.36(a), represents the currents at 2 GHz, corresponding to the first transmission zero
in the filter response. In Fig. 5.36(b), the complementary effect is observed at the center
frequency 2.48 GHz where a full transmission is produced.



136 Chapter 5: Analysis of Multilayered Boxed Printed Circuits

0
0

5

5

10

10

15

15

20

20

25

30

35

40

[mm]

[m
m

]

(a) ≈ 10 Div./λ.

0
0

5

5

10

10

15

15

20

20

25

30

35

40

[mm]
(b) ≈ 25 Div./λ.

0
0

5

5

10

10

15

15

20

20

25

30

35

40

[mm]
(c) ≈ 25 Div../λ and refinement
in ring.

Figure 5.33: Three mesh schemes generated with triangular and rectangular cells.
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Figure 5.34: Comparison between results of simulations with mesh (a) (dotted), (b) (dashed) and
(c) (solid) from Fig. 5.33.
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Figure 5.35: Return and insertion loss obtained with a simulation using our approach (solid line)
and a commercial software [54] (dashed line).
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Figure 5.36: Magnitude of the surface currents J(r) · J∗(r) A/mm induced in the circuit by exciting
first port (left-hand side) with one watt of available power (Vg = 14.4V and Zg = 50 Ω).
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5.6.4 Tapped-combline Bandpass Filter

Next benchmark, represented in Fig. 5.37, consists of a fifth-order tapped combline bandpass
filter in microstrip technology [55]. The capacitors connected between the resonators and the
cavity wall are considered lumped elements, and therefore of zero length. In the reference
[55], the description of the design was not accurate and some important parameters, like the
taper offset Δ or the details about the enclosure (if any), where missing.

Δ

Wi

L

Ci

0

1 2 3

s12 s23

Σ

L s12 s23

2.73 0.076 0.102

i Wi[mm] Ci[pF]

1 0.2032 0.2002
2 0.4064 0.2366
3 0.4572 0.2531

Dielectric Height [mm] R. Permitt. Losses
i hi εri tan δei

2. Air 3.3 1.0006 0
1.Duroid 5880 0.25 2.20 0.0009

• Cavity: a = 6.032, b = 2.73 mm; Cu ρCu = 1.82 μΩ·cm
• Microtrips: Cu

Figure 5.37: Description of Tapped-Combline filter [55].

This is a valuable test case that combines a coupled microstrip lines with lumped elements.
Among other, it will serve to validate the connection of lumped elements to the high frequency
device (§5.5).

The layout was discretized using rectangular cells in the lines and triangles in the junctions.
The mesh is generated with a density of ≈ 28 div/λ along the lines and 3 cells in width. The
convergence of the modal series is also verified. The simulation time, in a PC equipped with
an Intel�Pentium D, 3.0GHz and 1GB RAM, is of 20 sec + (1.4 sec/freq).

Due to the incertitude in the value of some of the design variables we will perform some
experiments in order to determine the behavior of the filter response.

Position of the Tapped-line: The filter is simulated with different values of offsets Δ/b rela-
tive to the first/last resonators length. The responses are plotted in Fig. 5.38 and show, as
expected, how this parameter affects the matching of the filter response [56, §2]. In principle,
the best matching is produced for an offset of Δ/b = 0.3833.

Cavity dimensions: The reference publication describes that the filter has an upper cover
and a ground plane for the microstrip circuit but it does not specifies anything about the
presence of lateral walls. Nonetheless, this method requires the circuit to be enclosed inside
a cavity. Hence, in Fig. 5.39, several simulations have been carried out in order to monitor
the filter response for different cavity geometries. Two parameters of the cavity are changed:
the width and the height. The fist case is shown in Fig. 5.39(a). The distance between the
loaded end and the cavity wall is changed successively in the three simulations. The response
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(b) Δ/b = 0.2278.
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(c) Δ/b = 0.3056.
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(d) Δ/b = 0.3833.
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(e) Δ/b = 0.4611.
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(f) Δ/b = 0.5 .

Figure 5.38: Insertion (dashed line) and return (solid line) losses (dB) versus frequency (GHz) for
different positions of tapped line.

reduces its bandwidth and, in the last case, it produces a drastic shift of the transmission zero.
Keeping the first configuration, the height of the cavity is modified in Fig. 5.39(b) producing
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an improvement in the isolation and again a reduction of the filter bandwidth.
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(a) Variation of the cavity width.
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Figure 5.39: Influence of the cavity dimensions in the filter response considering a tapper offset of
Δ/b = 0.3833. Note: the symbols of the capacitors are not printed but the y are taken
into account in the simulations.

