Provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Metadata, citation and similar papers at core.ac.uk

Implementation of Structured ASIC Fabric Using
Via-Programmable Differential MCML Cells

Stéphane Badel, Ilhan Hatirnaz, Yusuf Leblebici

EPFL-STI-IMM-LSM
Microelectronic Systems Laboratory
Station 11, 1015 Lausanne, Switzerland

e-mail:{ilhan.hatirnaz|stephane.badel|yusuf.leblebici} @epfl.ch

Abstract— This paper presents a regular layout fabric made
of via-programmable MCML universal logic cells for structured
ASIC applications and the associated design flow. The proposed
structured ASIC fabric offers very high noise immunity due to
the differential operation, as well as low production cost due
to the via-programmable properties of the universal logic cell.
Implementations of a number of circuits are presented and the
area/speed performances are compared with classical CMOS
implementation using a commercial standard cell library in 0.18
pum CMOS technology.

I. INTRODUCTION

Structured ASICs are becoming an increasingly popular
alternative for rapid, low cost realization of ICs, filling a gap
between FPGAs and full-custom ASICs. They can provide
a higher level of integration and increased performance com-
pared to FPGAs, while reducing the non-recurring engineering
(NRE) costs and turnaround time compared to custom ASICs
[1]. Structured ASICs are composed of a prefabricated array
of standard building blocks, and their functionality is pro-
grammed via a number of customized layers. In addition, the
regularity of the prefabricated structures allows better control
of the problems associated with manufacturing variations.

In this paper, we propose an implementation of a cell
fabric suitable for structured ASIC applications, where the
basic building block is a via-programmable universal logic
gate in MOS current-mode logic (MCML). The MCML de-
sign style has proven to offer good speed performance and
addresses the noise immunity and crosstalk problems thanks
to its differential operation [2]. Furthermore, the MCML logic
style, in which logic functions are implemented with current-
switching trees, allows the implementation of a wide range
of logic functions with a small number of configurations. In
comparison to earlier implementations of universal logic gates
using MCML [3], which have the functionality of a 2-input
MUX, we present an expanded universal cell which has the
capability of implementing all 3-input Boolean functions as
well as a significant subset of 4- and 5-input functions. Also,
the power dissipation is about one order of magnitude lower
than earlier designs to allow high density integration.

This paper is organized as follows: in Section II, we describe
the cell that is used as a building block in our structured ASIC
approach. In Section III, we describe the design-flow to im-
plement an RTL code into a regular tile of via-programmable

Elizabeth J. Brauer
Department of Electrical Engineering
Northern Arizona University
Flagstaff, AZ 86001-5600 USA
e-mail: liz.brauer@nau.edu

cells, with fully differential routing. Next, in Section IV,
implementation results are presented, and comparisons are
drawn with the CMOS standard-cell implementation of the
same designs. Some perspectives are provided in Section V,
followed by the conclusions.

II. BUILDING BLOCKS AND ARRAY ARCHITECTURE

clevel

Fig. 1. The layout and the schematic view of the via-programmable cell.

In this work we use the via-programmable MCML universal
logic gate (designed with 0.18 um digital CMOS technology)
described in [4], as the fundamental building block. The
transistor-level schematic and the corresponding layout of
the via-programmable gate is shown in Figure 1. Here, the
functionality of the cell can be easily customized by setting
the appropriate via connections while preserving the same
layout topology. In order to utilize this cell in a classical logic
synthesis tool, a number of functions have been implemented
by setting the via matrix accordingly, and each one was
characterized for timing and power. The resulting library is
composed of 17 functions, with up to 5 inputs and all based on
the same basic cell layout (i.e. same area). Considering the fact
that all inputs and outputs can be inverted at no additional cost
due to differential signaling, this library effectively produces
a wide range of functions available to the synthesis tool.
Also, the library contains 3 types of flip-flops, including
asynchronously resettable and scan flip-flops.

In order to obtain a regular array of identical cells, the
placement grid is set to the size of a cell, and empty spaces are
filled with dummy cells. Metall and Metal2 layers are used

https://core.ac.uk/display/147923909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RTL Code
Logic Design
Synthesis Constraints

Verilog Netlist SS
(with inverters)

Synthesis
Library SS

Netlist Conversion
(S8S->DD->SS)

Verilog Netlist SS
(no inverters)

Placement
& Routing

Physical
Library SS

Layout SS
(DEF)

Wire Splitting
(DD->SS)

Layout DD
(DEF)

A
Apply&Update
Translation Layers

Switched Net
!
Final Layout DD

Fig. 2. The diagram of the proposed differential design flow. “SS” stands
for single-ended input/output and “DD” stands for differential input/output.

for intra-cell connections, while the first via layer is used for
customizing the cell functions. All metal layers above Metal2
can be used for inter-cell routing.

