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Abstract

We consider communication through an infinite cascade of identical discrete
memoryless channels. We allow the source and destination nodes to use coding
schemes of arbitrary complexity, but restrict the intermediate (relay) nodes to
process blocks of a fixed blocklength. We calculate the optimal end-to-end rate,
maximized over all possible processings at the relays, and show that it coincides
with the end-to-end zero-error capacity. The optimal processing is shown to be
identical at each relay and to correspond to a zero-error code. We also show that
the rate of convergence to the asymptotic value is exponential in the length of the
cascade.

1 Introduction

Consider a communication network where a source node transmits information to a des-
tination node along a path that comprises L consecutive links of the network. We assume
that each link corresponds to an identical Discrete Memoryless Channel (DMC). Thus,
we can model the communication path between the source and the destination using a
line network that consists of L DMCs. We assume that intermediate nodes (relays) are
allowed to process blocks of N symbols, while the source and destination node can code
and decode across an infinite number of such blocks. We are interested in characterizing
the optimal information-theoretic rate that the source can convey to the destination node
as a function of N and L.

It is well-known that as N → ∞, we can use a capacity achieving code over each of the
cascaded channels to achieve the min-cut bound [1]. That is, the capacity of the overall
channel, optimized over all possible processing at the intermediate nodes, equals the
capacity of the single DMC the cascade is composed of. To the other extreme, consider
the case where N is finite but L → ∞. This is the case where intermediate nodes have
complexity and delay constraints, and messages have to traverse a large network to reach
the destination. Using finite N limits both the complexity of the processing performed
at the intermediate nodes as well as the total delay incurred during transmission through
the network, and thus is well suited to complexity and delay constrained networks.

In this paper, we characterize the optimal processing at the relays and the resulting
capacity. We will show that as L → ∞ the optimal processing is identical at each relay
and corresponds to a zero-error code [2]. The resulting capacity coincides with the end-
to-end zero-error capacity. An intuitive interpretation of our results is that, as L → ∞,
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the zero-error capacity is the only part of the transmitted information rate that we may
hope to preserve.

In the paper we also study the rate, in terms of the number of cascaded channels
L, at which this limiting capacity is achieved. We show that the rate of convergence
is exponential and give tight upper and lower bounds for the exponent. This implies
that even for long, but not infinite, cascades, the limiting results found before are still
meaningful.

Capacity of line networks with finite complexity intermediate processing have also
been investigated in [3], which contains lower bounds for large N . Cascades of chan-
nels without processing at the relays have been considered for example in [4] (which
investigates the cascade of channels with invertible channel transition matrix) and in [5]
(which looks at cascaded binary channels). Optimal orderings of several different binary
channels such that the capacity of the overall cascade is maximized have been considered
in [6].

The paper is organized as follows. Section 2 formally introduces the network model
under consideration, proves properties of the optimal processing and reviews mathemati-
cal background on stochastic matrices. Section 3 presents the main results of this paper.
In particular, we give exact expressions for the optimal rate and the speed at which con-
vergence to the limiting expression of capacity for large L takes place. We also discuss
the connections with zero-error capacity. Section 4 concludes the paper.

2 Problem Statement and Mathematical Background

2.1 Network Model

We consider a cascade of L identical DMCs, as depicted in Figure 1. The source A0

sends information to the destination AL via the relay nodes {Ai}
L−1
i=1 . Each channel has

a finite input alphabet X , finite output alphabet Y , and transition probability matrix
V ∈ R

|X |×|Y|
+ . While the source and the destination can perform coding of arbitrary

complexity, the relays {Ai}
L−1
i=1 can only perform operations on blocks of N symbols. At

a block-level, the channel between consecutive relays is a DMC with input alphabet XN ,
output alphabet YN , and channel transition matrix

W , V ⊗N , (1)

where ⊗ denotes the matrix Kronecker product.

A1 A2 A3A0

Z2 X̂2X

W W W

YZ1 X̂1

Figure 1: Three cascaded channels with two relays (L = 3).