One of the main topics to verify with this benchmark is the simulation of lumped elements
within the full-wave EM analysis. The capacitors in this design determine the electric length
of the filter resonators. In order to demonstrate the validity of the implementation, we have
simulated the same structure by multiplying all capacitors by a factor 1.5 and 0.5. All the
frequency responses are compared in the same plot in Fig. 5.40. The new electric length of the
resonators shifts the filter response towards higher (resp. lower) frequencies for lower (resp.
higher) capacitive loads.

Finally, using the setup of Fig. 5.37 with Δ/b = 0.5 the filter response has been compared with
the simulation and measurements available in [55]. The comparison is plotted in Fig. 5.41.
In the bandpass, represented in Fig. 5.41(a), the response simulated with our method (©1 )
reproduces well the position of the transmission zero and the bandpass shape although the
prediction of the bandwidth is smaller than the reference (©2 and ©3 ). Nonetheless, the slope
in the lower band is very well predicted with our method (©1 ) compared to the reference
measurements (©2 ). In Fig. 5.41(b) the same response is presented in a wider span, from 15
to 50GHz. In this case measurements are not available. The agreement in the filter bands and
the position of transmission zeros is good but a higher isolation is predicted in our method’s
simulation along the stopband. Considering the poor description of the filter layout given in
the reference [55], we believe that the agreement achieved is good. Observing the differences
in Fig. 5.41(b) seems to show that the original design actually is not enclosed in a cavity but
only has upper and lower shields. This could explain the higher isolation in the stopband
due to the evanescent modes attenuating along the dielectric-filled rectangular waveguide in
contrast with a laterally opened parallel plate waveguide.
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Figure 5.40: Filter responses in function of the capacitor values loading the resonators. Filter loaded
with Ci from description (—); 1.5Ci (· –) and 0.5Ci(– –).
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(b) Wideband response.

Figure 5.41: Insertion Losses (dB) versus frequency (GHz) of a tapped combline filter with Δ/b = 0.5.
Comparison between our method ( ©1 and solid red line) and published measurements
( ©2 and solid blue) and simulations (©3 solid black) from [55].
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5.6.5 Notch Filter

In the following example, we propose a notch filter in shielded microstrip technology. This
device has been designed for the front-end of a real tracking system developed in the laboratory
[57]. The specifications for the filter requires a high isolation at 4.87 GHz and very low
insertion losses at 2.42 GHz. Using a shielded environment in the design aimed two things,
first to avoid interferences from other EM sources and second to produce a higher rejection
at the notch frequency.

Δ δ

WWi

Ws

L1 L2

Ls1 Ls2

Δ δ W Ws Wi L1 L2 Ls1 Ls2

3.0 0.1 0.6 0.2 0.9 3.0 8.0 6.00 6.20

Dielectric Height [mm] R. Permitt. Losses
i hi εri tan δei

2. Air 3.8 1.0006 0
1. TMM10i 0.635 9.8 0.0017

• Cavity: a = 30.8 mm, b = 10 mm in BeCu alloy
ρBeCu = 8.21 μΩ·cm
• Microstrips: ρCu = 1.82 μΩ·cm

Figure 5.42: Description of Notch Filter.

A prototype, illustrated in Fig. 5.43, is fabricated following a technique similar to that for the
prototype in §5.6.2.

Figure 5.43: Different views of the prototype.

The results obtained in simulation and measurements are plotted in Fig. 5.44. The agreement
between both curves is in general excellent. Small differences can be observed in the level
of the first lobe, between 2 and 2.5 GHz, and in the prediction of the reflection zero around
3.5 GHz. The following analysis of sensitivity will reveal that these deviations can be justified
by the fabrication and material tolerances.

We will explore the sensitivity of the filter response to the tolerances inherent to the materials
or introduced during the fabrication process [see Fig. 5.45]. To account for theses inaccuracies,
the following parameters are considered into a Monte-Carlo method:

• Materials:

– Rogers TMM10i substrate with dielectric constant of εr = 9.8 ± 0.2 and thickness
h1 = 0.635 ± 0.038 mm.