III. TOP-DOWN DESIGN FLOW

We have developed a top-down design flow (Fig. 2) to
accommodate the differential signals of the cells in the MCML
library. We use standard logic synthesis and place-and-route
tools with additional scripts to handle the differential sig-
nals. The input is a synthesizable HDL description of the
design, together with its constraints. The code is not required
to incorporate any knowledge of differentiality, i.e., include
differential signals and etc. The final output is a regular layout,
which consists of differential cells and matched differential
nets.

A. Differential Cell Characterization

For a regular CMOS library, the delay is measured between
the 50% transition points of the input and the output. The
50% transition point is the threshold level, above or below
which, the output starts switching its value. In the case of
differential signals, a similar approach is followed, the delay
between the functional switching points is taken as the differ-
ential delay. Due to the differential signaling scheme in the
circuit structures used in this work, the functional switching

INPUT_H

INPUT_L

(

|

|

|

|

L
OUTPUT H !

1

| oX
OUTPUT L : :

| |

| |

| |

| —> |

| DELAY |

Fig. 3. The calculation of the delay of a differential gate.

points correspond to the zero-voltage crossings of the voltage
difference at the input or at the output. This is illustrated in
Figure 3; the crossing points iX and oX are the points where
the difference voltage at the input and at the output is 0. The
difference in time between the two points corresponds to the
delay for that input-output pair.

To the authors’s knowledge, there is no commercially
available tool at this time that can perform cell library char-
acterization of differential cells. Therefore, in our work we
automated this step using scripts which take the extracted cell
netlists and description of the cells functions, generate test
vectors, run SPICE level simulations and write the results into
the synthesis library file (.lib) [5]. In this file the delay and
power numbers are stored in look-up tables, addressable by
the load capacitance and the input rise/fall times. Setup and
hold times are also extracted for the sequential cells in the
library with repect to clock and data transition time. Input
capacitances are also measured for each differential input port
in the cells. The input capacitance of the equivalent single-
ended gate is defined as the average of the capacitances of
both complementary input, as it can be shown that the delay of
an MCML gate is essentially linear with respect to that value.
The cell library together with the its characterization data is
compiled into an industry-standard .db file, labelled “Synthesis
Library SS” in Figure 2. The SS library consists single-ended
gates, which are extracted from the fully differential library
(DD) by keeping only the non-inverted terminals of the gates.
The logic synthesis tool takes the RTL code and the design
constraints (both described in a single-ended manner) and
outputs a Verilog netlist consisting of single-ended gates.

B. Differential Logic Synthesis

Due to the requirements of the synthesis tool, the synthesis
library is required to include at least one cell with an inversion
function. Because the mapping occurs between single-ended
HDL and single-ended cells, having inverters in the gate-
level netlist is inevitable. Since the output of this flow is a
true differential netlist, the inversion can be obtained just by
switching nets in a differential pair (Fig.4(b)). We introduced
special inverters into the synthesis library, which have their

ut SS_GATE
UINV
v net1 U3
5 03.1_ netl A—
SS_GATE caT Y

SS_GAT

(a) Circuit with SS gates after synthesis
before netlist conversion (C2 = C3).

AH
Cif AiL
CiF |7 Y_H—
ut Y lp—
—IaH —BH -
AL —BL
= vt DD-GATE
YL nett L -
— BH -
—ds L
DD-GATE us
=~
1AL
Cef |~ Y_H—
Y lp—
— BH
—dBL

DD-GATE

(b) Circuit with DD gates after SS-to-
DD conversion.

Fig. 4. Removal of the special inverters.

input capacitance and input slew rate equal to their output
capacitance and output slew rate, respectively (C3 = C2 in
Fig. 4(a)). These inverters exhibit zero area and delay, so that,
when removed during the netlist conversion script (SS—DD—
S5, they don’t affect the performance of the circuit estimated
by the synthesis tool. The synthesis tool is also directed to
not choosing an inverter for driving a load larger than its
input capacitance, therefore, for obvious reasons, it will always
choose the inverter with an input capacitance closest to the
load capacitance. When the inverter is removed at a later stage,
all delay, rise and fall time and load capacitance for this net
remain nearly unchanged, so that all calculations made by the
timing analyzer remain valid. The same script also replaces
the single-ended cells with their differential counterparts and
completes the missing connection (i.e., the complementary
nets). The output of the netlist conversion is verified using
a logical-equivalence checker tool.

As the inverter-free single-ended netlist is fed to the place-
and-route tool, the differential netlist is used as reference after
the detailed-routing is finished, as explained in Section III-C.