Let X̂i ∈ XN denote the input of channel i, and Zi ∈ YN the output of channel
i − 1. In general, X̂i is a (not necessarily deterministic) function of Zi, which can be

represented as a transition probability matrix Mi ∈ R
|Y|N×|X |N

+ , i.e., Mi specifies, for each

realization z of Zi and each possible value x̂ of X̂i, the probability that z is mapped
into x̂. We are interested in finding the set of processings {Mi}

L−1
i=1 that maximizes the



end-to-end achievable rate between the source A0 and the destination AL, when L → ∞.
We assume that A0 can encode over an unconstrained number of length-N blocks and AL

can perform any decoding function. The optimal end-to-end rate is hence the capacity
of the equivalent channel

Weq , W

L−1∏

i=1

(
MiW

)
, (2)

normalized by the number of channel uses N , i.e.,

CN,L(V ) , max
{Mi}

L−1

i=1

1

N
C

(
Weq

)
, max

{Mi}
L−1

i=1

max
p

1

N
I
(
p,Weq

)
. (3)

The notation I(p,W ) indicates the mutual information between the input and the output
of channel W when the input is distributed according to p.

2.2 Properties of the Optimal Processing

We next show that the optimal intermediate processings are deterministic, i.e., x̂i = fi(zi)
for some function fi(·) at the i-th relay, and that fi(·) can be interpreted as a decoding
and re-encoding operation.

Proposition 1. The optimal processings {Mi}
L−1
i=1 define a deterministic mapping, that

is, every Mi is a binary stochastic matrix.

Proof. To simplify notation, we consider one relay only, and we drop the subscript 1 in
M1. The proof extends straightforwardly to the general case.

For any fixed input distribution p, the mutual information I
(
p,Weq

)
is a convex

function of Weq = WMW [7]. Since Weq is a linear function of M , I
(
p,Weq

)
is also

convex in M . Moreover, the set of all transition probability matrices M is a convex
set whose extreme points are the binary stochastic matrices. It is a well-known result
that the maximum of a convex function over a convex domain is achieved at an extreme
point [8]. Hence the result follows.

Proposition 2. A binary stochastic matrix M of dimension |Y|N × |X |N and of rank ρ
can be written as M = MDME, where MD and ME are again binary stochastic matrices
of dimension |Y|N × ρ and ρ × |X |N respectively.

Proof. A binary stochastic matrix M has exactly one 1 in each row. Since M has rank
ρ, it contains a set of ρ linearly independent non-zero columns. Denote by {i1, . . . , iρ}
the positions of those columns. Let mi be the i-th column of M and ei be the row vector
containing all zeros except a 1 in position i. Then the desired decomposition is

M =
(

mi1 · · · miρ

)



ei1
...

eiρ


 , MDME. (4)

In the following, without loss of optimality, we restrict our attention to deterministic
mappings and we think of MD as a decoder (mapping the |Y|N possible channel output
symbols into one of ρ possible “source” symbols), and ME as an encoder (mapping these
ρ “source” symbols back into one of the |X |N possible channel input symbols).



2.3 Canonical Decomposition of Stochastic Matrices

In this section, we briefly review the canonical decomposition of a non-negative stochastic
matrix Q. We will then compute the limit of QL as L → ∞. This result will be used
in the following sections to characterize the limiting capacity of an arbitrary channel
cascaded L times with itself. Our exposition closely follows [9].

Let Q be a square non-negative matrix and denote by J , {1, . . . ,m} the set of its

(row and column) indices. Let q
(k)
ij be the (i, j)-th entry of Qk. We say that the index i

leads to index j, and write i → j, if q
(k)
ij > 0 for some k ≥ 1. If i → j and j → i, we say

that i and j communicate. An index i is called essential if i → j implies j → i. If i is
not essential, it is called inessential. This partitions the set of indices J into the set of
essential indices E and inessential indices I. The set of essential indices E can furthermore
be partitioned into communicating classes C, such that all indices communicating with
each other are in the same class.

