
Robust Distributed Coverage using a Swarm of Miniature Robots

Nikolaus Correll and Alcherio Martinoli

Abstract— For the multi-robot coverage problem determin-
istic deliberative as well as probabilistic approaches have been
proposed. Whereas deterministic approaches usually provide
provable completeness and promise good performance under
perfect conditions, probabilistic approaches are more robust to
sensor and actuator noise, but completion cannot be guaranteed
and performance is sub-optimal in terms of time to completion.
In reality, however, almost all deterministic algorithms for robot
coordination can be considered probabilistic when considering
the unpredictability of real world factors.

This paper investigates experimentally and analytically how
probabilistic and deterministic algorithms can be combined for
maintaining the robustness of probabilistic approaches, and
explicitly model the reliability of a robotic platform. Using
realistic simulation and data from real robot experiments, we
study system performance of a swarm-robotic inspection system
at different levels of noise (wheel-slip). The prediction error of
a purely deterministic model increases when the assumption of
perfect sensors and actuators is violated, whereas a combination
of probabilistic and deterministic models provides a better
match with experimental data.

I. INTRODUCTION

Multi-robot coverage [1]–[3] requires the coordination
of a team of robots so that the environment is covered
in the shortest possible time. Ideally, coverage is provably
complete. Algorithmic performance and controller design
is a function of the capabilities of the individual platform
(sensors, communication devices) and the system as a whole
(amount of a priori knowledge, centralized vs. decentralized
approaches).

Regardless of the complexity of the chosen approach for
coordination, the ability to perform a more or less crude
cellular decomposition of the environment is the basis for
most coverage algorithms [4] except those that are fully prob-
abilistic [5]. For instance, there exist coverage algorithms
that only require bumper sensors [6], and others that use
long range sensors for decomposing the environment [3],
[7]. Also, literature distinguishes between approaches that
plan the robots’ trajectories off-line [2], [8], and those that
perform coverage on-line, in which case the environment
needs not to be known in advance [3], [6], [7].

We study the multi-robot coverage problem using a case
study concerned with covering the boundaries of elements
aligned in a regular structure. Here, a team of robots is
required to cover every point on the boundaries of all
objects in an environment by its sensors. We initially tackled

Both authors are sponsored by a Swiss NSF grant (contract Nr. PP002-
68647).

N. Correll and A. Martinoli are with the Swarm-Intelligent
Systems Group (SWIS), École Polytechnique Fédérale Lau-
sanne, Switzerland. nikolaus.correll@epfl.ch,
alcherio.martinoli@epfl.ch

Fig. 1. Left: Overview of the turbine set-up in the realistic simulator. Right:
Overview of the real-robot set-up.

this problem by using a simple, randomized algorithm that
used the structure of the environment as a template for
coordinating the robot swarm [5], and analyzed it with
probabilistic, macroscopic models. Moreover, a provably
complete, near-optimal algorithm that assures coverage of
all edges in a graph, where edges represent the boundary
of objects in the environment and navigable routes between
them, was proposed for the same case study in [8]. Whereas
the randomized, template-driven approach probabilistically
covers the environment without relying on global localization
and centralized control, the deterministic approach requires
perfect localization and navigation abilities, as well as off-
line computation of the robots’ trajectories for providing a
near optimal and provably complete solution. Similarly, [1]
uses a variant of the bin packing problem for covering all
vertices of a graph by a robot team, and [2] provides a heuris-
tic that leads to complete coverage if at least one robot does
not fail. Little research, however, considers potential failures
of the individual robots or their subsystems to execute parts
of a deliberative control scheme in a probabilistic sense (see
for instance [7]), and investigates algorithms with respect to
the limitations of robotic systems operating under real-world
conditions.