C. Differential Placement and Routing

The goal of the differential P&R is to generate a routing
scheme among the differential cells, where the signals of the
same pair are routed at a fixed spacing for the entire design.
There are several reasons for doing that. First, a large amount
of crosstalk noise can be eliminated by using differential
signals, provided both wires are subject to the same noise.
This can be guaranteed by keeping the two wires as close as
possible to each other. Next, a differential routing allows to
better match the parasitics on each wire of the pair. This allows
to reduce the power supply noise, as it is minimized when the

0.4

1 Il 1 1
0 -04 02 0 0.2
Load Mismatch [%]

Fig. 5. Simulated current ripple magnitude on the power supply as a function
of load mismatch between two wires of a differential pair.

load is perfectly matched on both wires (Fig. 5). Third, to a
lower extent this allows to reduce the gate delay, as it can be
shown that, for an MCML gate, the delay is minimized when
loads are matched.

Only a few commercial routing tools can match the routing
of differential nets. These routers are intended for top-level
routing, where the design blocks are connected together. But
they do not perform satisfactorily when all the differential nets
of cell-based design (as in our case) are to be matched each
other, mainly due to the higher density.

There is limited previous work available on differential rout-
ing; the existing solutions are based on routing the differential
pairs as one wider net, where the width of this “fat” wire is
equal to the sum of the individual widths of each net and the
spacing between them [6], [7].

We also used the “fat” wire approach to route matched
differential nets. The gate-level Verilog netlist and the physical
library SS representing the fat-wire technology and the single-
ended cells, are provided as the starting point of the place-
and-route step. The conventional P&R flow is followed until
a DRC clean and logically verified layout is obtained. The
output of this step is a DEF file (Design Exchange Format)
describing the final layout of single-ended (SS) gates and
fat-wire interconnections. The next step is to run a script
which replaces each SS-cell with its counterpart from the fully
differential DD library, and splits the fat wires into the two
nets of regular wire width dictated by the original technology
(Fig. 6). The final step is to verify the interconnection network
by either running LVS or using an equivalence checker tool.

IV. IMPLEMENTATION

To evaluate the efficiency of the proposed structured ASIC
platform and the associated design methodology, a range of
different circuits were synthesized using the MCML based
universal logic gate library, followed by differential placement
and routing as explained in the previous section. The first
example is based on the realization of large-input majority
decision units (number of input bits: 16, 32, 64 and 128).
Figure 7 shows a close-up view of the regular cell array
that is created at the end of the placement step. The area
utilization rate was found to be approximately 90%, for all

(a) “Fat-wire” routing be-
tween “fat” pins.

(b) Fat-wire is split into a
differential wire pair.

b peh
0 fg |

L

pzzzz i

(c) The fat pins are re-
moved and translation layers
are added.

Fig. 6. Individual steps of wire splitting on a routed “fat” segment.

designs. The close- up view of a section of the array after the
completion of differential routing is shown in Fig. 8, with a
few differential wire pairs highlighted for easier recognition.
The net-length histogram in Fig. 8 also shows that the vast
majority of interconnects have a length of less than 50 pm,
and only a very small fraction of the nets exceed 200 pm.
This indicates that the interconnect delays do not dominate
the timing, in most cases. Table I provides a comparison
of different majority decision unit designs with the MCML
universal logic gate, and with a commercial CMOS standard-
cell library, in terms of cell count and input-to-output delay. It
can be seen that the designs based on MCML universal logic
gates consistently produce lower delays, and that the cell count
is also comparable to that of the CMOS standard cell design.

To further evaluate the efficiency of the approach, the second
example is a Radix 4 complex FFT processor with varying
bit-lengths (from 16 bits to 256 bits). The FTT processor
design is based on a public-domain VHDL source code from
OpenCores [8]. The complete design flow was applied as
described in earlier sections, from synthesis to differential
placement and routing. The results indicate that the structured
ASIC implementation remains competitive with respect to the
CMOS standard cell implementation, both in terms of cell
count and in terms of input-to-output delay (Table II). It is
interesting to note that the cell count of the MCML solution

Fig. 7. The regular array layout using the MCML universal gate. This shows
only a section of the prefabricated matrix array.

1200

oot~ EE | —

800 I

600

Number of nets

400

200

'
i &0 100 150 200 250 300 350 400 480 &00

Wire Length [um]

Fig. 8. Wire-length distribution for the 128-bit majority block realization.
Inset: Detail of differential routing.

drops well below that of the CMOS standard-cell solution,
especially for larger bit-lengths. Finally, the significant ad-
vantage of the MCML-based design with respect to power
supply noise generation is demonstrated in Fig. 9. Here, the
amount and the variation of power supply current of the 16-
input majority decision unit is simulated for a large number
of consecutive input vectors. It can be seen that the MCML-
based structured ASIC implementation draws a nearly-constant
amount of power supply current with variations of less than
5%, while the CMOS version of the same circuit produces
significant current spikes that are responsible for power supply
noise and substrate noise. With the source current of each cell
set at 50uA, the overall power dissipation of the circuit is
comparable to that of the standard CMOS cells, especially at
higher operation frequencies.