The canonical form of a matrix Q is obtained by relabeling its indices in such a way
that all indices of the same essential communicating class are consecutive, and every
inessential index is greater than any essential index. Formally, this corresponds to pre-
and post-multiplying Q by some permutation matrix Π. This results in a matrix of the
canonical form

Q̃ = ΠQΠT =




P1 0 · · · 0 0

0 P2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P|C| 0

R1 R2 · · · R|C| S




. (5)

The square matrix Pi in (5) contains the transition probabilities within the i-th essen-
tial communicating class, S the transition probabilities between the inessential indices
I, and Ri the transition probabilities from the inessential indices to the i-th essential
communicating class. The submatrices Pi are by definition irreducible.

The period of an index i is defined as the greatest common divisor of those k for which
q
(k)
ii > 0. All indices in the same communicating class have the same period, which is

referred to as the period of the class. Denote by di the period of the submatrix Pi. If
di = 1, then Pi is called primitive, i.e., it is irreducible and aperiodic. If di > 1, then
Pi can be written in a canonical form (again by permuting indices) such that, for any
integer L, P di L

i is of the form

P di L
i =




P L
i,1 0 · · · 0

0 P L
i,2 · · · 0

...
...

. . .
...

0 0 · · · P L
i,di


 , (6)

where again the square matrices {Pi,j}
di

j=1 on the main diagonal are primitive.
The following theorem gives the limiting expression of QL when L → ∞ for certain

Q. As we shall see in the next section, the class of Q covered by the theorem is general
enough for our purposes.

Theorem 3. Let Q be a square stochastic matrix in canonical form as in (5) and such

that all its diagonal irreducible submatrices {Pi}
|C|
i=1 are primitive, i.e., have period 1,



then

lim
L→∞

QL =




1π1 0 · · · 0 0

0 1π2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1π|C| 0

a1π1 a2π2 · · · a|C|π|C| 0




, (7)

where the row vector πi is the unique stationary distribution of Pi, and column vector
ai , (I −S)−1Ri1 (I indicates the identity matrix and 1 the column vector of all ones).
Moreover, the convergence to the limit in (7) is exponentially fast in L, and depends on
the Second Largest Eigenvalue Modulus (SLEM), that is, the eigenvalue of Q with largest
modulus strictly less than the spectral radius.

Proof. The proof follows from [9, Th. 4.1, Th. 4.2, Th. 4.3, Th. 4.7].

The following example illustrates these definitions.

Example 1. Let p ∈ (0, 1). Consider

Q =




1−p 0 0 p
0 1 0 0
0 p 1−p 0
p 0 0 1−p


, Q̃ =




1−p p 0 0
p 1−p 0 0
0 0 1 0
0 0 p 1−p


, Q̃∞ =

1

2




1 1 0 0
1 1 0 0
0 0 2 0
0 0 2 0


 .

For the stochastic matrix Q, we have E = {1, 2, 4}, I = {3}, and two essential commu-

nicating classes C =
{
{1, 4}, {2}

}
, both aperiodic. The canonical form Q̃ has

P1 =

(
1 − p p

p 1 − p

)
, P2 =

(
1
)
, S =

(
1 − p

)
, R1 =

(
0 0

)
, R2 =

(
p
)
.

The limit of Q̃L for L → ∞ is Q̃∞. ♦

3 Infinite Cascade of Channels

Determining CN,L(V ) as defined in (3) for any pair (N,L) is not an easy problem. From
the min-cut-set bound [1], we know that limN→∞ CN,L(V ) = C(V ), where C(V ) is the
capacity of the underlying channel V . In this section, we establish a connection between
limL→∞ CN,L(V ) and the zero-error capacity of the underlying channel V .

3.1 Capacity of an Infinite Cascade of Channels

In this section, we will use the results of Section 2.3 to find the capacity of an arbitrary
channel cascaded with itself an infinite number of times.