In [9] we showed that the boundary coverage problem for
structures with identical elements (Fig. 1) is equivalent to
cover all vertices of a graph by a team of robots, which
corresponds to coverage of all cells of a grid when the
elements are aligned in a regular pattern (as it is the case in
[1], [2], [10]). We used an algorithm that leads to complete
coverage of an unknown grid by incrementally constructing
a minimal spanning-tree, which is traversed by combining
low-level reactive control with deliberative planning. Robots
executed this algorithm in parallel without explicit collabo-
ration. Although provably complete by design, the reactive
behaviors that move the robots from element to element were
prone to mistakes due to sensor and actuator noise and reduce
the approach to probabilistic completeness.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147923967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we study this phenomenon systematically
by first developing a microscopic deterministic model for
distributed coverage, which assumes the robots behave per-
fectly (Section III-A). Motivated by real-robot experiments
that do not fulfill this assumption [9], we consider a certain
probability for the robots to reliably navigate from cell to
cell (Section III-B), leading to a probabilistic model. We then
use a realistic simulator Webots [11], to study the system’s
performance at different level of wheel-slip to validate our
modeling approach.

II. MOTIVATING CASE STUDY: DISTRIBUTED BOUNDARY

COVERAGE OF REGULAR STRUCTURES

The distributed boundary coverage problem has applica-
tions in various potential robotic tasks, such as inspection or
maintenance of structures [8]. Our case study in particular is
motivated by the inspection of the blades in the compressor
section of a jet turbine, a process currently performed using
borescopes, which is time consuming and costly [12]. The
narrow structure of the turbine motivates the use of extremely
miniaturized robots with limited capabilities.

We consider the environment as completely inspected
when every single blade has been circumnavigated at least
once. Sensor information collected during circumnavigation
can then be stored and eventually broadcasted to a supervisor
for analysis, which is beyond the scope of this paper.

A. Experimental Setup

A 60cm×65cm arena is populated with 25 blades in a
regular pattern (Fig. 1), mimicking the rotor and stator blades
of a jet turbine. Task performance is assessed using an
overhead vision system [13], which monitors the boundary
region of each blade rather than analyzing an individual
robot’s trajectory. The metric thus does not differentiate
between coverage progress due to a deliberative or random
policy.

The Alice II robot [14] has a size of 2 × 2 × 2cm, a
differential wheel drive that reaches speed of up to 4 cm

s ,
and four infrared proximity sensors for obstacle detection (up
to 3cm). Because the 4MHz micro-controller provides only
368 bytes of RAM, we use a custom extension module [9],
which extends the computational power of the Alice robot
by an order of magnitude, and allows us to implement more
sophisticated collective navigation algorithms. Because of its
light weight (4g) and insufficient wheel-adhesion as well as
the crude spatial resolution provided by only four sensors,
accurate navigation involving turns is almost impossible even
over short distances (a few centimeters).

In order to systematically study sensor and actuator noise,
the experimental setup was reproduced in Webots [11], a
realistic simulator that is able to accurately model the non-
linear sensor characteristics of the Alice robot, including
Gaussian noise on the sensors as well as wheel-slip. For this
case study, Webots simulations allow us to collect results
about 3 to 4 times faster than in real robot experiments.

����� �����������

�

	

�
	

����

Fig. 2. Left: Way-points on a blade’s boundary that can be navigated to
using on-board sensors. Right: Possible trajectory for a single robot along
a spanning-tree in a 5x5 blade environment (bold line). Backtracking paths
are not shown.

B. Spanning-Tree Coverage

Exploiting the regularity of the environment for navigation
and localization (by counting inter-blade transitions), the
Alice can construct a spanning tree with the blades as
vertices, and possible routes between a blade and its 4-
neighborhood as edges (Fig. 2 for an example spanning
tree). Edge traversal is achieved by a combination of dead-
reckoning and navigation along way-points on a blade’s
boundary, (Fig. 2, left). Way-points can be distinguished by
the robots on-board sensors that can detect a blade’s tips as
well as measure the curvature of the blade using odometry.
Notice that a blade-to-blade navigation strategy increases the
robustness of navigation on the spanning tree as the exact
location at which a blade is hit does not matter.

The spanning tree is constructed on-line and systematically
explored by a Depth-First-Search (DFS) algorithm. Edges
are selected randomly from the set of unexplored edges
— a policy that prevents robots from following the same
trajectories once they met on a blade as well as promotes
uniform distribution of the robots on the blade grid, and
hence minimizes redundant coverage.