V. PERSPECTIVES

The universal logic gate, together with the design flow,
proposed in this paper is a candidate for high performance
structured ASIC applications, However, there are a number of
improvements that can further enhance the capabilities. The
array floorplan can be designed to contain not only cells but
also a number of buffers that can be inserted as repeaters to
drive long interconnects. Although most metal layers were left

—Z.8m I
o T ristipply current ||| ||
. | it CMOS) =
—&.6m — t -~
| |
—=18m [
|) ; ;
—-1Zm 1
! i w
—14m ™
B I \ |
fom Power supply-etrrept
—i6m ‘ (CML)
§ ?
—Zem ‘
—Z22m ‘ |
—Zdm | I
| 1

Fig. 9. Simulation results showing the current drawn from the power supply
for MCML and for CMOS. The generated power supply noise in MCML is
about two orders of magnitude lower.

Bit length MCML CMOS
cell count | delay [ns] | cell count | delay [ns]
16 351 3.17 746 4.42
32 2077 8.63 2385 10.35
64 74438 16.83 5471 20.98
128 17305 33.91 13030 41.01
TABLE I

COMPARISON OF CELL COUNT AND DELAY OF MAJORITY FUNCTIONS
WITH MCML STRUCTURED ASIC ARRAY AND WITH CMOS CELLS.

fully customizable in this work, a fixed, via-programmable
routing pattern could be designed on a number, if not all, of
the metal layers. This would further reduce the masks costs,
and also result in more regularity and thus more predictability.
In this case, the wires can be characterized extensively since
their environment would be known in advance. Also, cell
characterization can take into account the surrounding wires.

VI. CONCLUSION

In this paper, a design flow was proposed which allows the
implementation of regular fabrics using a via-programmable
MCML universal logic module as building block. The design
flow solves the issues related to the differential nature of the
cells, and allows true differential routing to exploit the full
benefit of noise immunity and speed provided by the MCML
cell.

The universal gate can be utilized as an atomic block in
structured ASIC applications using the proposed design flow,
where only the top metal and via layers are customized by

Bit length MCML CMOS

cell count | delay[ns] | cell count | delay[ns]

16 4674 1.20 3511 1.12

32 8704 1.40 7869 1.19

64 15958 1.70 16289 1.22
128 29944 1.94 34771 1.36
256 57201 2.37 71819 1.52

TABLE 11

COMPARISON OF CELL COUNT AND DELAY OF FFT DESIGNS WITH
MCML STRUCTURED ASIC ARRAY AND WITH CMOS CELLS.

the designers. In particular, it is well suited to a mixed-
signal structured ASIC environment, and to applications which
require high noise immunity.

The experimental results show a very high cell utilization
rate, considerably smaller number of cells per design compared
to standard cell CMOS realizations, and delay times that are
comparable (or better) with respect to CMOS implementation.
Considering the clear advantages of noise generation/noise
immunity and significantly lower mask costs, this design plat-
form can be utilized as a feasible option for high-performance
ASICs.

REFERENCES

[1] G. Xu, R. Tian, Z. Pan, and M. Wong, “CMP-aware shuttle mask
floorplanning,” in ASPDAC, 2005.

[2] M. Yamashina and H. Yamada, “An MOS current mode logic (mcml)
circuit for low-power sub-GHz processors,” IEICE Trans. Electronics,
vol. E75-C, pp. 1181-1187, 1992.

[3] S. Khabiri and M. Shams, “Implementation of MCML universal logic
gate for 10 GHz-range in 0.13pum cmos technology,” in Proceedings of
ISCAS, 2004.

[4] E. Brauer, 1. Hatirnaz, S. Badel, and Y. Leblebici, “Via Programmable
Expanded Universal Logic Gate in MCML for Structured ASIC Appli-
cations: Circuit Design,” in ISCAS 2006, May 2006.

[5] S. O. Documentation, Library Compiler and Data Preparation, 2005th ed.

[6] K. Tiri and I. Verbauwhede, “A VLSI design flow for secure side-channel
attack resistant ICs,” in Proceedings of DATE, vol. 3, 2005, pp. 58-63.

[7] J. Loy, A. Garg, M. Krishnamoorthy, and J. McDonald, “Differential
routing of MCMs-CIF: The ideal bifurcation medium,” in Proceedings
of ICCD%4, October 1994, pp. 599-603.

[8] “http://www.opencores.org.”