The next theorem shows that, without loss of optimality, we can assume that all
intermediate processings are identical, that is, M , M1 = . . . = ML−1 = MDME.

Theorem 4. For a cascade of L identical DMCs, identical processing at the relays is
optimal as L → ∞.



Proof. Let W be the channel transition probability matrix of the DMC and, as before,
{Mi}

L
i=1 the processing at the relays. Call Qi , WMi ∈ Sn,n. An interval chain σ of

length ` is defined to be a sequence of intervals {σi}
`
i=1, where the σi are each integer

intervals {li, . . . , ri} and have the property that li = ri−1 + 1 for all i ∈ {2, . . . , `}.
Consider the product

∏L

i=1 Qi and define Qσj
,

∏rj

i=lj
Qi for any integer interval σj ⊆

{1, . . . , L}. We will adapt an idea from [10] to show that, as L → ∞, there exists
an interval chain σ of arbitrary length ` such that all Qσj

are almost identical. More
precisely, for every L there exists an ` with the property that ` → ∞ as L → ∞ such
that

C
( L∏

i=1

Qi

)
= C

(
PQ`

σ1
P̃

)
+ ε(L) (8)

for some stochastic matrices P and P̃ and with limL→∞ |ε(L)| = 0. By the data process-
ing inequality, we have

C
( L∏

i=1

Qi

)
≤ C

(
Q`

σ1

)
+ ε(L). (9)

But any stochastic matrix Qσ1
resulting from this procedure can be written as MWM̃

for some stochastic matrices M and M̃ and hence Q`
σ1

can be constructed from a cascade
of ` channels W by using the same processing at each relay. Hence as L → ∞ (and
therefore also ` → ∞) we can restrict our attention to identical processing at the relays.

For a fixed k ∈ N construct Q̂ from Q by quantizing every component of Q to the
closest of the points {j/k}k

j=0. The set of all possible quantized matrices (which are, in

general, not stochastic) has cardinality K , (k + 1)n2

. By a lemma, originally due to
Erdös and Szekeres (see [10] for a proof), we have that if L ≥ `K then there exists an

interval chain σ of length ` such that Q̂σ1
= Q̂σj

for all j ∈ {1, . . . , `}. Note that Q̂σj
is

defined as the quantized version of Qσj
and hence Q̂σj

and Qσj
differ componentwise by

at most 1/k. By the above argument the product
∏`

i=1 Qσi
and Q`

σ1
differ componentwise

at most by 1
k
(an)` for some constant a independent of k. By choosing k large enough

we can make this difference as small as desired. As mutual information is continuous in
the channel transition probability matrix we can, for any input distribution p, make the
difference |I(p,Q`

σ1
) − I(p,

∏`

i=1 Qσi
)| also as small as desired. Since ` is arbitrary, the

result follows.

Let Q , MEWMD ∈ R
ρ×ρ
+ , where ρ is the rank of M . Even though using an inner

encoder ME at the source A0 and an inner decoder MD at the destination AL is in
general suboptimal, in the limit for large L, this is not the case. In fact, by the data
processing inequality

I(p,QL−2) ≥ I(p,WMDQL−2MEW ) ≥ I(p,QL), (10)

and hence
lim

L→∞
C(WMDQL−2MEW ) = lim

L→∞
C(QL). (11)

Without loss of generality we can assume that matrix Q is in canonical form. Indeed,
we get from (5)

C(Q̃L) = C(ΠQΠTΠQ . . . QΠT ) = C(ΠQLΠT ) = C(QL). (12)



Theorem 5. Consider a square stochastic matrix Q, and let Cd be the set of irreducible
classes of Q with period d. Then

lim
L→∞

C(QL) = log
(∑

d

d|Cd|
)
. (13)