An edge of the spanning tree is considered fully explored
when all nodes connected by it have been visited. Once all
edges of a node are explored, the DFS algorithm makes
the robot physically return to its parent node (known as
backtracking)1, and explores remaining unexplored edges of
this node. The algorithm goes on until it reaches the spanning
tree’s root, a policy leading to provably complete coverage
(see Theorem 1 below). Notice that the algorithm explores
all possible edges, including those ending at a wall, leading
to the creation of vertices that are actually not navigable.
Fig. 2, right, shows a possible spanning tree constructed by
the DFS algorithm; every edge will be visited twice (once
on the way forth, and once on the way back to the root).
Non-navigable vertices are indicated by circles.

C. Low-Level Reactive Robot Control

The spanning tree coverage algorithm requires the follow-
ing low-level behaviors: obstacle avoidance, wall following,

1There exist spanning tree coverage algorithms that require no backtrack-
ing [10], but have higher demand on the robots’ sensors, making them
infeasible for the Alice robot

Fig. 3. An arbitrary environment with a cellular decomposition V × E
consisting of a set of vertices V and a set of edges E . Dashed edges can
only be partially navigated and dashed cells are obstacles.

assessing an objects type (blade, arena boundary, or another
robot), determining the blade’s type (rotor or stator) at the
spanning tree’s root, navigating to one of two distinct way-
points on a blade’s boundary, traversing 8 possible edges (4
for rotor and 4 for stator blades), and finally backing up
non-navigable edges (i.e., those ending in a wall). The DFS
algorithm sequentially activates the appropriate behavior for
physically guiding the robot along the spanning tree.

Robots that eventually stop following a policy leading to
complete coverage due to sensor and actuator noise might
still contribute to task progress and cover unexplored blades.
For instance, a robot might miss a blade (wheel-slip, sensor
noise), and continue exploration for a long time before it
encounters a situation where its sensor readings do not match
what it expects, e.g. when it encounters a wall instead a
blade. Then a robot resets and starts over from scratch at its
current location. Other reasons for failing are expiration of
time-outs when trying to attaching to a blade, determining
an objects type and so on, see [9] for more details.

III. A MICROSCOPIC MODEL FOR DISTRIBUTED GRAPH

COVERAGE

We will first ignore navigation errors due to sensor and
actuator noise and assume the robots behave fully determin-
istically. We then model the algorithm described in Section
II-B and prove its completeness. For a constant probability
of failing at navigation leads, completeness becomes proba-
bilistic, and we propose expressions for predicting the task
progress as a function of the reliability of the individual
robot.

A. Distributed Graph Coverage With Ideal Robots

We describe the cellular decomposition of the environment
(in our case study the environment is discretized by the
blades) as a directed graph G = (V , E) with vertices V and
edges E . Edges represent navigable routes between vertices
and are bi-directional, that is they can be traversed by a robot
in either direction. We refer to neighbors Γ(v) of a vertex v
as those vertices that are connected by an edge.

We assume that a robot is able to create such a repre-
sentation of its environment online, thus the robot is able
to perform a cellular decomposition of the environment as
well as determine navigable paths between them solely using
its on-board sensors while moving along the graph. For our

miniature robot with minimal sensing capabilities, this is
facilitated by the a priori known regular structure of the
environment, whereas more powerful robots might be able
perform cellular decompositions even of rough terrain. A
sample environment with an arbitrary cellular decomposition
is depicted in Fig. 3. We refer to the graph that is constructed
by the robot when moving through the environment as
Spanning Tree C(t). Upon complete exploration of V , the
Spanning Tree contains all vertices of V ; however only a
subset of edges E have been physically traversed.

We denote v ⊆ V an individual vertex, and Ev =
{ev

1, . . . , e
v
nv
} ⊆ E the set of edges incident to v, where

nv are the number of edges connected to vertex v.
With every vertex of a robot’s spanning tree C, we asso-

ciate a state space X v = X v
c × X v

p , with X v
c ∈ {0, 1} and

X v
p ∈ {∅, ev

1, . . . , e
v
nv
}. X is a 2-tuple that allows to keep

track of whether a cell has been visited (X v
c = 1) or not

(X v
c = 0), and which edge ej leads to the vertex that has

been visited prior to vertex v (X v
p = ev

j). Initially, X v
c = 0

and X v
p = ∅ for all v. We will denote the vertex visited

before vertex v as the parent, and the edge pointing to this
vertex as the parent edge of vertex v.