– Circuit layout printed in copper with resistivity ρCu = 1.68 ± 0.1 μΩ·cm.

– Shield fabricated in a beryllium-copper with estimated resistivity of ρBeCu = 8.21±
0.2 μΩ·cm.
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Figure 5.44: Comparison between measurements (gray lines) and simulations (black lines).

• Fabrication:

– The circuit layout is printed with a precision (photolithography and wet-etching)
of approximately ±10μm.

– The assembling the shield-box and substrates ( same technique as in Fig. 5.31)
introduces inaccuracies in the air gap height of about h2 = 3.8 ± 0.2 mm and in
the cavity dimensions of ±0.5 mm.

– The alignment of the layout with respect to the box is critical due to the proximity
of the end-edge of the stub lines to the cavity wall. This can be taken into account
as an error in the offset Δ = 3 ± 0.05 mm.

Using a uniform variation of the 7 selected variables, a combination of 150 different struc-
tures, as illustrated in Fig. 5.45 is simulated with 50 samples on the target bandwidth. The
simulations, plotted versus the prototype’s measurements in Fig. 5.46, exhibit high sensitivity
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Material Mechanical
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Figure 5.45: Sensitivity analysis. Monte-Carlo method parameters. Dimensions are given in mm
and resistivity in μΩ·cm.

in the regions around the resonant frequencies (zeros of transmission and reflection) which
justifies the small differences appearing in Fig. 5.44.
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Figure 5.46: Measurements of scattering parameters (solid) compared to simulations from sensitivity
analysis (watermark).
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5.7 Conclusion

In this chapter we have specialized the previous methods for the analysis of multilayered boxed
printed circuits.

A key concept in the method are the modal series which corresponds to the reaction terms
filling the MoM matrix. When the reaction corresponds to bases situated at the same interface
(z = z′), the slowly convergent and an acceleration technique is essential for an efficient reso-
lution of the EM problem. An acceleration technique based on the Kummer’s transformation
provides us with a suitable solution. This technique is thoroughly discussed, starting with a
formal mathematical definition and following with a physical interpretation based on modal
propagation that provides us a valuable insight on what affects the speed of convergence in
the series. This method naturally decomposes the series into quasi-static and dynamic parts.
The latter has an improved convergence and the former is frequency independent. Therefore,
the evaluation of this type of reactions was split in two parts. The quasi-static contribution
are calculated outside the frequency loop and only the fast convergent dynamic part was
calculated per frequency sample. Numerical experiments on convergence confirmed most of
the theoretical advanced statements. Within the new series decomposition, the quasi-static
TM series has the worst convergence, specially when it belongs to a self-reaction term. The
convergence rate deteriorates in reactions taking place in small cells and when it occurs over
a thin dielectric with high dielectric constant, specially in the proximity of a ground plane.

The modeling of losses in dielectric layers, printed metallizations and metallic boxes were also
addressed. A Leontovich approximation was used for all the metallizations save for the upper
and lower covers of the box that were modeled as metallic substrates in the multilayered
media. It was interesting to find that the formulation of losses on the printed metallizations
adds a sparse matrix Λ to the lossless MoM matrix. Analytic solution of the integrals arising
in Λ were also presented.

In the context of an EFIE formulation, we revisited the procedure to obtain a network charac-
terization of the device from the solution of the MoM. At the same circuit level, we presented
a strategy to simulate lumped elements installed in the printed circuit. The same technique
can be extended to the connection of any multiport network with the ports of the printed
circuit.

Finally, extensive numerical experiments have been carried out to assess the validity and
the performance of the aforementioned theory. The test-structures were specially selected to
test different aspects of this type of devices. The convergence with the modal of terms in
the modal series and with the mesh density were systematically verified in every case. The
accuracy of the simulated responses was demonstrated by comparison with measurements
and/or with other numerical solvers. When literature data were not available, sometimes a
prototype was fabricated and measured. A sensitivity analysis, shown for one of the prototype
designs, demonstrated the reliability and efficiency of the method to deal with a large amount
of simulations. Other features presented throughout this validation process are the influence
of losses in the response or the prediction of surface currents on the printed circuit for a given
excitation.
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6 Conclusions

6.1 General Assessment

The work undertaken in the frame of this thesis has allowed us to enlighten some aspects
concerning the EM modeling of printed circuits in bounded layered media.