Proof. The notation is the same as in (5) and in Theorem 3. Let di be the period of
Pi and denote by d the least common multiple of the {di}. By the data processing
inequality I(p,QL) is decreasing in L for any p. As C(QL) ≥ 0 for any L, this implies
that limL→∞ C(QL) exists. Hence

lim
L→∞

C(QL) = lim
`→∞

C(Q`d). (14)

From (6), we know that the part of Q`d corresponding to essential indices is block diagonal
for any `. Moreover, there are exactly D ,

∑∞
d=1 d|Cd| such blocks and each block is

a primitive matrix. Hence, from Theorem 3, we know the limit Q∞ , lim`→∞ Q`d in
closed-form, i.e., Q∞ is a block diagonal matrix where each block is a rank-one matrix.

As capacity is upper bounded by the logarithm of the rank of the channel transition
probability matrix [11],

C(Q∞) ≤ log rank(Q∞) = log D. (15)

Moreover, log D is easily seen to be an achievable rate. Recalling that D ,
∑∞

k=1 k|Ck|
yields the desired result.

It is interesting to notice that the optimal coding and decoding strategy for the channel
Q∞ are very simple. The encoder uses only one input from each essential communicating
class with uniform probability. The decoder declares as transmitted symbol the index of
the essential communicating class to which the received output symbol belongs to. Since
essential communicating classes are disjoint, and inessential indices are never used, each
relay recovers the transmitted information with zero probability of error. We shall return
to this point in Section 3.3, where we will show that the optimal intermediate processing
corresponds to a zero-error code and that the limiting capacity log(D) is closely related
to the zero-error capacity of the underlying channel V .

To conclude this section, we give a simple characterization of D that does not rely on
the canonical decomposition of Q.

Corollary 6. Call D the number of eigenvalues of modulus 1 of the stochastic matrix
Q. Then

lim
L→∞

C(QL) = log D. (16)

Proof. The result is a consequence of the fact that the set of eigenvalues of a block
triangular matrix is the union of the eigenvalues of its diagonal blocks [12], and that
primitive stochastic matrices have a single eigenvalue of maximum modulus [9].

3.2 Asymptotic Rate of Decay

Theorem 3 states that the rate of convergence of QL to Q∞ is exponential in L and
depends on the SLEM of Q. In this section, we determine the speed of convergence of
C(QL) to C(Q∞). More precisely we are interested in

EL(Q) , lim inf
L→∞

−
1

L
log

(
C(QL) − log(D)

)
. (17)



Theorem 7. Let Q be a stochastic matrix and call Q̃ the stochastic matrix obtained by
deleting all inessential indices from Q. Then

− log |λ2(Q)| ≤ EL(Q) ≤ −2 log |λ2(Q̃)|. (18)

where |λ2(M )| denotes the SLEM of the matrix M .

Proof. The proof can be found in [13] where it is also shown that the right-hand-side

of (18) is tight if Q = Q̃, i.e., if Q contains no inessential indices.

Example 2. As an example, consider for p ∈ (0, 1) and t ∈ (0, 1]

Q =




1 − p p 0
p 1 − p 0

t/2 t/2 1 − t


 . (19)

The eigenvalues of Q are {1, 1− 2p, 1− t}. The asymptotic rate of decay of capacity can
be computed analytically in this case and is given by

EL(Q) = − log
(
max{1 − t, (1 − 2p)2}

)
. (20)

With the right choice of the parameters p and t both the upper and the lower bound in
Theorem 7 can be achieved. Hence both bounds in Theorem 7 are tight. ♦

3.3 Connections to Zero Error Capacity

In this section, we explore the connection between the code that achieves the capacity
CN,L(V ) in the limit of large L and the zero-error capacity of the underlying channel.

The zero-error capacity of a DMC, specified by its transition probability matrix V , is
the maximum rate at which communication is possible over this channel with zero-error.
The concept of zero-error capacity was first introduced in [2].