We will now define a series of sets that allow us to
formulate an expression for a robot’s motion along the
spanning tree. First, we define a set N that contains exactly
one of the unexplored edges of vertex v

Nv = f({e = (v, v′)|X v′
c = 0}) (1)

f(x) : E �→ E , x ⊆ E is a condition that select one edge
out of a set, e.g. f(x) = min(x) might yield the edge with
the lowest index, or f(x) = rand(x) returns a random edge.
f(x) can be arbitrarily chosen, as long as it yields exactly
one edge out of a set, and yields the empty set, if the set of
edges is empty, that is P (∅) = ∅. The notation e = (v, v′)
denotes the edge e pointing from vertex v to vertex v′. By
definition, N v contains exactly one edge pointing from v to
an unexplored neighbor of v, or is the empty set when all
neighbors of v are explored.

Second, we define a set P that contains the edge pointing
to the parent of a vertex v, and is the empty set, if v has any
unexplored edges

P v = {e ∈ Ev|X v
p = e ∧ ∀v′ ∈ Γ(v),X v′

c = 1} (2)

Finally, we define a set V

V v,e = {v′ ∈ Γ(v)|e = (v, v′)} (3)

that contains exactly one vertex that the edge e of vertex v
points to.

Using the sets defined in equations (1)-(3), we can now
define a recurrence equation that yields the next edge of a
minimal spanning tree for a robot. Let be p(t) the discrete
position of a robot at time t, such that ∀t : p(t) ∈ V . Using
(1) and (2) we define the next edge the robot will move on
as

enext = Np(t) ∪ P p(t) (4)

Then, the vertex the robot will move on next is given by

p(t + τenext) = V p(t),enext
(5)

τenext is the time needed to to cross the edge enext and cover
the following vertex.

We can now define the state transitions for the vertex as

X p(t+τenext)
c = 1 (6)

X p(t+τenext)
p = (p(t + τ enext), p(t)) , if X p(t+τenext)

p = ∅
and for the spanning tree as

C (t + τenext) = C (t) ∪ p(t + τenext) (7)

Theorem 1: For pi(t + τenext) = ∅ all vertices in V have
been explored, and robot i has returned to its initial position.
Proof: By definition of (2), a robot will never move to the
parent of the current vertex it is on, if this vertex has still
unexplored neighbors. Thus, (4) will always point towards
unexplored vertices that are adjacent to its current position.
Because this is true for all vertices, (4) yields the edge to
the parent vertex only if the whole branch of the spanning
tree connected by this edge has been fully explored. Finally,
the spanning tree’s root is the only vertex that does not have
a parent, and thus (5) will yield the empty set.

We can now calculate minimal spanning trees by nu-
merically solving (5)–(7) for an arbitrary set of vertices,
edges, and initial placement of the robot on the graph. We
extend this approach to multi-robot coverage by maintaining
a spanning tree Ci as well as a state space Xi for every
robot 0 ≤ i < N0, with N0 the total number of robots. For
calculating the time to complete coverage, we iterate (5)–(7)
until all vertices are covered.

Although we could achieve similar results with a point
simulator, we notice that the proposed formalism allows
for treating any cellular decomposition with arbitrary vertex
shape and number of edges. Also, the formalism allows for
describing possible explicit collaboration schemes among
agents by operations on their spanning tree (not exploited
in this paper). A MATLABTM implementation and a series
of sample environments is available on [15].

B. Modeling Sensor and Actuator Noise

We now associate a probability with every edge traversal.
With the probability πe to successfully traverse an edge e,
we can calculate the probability to reach vertex v by the
following recurrence equation

πi,v(t + τe) = πi,v(t)πe (8)

where e is given by (4).
If πe is constant for all edges, and Markovian, that is only

dependent on the robot’s current state, the probability to fail
after traversing x edges follows a geometric distribution

Pgeo(x) = (1 − πe)(πe)x−1 (9)

and the average number of vertices before failure μ calcu-
lates2 to μ ≈ 1

1−πe .

2This is an approximation as the graphs usually have finite size.

When all robots have the same probability to fail, we
can write the following recurrence equation for the average
number of uncovered vertices after k trials, where one trial is
considered to be the coverage of μ distinct vertices that are
part of a minimal spanning tree constructed by a robot before
it does a mistake that violates the completeness properties of
its algorithm.

