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Abstract

We propose protocols for energy-efficient communication over wireless sensor net-

works based on the use of silence as a means of conveying information. That is,

information is inferred by the fact that nodes remain silent. We investigate the time-

complexity trade-off such protocols offer, in a communication-complexity framework.

We focus our attention on symmetric functions, that include most statistical functions

and functions of interest for sensor networks.

1 Introduction

Silence has long been fabled to convey information. It is said that the Queen of X, once

summoned all the women of her Kingdom and proclaimed: “It has come to my attention

that not all your husbands are faithful. I was further told that each of you knows of all

cheating husbands, except your own. I don’t want you to discuss this sordid matter with

anyone, but I do want you to ponder it long and hard. And should any of you some day

determine for certain that your husband cheats, shoot him that very midnight.” And so left

the Queen. Thirty nine tense but quite midnights went by, but on the fortieth night, forty

gunshots were heard, and all forty cheating husbands of X ceased to exist. And thus, the

women of old X used silence in lieu of communication to determine who cheated1.

The use of time to communicate information dates back even further, and is even more

substantiated. Fireflies are known to convey information using the intervals between light

pulses. And German ethologist Karl von Frisch won the 1973 Nobel Prize for Physiology or

Medicine for discovering that bees communicate distance to food sources via the duration of

the waggle dance [3, 4].

1Or was it female intuition, see appendix.
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Recently, another reason for using silence and timing to convey information has emerged.

Sensor networks consist of small devices that gather and communicate information. Typ-

ically, a central processor, which we shall call a satellite, collects all that information and

computes some function of the joint inputs. For example, the sensors may measure the

temperature at various locations, and the satellite may determine their average, or whether

some temperature exceeds a prescribed threshold.

Often, the sensors are small, have tiny batteries, and are not easily accessible. It is

therefore desirable to find communication protocols that minimize their transmissions and

thereby conserve their energy. We consider the use of silence and time to minimize the

amount of communication required to compute various functions.

We focus on symmetric functions, which are functions that are invariant under permu-

tation of their input arguments. Many common functions that might be of practical use

in sensor-networks, such as average, max, and threshold are symmetric. Moreover, in the

context of sensor networks, symmetric functions express the fact that the values of the mea-

surements, rather than the identity of the sensors, is of importance.

To formalize silence, we consider pulse communication where at each time unit a node

can either be silent, or emit an energy pulse. Unlike standard bit communication, where

a node transmits either zero or one, the pulse itself conveys no information except for its

existence. It can be thought of as a beam of light that either does or does not exist. It is

the number of such pulses that we seek to minimize.

In Section 3, we consider the easiest functions to analyze, those whose inputs are bi-

nary. We consider protocols where one node transmits at a time. We show that in bit

communication all non-constant functions require n bits in the worst-case. We then provide

a simple characterization for the number of transmissions required for pulse communication

of symmetric functions, showing for example that computing the n-variable OR and AND

functions requires at most one pulse.

These results, for both bit and pulse communication come at a delay equal to n. For

functions of variables over non-binary alphabets, pulse communication may result in higher

delay than bit communication. For some applications time is of an essence, and we therefore

also consider the tradeoff between communication and delay. In Section 4, we consider two

scenarios. One where multiple nodes can communicate simultaneously. We show that the

amount of communication C needed when delay d < n is allowed satisfies the simple rule

C ∼ A +
n

d
,

where A is the number of pulses needed when one processor transmits at a time.

Analyzing communication complexity for sensor networks has been considered in [5],

where asymptotic results for binary communication were derived. Our work differs in that, we
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consider pulse communication, use of silence, and calculate exact as opposed to asymptotic

results. Our work can also be put in the framework of unit cost communication [6]. A

new ingredient that we bring is that, unlike previous work we do not consider point-to-point

communication, but instead distributed communication over the nodes of the sensor network.

The paper is organized as follows. Section 2 introduces our model and notation. Section 3

derives the complexity of pulse communication for binary-input symmetric functions. Section

4 investigates complexity – delay trade-offs, and Section 5 concludes the paper.