The IE in conjunction with the method of moment is known to be an efficient technique for
the simulation of printed circuits in open layered media. Introducing a transversally bound
structure destroys the translational symmetry in the xy-plane and makes Green’s functions
expressions much more involved. Here the challenge was to extend this formulation to a generic
bounded problem. The resulting formulation is rather complicated but we have overcome
this drawback with an structured solution for a generic problem. All the results obtained are
therefore applicable to a wide variety of problems considered as bounded layered media. Some
examples, among others, are multilayered boxed printed circuits, waveguide discontinuities or
infinitely thin irises, planar scatterers arranged in an infinite skewed lattice or planar circuits
enclosed in magnetic boundaries to emulate finite dielectric.

An overall description of the strategy, that applies the equivalence principle and a surface
integral formulation, is given in Chapter 2. The cornerstone of the method consists of reducing
the three-dimensional EM problem into two different problems. The first is associated to
the boundary cross-section and it consists of solving a two-dimensional transverse boundary
problem. On the other hand, the remaining dimension, i.e. the longitudinal direction, is
modeled using an equivalent circuit built up from cascaded transmission lines.

The results obtained from both problems are combined in infinite series extended to all the
modes resulting from the transverse boundary problem. These modal series corresponds to
the reaction terms filling the MoM matrix. The analytic expressions found for them avoids
an explicit evaluation of the GF and the numerical integration of the reaction terms, both
usually needed in the currently used formulations.

In Chapter 3 we have addressed the transverse boundary problem. The resolution followed
a unified approach based in a general solution for the OIs arising in any formulation using
integral equations and the MoM techniques. The overlapping between zero-curl & constant-
change BFs and modal functions, associated to the transverse eigenvalue problem, was reduced
to integrals evaluated along the contour of the basis functions domain. The new integral
forms are applied with linear subsectional BFs defined over rectangular or triangular domains,
resulting in expressions with a seamless transition between the two cases. The result of this
specialization simplifies the procedure to two line integrals on the scalar potential of the mode
considered. Hence, any transverse boundary medium could be considered if the solution to
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these two line integrals is available. We have demonstrated this in rectangular and circular
PEC boundaries as well as for periodic lattices, always obtaining analytic solutions.

The structures considered at the end of the same chapter showed an example of a printed
circuit structure enclosed by three different transverse BCs. The response in each problem
was obtained using the same software tool, based on this method, and compared with other
ad hoc numerical techniques. These experiments confirmed that this technique avoids having
a specific formulation for each type of problem. It also offers a unified and versatile approach
that, on one hand eliminates redundancy in the formulation and on the other hand simplifies
each particular problem.

In Chapter 4, the longitudinal problem arising in this method has been presented. It demon-
strates how a stable and efficient algorithm can be derived in order to solve a transmission line
model arising for every modal solution to the transverse boundary problem. The algorithm
is based on a traveling wave approach but other alternate formulations were also presented
to tackle other approaches. In particular, expressing the model in terms of a bilinear form
shows clearly all the degrees of freedom allowed in the equations and the separability in the
source and observer variables.

One of the main goals in this chapter was to achieve an stable algorithm. Some numerical
experiments revealed critical scenarios that could not be solved by traditional transmission
line models. We demonstrated how these cases could be avoided and used these criteria to
build the final algorithm.

In addition, the formulation of the transmission line model established the basis to understand
the resonances in dielectric filled cavities. We have explored the nature of these resonances in
order to get an insight about the physical mechanisms. An example showed the potential use
of simultaneous printed-circuits and the multilayered-cavity resonances in the design of filter
response.

It is a fact that the EM simulation of multilayered printed circuits involves an important
computational burden in nowadays methods. In addition to the stability, the efficiency of
the algorithm was also demonstrated for this type of structures. The simulation of an eleven
layers filter was performed significantly faster than a widely used commercial solver, for a
comparable accuracy.

Finally, Chapter 5 presents a specialization of the overall method for the analysis of multi-
layered boxed printed circuits. This type of structure is of special interest for RF / microwave
applications since it provides a miniaturized and low-cost solution, in addition to a solid me-
chanical support and an adequate EM compatibility behavior.