Mv(k + 1) = Mv(k) 1 − μ

‖V‖
N0

(10)

The length of one trial is given by μτe, the average time
needed for covering μ vertices. Equation (10) has a similar
form as the model in [5], where a probabilistic model for
random coverage of the environment is proposed: the likeli-
hood of covering a virgin vertex decreases exponentially with
the number of already covered vertices (compare also [7] for
similar dynamics, although for a search task concerned with
finding a fixed number of mines in a random fashion).

When μ = ‖V‖, that is the whole graph is covered in one
trial, (10) predicts exactly the same time to completion as
the model for ideal robots (‖V‖τe). On the other hand, for
μ = 1, that is robots are unable to enforce the deliberative
control policy, the system is equivalent to the implementation
of [5].

IV. RESULTS

Exemplar spanning trees that have been constructed by
numerically solving (5)–(7) for random environments with
obstacles are shown in the video accompanying this paper.
All results are available on [15].

For validating our assumption that sensor and actuator
noise leads to a time-independent (Markovian) probability to
violate the completeness properties of a deliberative coverage
algorithm when moving from blade to blade, we measure the
number of blades a single robot can traverse without mis-
match between its actual location on the spanning tree and
its belief occuring in Webots for random drop-off locations
and wheel-slip of 0.1% and 0.5% (6000 experiments each),
as well as for real robots [9]. From this results (Fig. 4),
we calculate the probability πe of successfully traversing an
edge using (9), the average time τe an edge traversal takes
(including coverage of a vertex), and the average number
μ of covered vertices before the completeness properties
of the algorithm are violated (Table I). The first row of
Table I represents values for ideal robots with best and worst
division of labor among the robots (no redundancy and fully
redundant).

We then measure the time it takes to completely circum-
navigate every one of 25 blades in the arena of Fig. 1 for 1 to
10 robots and wheel-slip of 0.1% and 0.5% (100 experiments
per team size and wheel-slip) using the controller described
in Sections II-B and II-C. Notice that this policy requires
the robots to start over once they are lost, as complete
coverage would have been infeasible given the probability
of successfully traversing an edge from Fig. 4. Results are
compared with prediction of the model for ideal robots (5–
7) for 1000 random drop-off locations of the team in Fig. 6,

Wheel-slip πe μe τ e[s]

Avg. nb. of
vertices

visited to
completion

Time to
completion

for 10
robots [s]

0% 1 25 12 25–250 36–300
0.1% 0.79 4.77 38.5±10.3 63.21 541±252
0.5% 0.67 3.03 44±20.5 78.58 701±342
real 0.64 2.79 52±19.7 n.a. 788±375

TABLE I

MODELING PARAMETERS AND RESULTS FOR DIFFERENT

AMOUNTS OF WHEEL-SLIP.

5 10 15 20
0

0.05

0.1

0.15

Number of edges traversed

R
el

at
iv

e
lik

el
ih

oo
d

Experimental data
Geometric distribution

5 10 15 20
0

0.05

0.1

0.15

Number of edges traversed

R
el

at
iv

e
lik

el
ih

oo
d

Fig. 4. The relative likelihood for successfully traversing a certain number
of edges for wheel-slip of 0.1% (left) and 0.5% (right) matches a geometric
distribution (superimposed).

and with experiments with a team of 10 robots in Tab. I (10
experiments).

For calculating the model prediction, we iterated (5)–(7)
until all navigable vertices were visited at least once. Then,
modeling results were scaled to seconds using the value of
τe (Tab. I) that results from the wheel-slip programmed in
Webots. We also calculate the average number of vertices
visited by a single robot before achieving complete coverage
in Tab. I.

Despite our policy of starting over on failure, not all of the
experiments completed in less than two hours simulated time
(two hours are three times as large as the average time for a
single robot). The success rate of our experiments is shown
in Fig. 5, and Fig. 6 shows the average time to completion
of the successful experiments.

Finally, we measure the average number of covered blades
over 100 experiments in Webots (including those that did
not complete). Results for teams of 1 and 10 robots (lower
and upper curve, respectively) for wheel-slip of 0.1% and
0.5% are shown in Fig. 7, left, and right. These results are
compared with predictions from the probabilistic model (10)
for parameters μ from Table I.