Two input letters x1, x2 ∈ X of V are said to be adjacent if there exists an output
letter y ∈ Y such that v(y|x1) > 0 and v(y|x2) > 0. Let G(V ) be the graph associated
with V that has as vertex set the possible inputs of V and in which two vertices are con-
nected if the corresponding input letters are adjacent. Denote by M0

(
G(V )

)
the largest

number of vertices in G(V ) no two of which are connected by an edge (or, equivalently,
the largest number of input letters of V no two of which are adjacent). It is shown in [2]
that the zero-error capacity of V is given by

C0

(
G(V )

)
, sup

n

1

n
log M0

(
G(V ⊗n)

)
. (21)

We shall now prove that for any finite N

lim
L→∞

CN,L(V ) = lim
L→∞

max
ME ,MD

C
(
(MEV ⊗NMD)L

)
=

1

N
log M0

(
G(V ⊗N)

)
. (22)

The proof of this result uses the following theorem, which asserts that the zero-error
capacity obeys a sort of data processing inequality.

Theorem 8. Consider a cascade of L channels {Qi}
L
i=1. Then for any finite N and any

j = 1, . . . , L

M0

(
G

(
(

L∏

i=1

Qi)
⊗N

))
≤ M0

(
G(Q⊗N

j )
)
. (23)



Proof. By definition M0

(
G(Q)

)
= D if and only if there exists an encoder ME and

decoder MD such that MEQMD is an identity matrix of dimension D.
Call (ME,MD) the optimal encoder and decoder for the matrix (

∏L

i=1 Qi)
⊗N . By

the properties of the Kronecker product [14], we have

I = ME(
L∏

i=1

Qi)
⊗NMD = ME

L∏

i=1

(Q⊗N
i )MD = M̃EQ⊗N

j M̃D, (24)

where M̃E , ME(
∏j−1

i=1 Q⊗N
i ) and M̃D , (

∏L

i=j+1 Q⊗N
i )MD. Hence there exists at least

one zero-error encoder and decoder for Q⊗N
j yielding the same rate, which shows the

result.

From the definition of C0

(
G(Q)

)
in (21) we see that Theorem 8 implies a “min-cut”

condition on the zero-error capacity:

C0

(
G(

L∏

i=1

Qi)
)
≤ C0

(
G(Qj)

)
. (25)

With the result of Theorem 8 we can now prove (22), which states that, for large L,
the optimal (ME,MD) pair is the best (in the sense of highest rate) possible zero-error
code for the channel V of blocklength N .

Theorem 9. Let V be the transition probability matrix of an arbitrary DMC and W ,
V ⊗N . Then

lim
L→∞

C
(
(MEWMD)L

)
= C0

(
G

(
lim

L→∞
(MEWMD)L

))
(26)

= log M0

(
G

(
lim

L→∞
(MEWMD)L

))
(27)

≤ log M0

(
G(W )

)
, (28)

and we have equality in the last line if the (ME,MD) pair defines an optimal zero-error
code for the channel V for the given blocklength N .

Proof. Equality in (26) follows since in the limit of large L, the usual capacity and the
zero-error capacity of the channel (MEWMD)L coincide. Equality in (27) follows since,
again in the limit of large L, it is possible to construct an optimal zero-error code for
the channel (MEWMD)L with blocklength one. Finally (28) is just an application of
Theorem 8.

To see that we have equality in (28) if (ME,MD) is an optimal zero-error code for
W , observe that in this case (MEWMD)L = (I)L = I.

Equation (22) follows now from interchanging the limit and the maximization oper-
ation (which can be shown to be possible here) and applying Theorem 9.

4 Conclusion

In this work, we have shown that for a cascade of L identical channels the limiting capacity
when L → ∞ can be easily computed as the logarithm of the number of eigenvalues of
modulus one of the channel transition probability matrix. In this case, the optimal finite



complexity processing performed at the relays is identical at each relay and corresponds
to using an optimal zero-error code. We have also shown that with identical processing
at the relays the limiting capacity for L → ∞ is approached exponentially in L with
the rate of decay being related to the second largest eigenvalue of the channel transition
probability matrix.
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