In this particular frame, we have explored the behavior of the modal series and applied
a Kummer’s transformation to accelerate its convergence. The method decomposed, for the
reaction taking place in the same plane, each series into a quasi-static and dynamic parts. Now,
the simulation time is reduced since the quasi-static series are calculated outside the frequency
loop and only the fast convergent dynamic part are calculated at each frequency sample.
Within the new series decomposition, the quasi-static TM series has the worst convergence,
specially when it belongs to a self-reaction term. In addition, the convergence rate deteriorates
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in reactions taking place in small cells and when if occurs over a thin and high dielectric,
specially in the proximity of a ground plane.

Another topic considered in this chapter corresponds to the modeling of losses in the com-
plete structure. Losses in dielectric layers, printed metallizations and metallic box were all
considered. Using the Leontovich approximation on most of the metallic surface in the struc-
ture simplified the formulation of the problem, giving accurate results for good conducting
surfaces. The influence of losses in the circuit response has been presented for different filter
structures and the loss model has been considered in all the simulations presented throughout
the chapter.

The current flow over an arbitrary shaped printed circuit has been discretized into rooftops,
with rectangular support, and Rao-Wilton-Glisson BFs over triangular domains. The differ-
ence in the implementation of both BFs is unified and only differs in some constant values,
as was anticipated in Chapter 5.

The simulation of lumped elements in the printed circuit were considered at the circuit level.
These elements were connected to the multiport scattering parameters derived from the solu-
tion of the method of moments.

Finally, extensive numerical experiments have been carried out to assess the validity and
the performance of the aforementioned theory. The accuracy of the simulated responses
was demonstrated by comparison with measurements and/or other numerical solvers. Two
prototype were fabricated and measured. A sensitivity analysis, shown for one of the prototype
designs, demonstrated the reliability and efficiency of the method to deal with a large amount
of simulations. Other features presented there are the prediction of surface currents on the
printed circuit for a given excitation.

6.2 Original Contributions

The original contributions of this thesis are the following:

Chapter 2 a) Systematic and complete treatment of the full mathematical chain from the
fundamental Maxwell-Hertz-Heaviside equations to the method of moments implemen-
tation. b) Innovative approach for translating the raw MoM results into a network
representation.

Chapter 3 A unified and systematic approach that provides a formulation of the OIs (combin-
ing a basis and a modal functions) for locally curl-free & constant charge basis functions
and any transverse boundary problem.

Chapter 4 a) Provides a complete exploration of all the possible formulations for the trans-
mission line model b) Efficient algorithm which remains stable even in the most harsh
conditions.
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Chapter 5 Summarizes the work carried out in the development of MAMBO, a complete software
tool specially design for the efficient EM modeling of multilayered boxed printed circuits.

For a complete list of publications, the reader is referred to the page 167 of this thesis.

6.3 Perspectives

There are several possible improvements that can be carried out as a continuation to the
presented developments. These ideas are presented in the following paragraphs.

We have shown that the current acceleration technique provides very good simulation times.
Nonetheless, we believe that there is still room for improvements in this direction. The
basic idea consist of exploring the decomposition into multiple reflections of §4.3 to develop
asymptotic expressions for the reaction terms while keeping a general transverse boundary
problem.

The thickness of the printed circuits plays an important role, not only in the modeling of
losses but the complete IE method itself. The latest improvements in the manufacture pro-
cess are producing printed circuits with metallization below the penetration depth δs � t at
microwave frequencies. On the other hand, many applications are working in higher frequen-
cies, where a printed circuit, fabricated with a standard technology, becomes electrically thick
t � λ. Hence, an interesting research line would be: a) exploring a rigorous IE formulation
considering both electric and magnetic equivalent currents; b) explore different approaches
(perhaps approximate) to tackle the above cases; c) gain an insight into physical meaning and
consequences of having very lossy circuit, δs � t and t � λ.

The formulation presented considers only planar circuits. Most of the surface of the printed
circuit devices is planar. Nevertheless, novel techniques, like Low Temperature co-fired Ce-
ramics (LTCC) filters or the so called surface integrated waveguides (SIW), are extensively
using vertical metallizations. Since most of the applications used long metallic cylinders, this
problem could be addressed using at least two complementary approaches. One possibility
would be dealing with the cylindrical surfaces as equivalent currents which will increase the
size of the linear system in the MoM. On the other hand, the scattering from vertical cylinders
could be formulated in the Green’s functions (at least this is true in free space) which will
reduce the number of unknown but increase the complexity of the formulation.

Other improvements could also be considered. However the author believes that the current
software tool, eventually enlarged with the above mentioned developments, is the target that
should be aimed at in a very near future.
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