V. DISCUSSION

As expected, varying amounts of wheel-slip in simula-
tion indeed led to a constant probability for violating the
completeness properties of the deliberative algorithm. We
conjecture that physical properties of a real robot system
such as sensor and actuator noise, or reliability of another
subsystem (for instance a detector to detect mines as in [7])
can be parameterized in a similar way.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of robots

P
ro

ba
bi

lit
y

to
 c

om
pl

et
e

Wheel−slip 0.1%
Wheel−slip 0.5%

Fig. 5. Percentage of Webots experiments that led to complete coverage
within 2h simulated time.

2 4 6 8 10
0

1000

2000

3000

Number of robots

M
ea

n
tim

e
to

 c
om

pl
et

io
n

[s
]

Experimental data
Model prediction

2 4 6 8 10
0

1000

2000

3000

Number of robots

M
ea

n
tim

e
to

 c
om

pl
et

io
n

[s
]

Fig. 6. Mean time to completion in a realistic simulator for team sizes
of 1 to 10 and wheel-slip of 0.1% (left) and 0.5% (right). Predictions of
the deterministic model for a 5x5 environment are superimposed. Error bars
show the standard deviation.

We observe that the prediction error of the deterministic
model becomes larger the less the individual robots are ideal.
This can be seen when comparing Fig. 6 left and right, which
shows a much higher time to completion for robots with
higher wheel-slip than model prediction, even though the
larger value of τe for higher wheel-slip is taken into account.
Another shortcoming of the deterministic model is that it
does not take into account complete failure. Although it
seems that the relative divergence between model prediction
and realistic simulation decreases for larger team sizes (the
data for Fig. 6 is available at [15]), this is rather an artifact of
the high success rate of experiments with larger team sizes
(Fig. 5).

We also observe that the variance of the performance is
much higher in realistic simulation than predicted by the
deterministic model, and increases with the wheel-slip. This
can be explained by the fact that the robots behave less

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (s)A
ve

ra
ge

 r
at

io
 o

f c
om

pl
et

ed
 v

er
tic

es

Experimental results
Model prediction

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (s)A
ve

ra
ge

 r
at

io
 o

f c
om

pl
et

ed
 v

er
tic

es

Fig. 7. Average ratio of covered blades for teams of 1 and 10 robots
(coverage progress with 10 robots is faster) and wheel-slip of 0.1% (left)
and 0.5% (right). Prediction of the probabilistic model is superimposed.
Error bars depict standard deviation.

faithfully to their deliberative control scheme with increasing
amounts of noise. A similar observation has also been made
in [7] for a probabilistic search task.

Looking at Fig. 5 we observe that the probability for
small team sizes to fail completely is systematically lower
for higher amounts of wheel-slip. This is in line with the
observation that noise eventually increases the robustness of
reactive navigation behaviors that could otherwise get stuck
in local minima.

Even though the probabilistic model (10) is much simpler
than those in [5] that model the behavior of the robots more
precisely, it is able to capture well the dynamics of different
slip-noise and team sizes. Unlike the deterministic model,
which provides the average time to completion for various
drop-off locations for those experiments that do not fail
completely, the probabilistic model predicts the probability
for completion at a given time, and thus combines the metrics
from Fig. 5 (probability) and Fig. 6 (average time) into a
single expression. We remark, that the model requires no
free parameters but μ and τe, which were shown to be a
function of the individual robot’s capabilities and can be
easily measured.

We conclude the discussion with a comment on the ex-
perimental methods used: in order to assess (swarm) robotic
problems probabilistically, large numbers of experiments are
necessary to validate modeling assumptions. Here, realistic
simulation showed to be a useful tool to gather experimental
data in quantities that are infeasible or too costly to gather
using real robot experiments.

VI. CONCLUSION AND FUTURE WORK

Although this case study is very specific, it has certain
properties that might well apply to other coverage scenarios
or for larger robotic platforms. By treating the boundary
coverage problem of our case study as a graph coverage
problem, it becomes irrelevant, whether the vertices of a
graph need to be entirely covered, or otherwise processed.
Rather, vertex and edge relations need to be established
online, a process which is prone to failure due to sensor
and actuator noise, and independent from previous states of
the robot. Reactive behaviors and physical interferences are
critical factors that might lead to possible failure of otherwise
provably complete algorithms. If the navigation error of those
behaviors is not negligible (which is rarely the case), purely
deterministic models are unsuitable to assess the performance
of a particular multi-robot coverage algorithm.

Combining deliberative and reactive algorithms allows us
to explicitly take into account the reliability of an individual
platform into the modeling and design process. Analysis
of the deliberative part then provides the upper bound for
performance that could be achieved under perfect conditions,
which gradually decreases under influence of noise to the
lowest performance bound, calculated by probabilistic anal-
ysis.

In this paper, we assume that the probability to fail is the
same for all edges and all robots, and thus summarize the
reliability by a single parameter. In reality, some edges are

more difficult to navigate than others, and navigation skills
of robots might differ as well. In our scenario this is imposed
by the geometry of the blades, which require different
behaviors for traversing an edge, whereas the robotic system
is homogeneous. In other scenarios and general cellular
decompositions, the probability of successful edge traversal
might be given by the terrain, robot capabilities, lighting con-
ditions, or geometric constraints of the environment to name
a few. Here, finding minimal spanning trees that maximize
the probability to completion poses an interesting research
problem, which could be investigated with the modeling
framework proposed in this paper.

Acknowledgments

The authors would like to thank Clément Hongler and
Julien Nembrini for their help with graph formalism.

REFERENCES

[1] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-robot forest
coverage,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), Edmonton, Alberta, Canada, August 2005, pp.
3852–3857.

[2] N. Agmon, N. Hazon, and G. Kaminka, “Constructing spanning trees
for efficient multi-robot coverage,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Orlando, FL, USA, May 2006, pp.
1698–1703.

[3] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 376–378, 2005.

[4] H. Choset, “Coverage for robotics—a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[5] N. Correll and A. Martinoli, “Collective inspection of regular struc-
tures using a swarm of miniature robots,” in Proc. of the Int. Symp.
on Experimental Robotics (ISER). Singapore: Springer Tracts for
Advanced Robotics (STAR), Vol. 21, June 2006, pp. 375–385.

[6] Z. Butler, A. Rizzi, and R. Hollis, “Complete distributed coverage of
rectilinear environments,” in Proc. of the Int. Workshop on Algorithmic
Foundations of Robotics (WAFR), Boston, MA, USA, 2001.

[7] E. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning
for robotic demining: Robust sensor-based coverage of unstructured
environments and probabilistic methods,” Int. J. of Robotics Research,
vol. 22, no. 7–8, pp. 441–466, 2003.

[8] K. Easton and J. Burdick, “A coverage algorithm for multi-robot
boundary inspection,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), Barcelona, Spain, April 2005, pp. 727–734.

[9] N. Correll, S. Rutishauser, and A. Martinoli, “Comparing coordination
schemes for miniature robotic swarms: A case study in boundary cov-
erage of regular structures,” in Proc. of the Int. Symp. on Experimental
Robotics (ISER), Rio de Janeiro, Brazil, July 2006.

[10] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of contin-
uous areas by a mobile robot,” Annals of Mathematics and Artificial
Intelligence, vol. 31, no. 1–4, pp. 77–98, 2001.

[11] O. Michel, “Webots: Professional mobile robot simulation,” Journal
of Advanced Robotic Systems, vol. 1, no. 1, pp. 39–42, 2004.

[12] N. Correll, C. Cianci, X. Raemy, and A. Martinoli, “Self-Organized
Embedded Sensor/Actuator Networks for “smart” Turbines,” in IROS
2006 Workshop: Network Robot System: Toward intelligent robotic
systems integrated with environments, Beijing, China, October 2006.

[13] N. Correll, G. Sempo, Y. L. de Meneses, J. Halloy, J.-L. Deneubourg,
and A. Martinoli, “SwisTrack: A tracking tool for multi-unit robotic
and biological research,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Beijing, China, Oct. 2006, pp.
2185–2191.

[14] G. Caprari and R. Siegwart, “Mobile micro-robots ready to use: Alice,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Edmonton, Alberta, Canada, August 2005, pp. 3295–3300.

[15] (2006) Supplementary material. [Online]. Available:
http://swis.epfl.ch/research/coverage

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