2 The communication model

We assume a very simple communication model. We consider a sensor network with n nodes

that collect a set of measurements x = {x1, x2 . . . , xn}. Node i observes a value xi from

a discrete alphabet Xi. A central processor, which we shall call a satellite, would like to

compute a function f of the joint inputs

f : X1 × X2 × . . . × Xn → Z. (1)

We assume that time is divided into slots of equal duration. The nodes follow an agreed-upon

communication protocol. At each time slot at most one node transmits. Which node may

transmit at a given time is determined by previous transmissions. What the node transmits

is determined by previous transmissions and its own value. Note that for the transmissions

to depend on previous ones, either the satellite polls the nodes, at each time asking a specific

one for a function (determined by previous transmissions) of its value, or all nodes listen to

all transmissions.2

One can consider two types of communication. Standard bit communication where when-

ever a node is selected to transmit it must transmit either 0 or 1. It is not allowed to remain

silent. Mostly however, we will consider, pulse communication where at each time one node

is selected to transmit, and it can either transmit or not. Transmission does not convey

value, just the absence of silence. One way to visualize this is to think of the node as either

shining a light, or not. If a light is shined, it does not convey a value, such as 0 or 1. These

concepts are illustrated by the following example.

Example 1. Suppose that each of n nodes holds a binary value, and they want to deter-

mine the OR of these values, namely whether at least one of them has a 1.

A possible protocol is to agree on an ordering of the nodes from 1 to n. Then at the ith

time slot, if node i has a 0 it remains silent, and if it has a 1 it emits a pulse. Once one node

2Although not examined in this paper, our approach can be extended in the case where nodes communicate

through multiple hops.
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emits a pulse, the communication stops, and the value of the function is determined to be

1. If after n time slots no node emits a pulse, the value of the function is 0. Note that the

number of pulses emitted by all nodes is either zero or one. 2

We assume that the power consumed by the nodes to listen to ambient communication

and to perform calculations is negligible. The only power measured is that required to

transmit, and it is this power that we want to minimize. We will evaluate our protocols using

two metrics. The maximum number of transmissions C(f) the protocol might require, and

the maximum number of time slots T (f) we will need to evaluate the function f . In other

words, we will calculate the worst-case complexity and delay required. In the traditional

approach, where during each time slot one node transmits a binary value, it always holds

that T (f) = C(f). Thus, traditionally, only C(f) is calculated. Using our approach, we will

have that in general

T (f) ≥ C(f). (2)

We will restrict our attention to the case where nodes observe values over the same

discrete alphabet of size k, that is, Xi = [k] = {1 . . . k}, for each i. This is a natural

assumption for a sensor network where sensor nodes are identical devices, as is almost always

the case.

Moreover, we will consider functions f that are symmetric. A function f is called sym-

metric, if

f(x1, x2, . . . , xn) = f(σ(x1, x2 . . . , xn)), (3)

where σ is any permutation of the functions arguments. The value of a symmetric function

depends only on the histogram of the values of its arguments. This set of functions includes

most statistical functions, such as the mean and the max value, and corresponds to sen-

sor network applications where the measurements rather than the identity of the nodes is

important. In the following we summarize our notation:

n : Number of nodes that observe values x1, . . ., xn.

k : Each node observes a value in the set Xi = [k] = {1 . . . k}.

f : A function of x1, . . ., xn that we want to evaluate.

C(f) : The (worst case) number of required transmissions (complexity).

T (f) : The (worst case) number of required time-slots (time).

3 Binary variables

Functions of binary variables are particularly easy to analyze. A symmetric function of

binary inputs is determined by

|x| = |{i : xi = 1}|,
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the number of ones among the inputs. A symmetric function f can thus be expressed as a

function of its argument’s weight,

f(x) = fI(|x|).

For example, for the OR function,

fI(|x|) =







1 |x| ≥ 1,

0 |x| = 0.

3.1 Bit communication

We first consider the standard bit communication model where each sensor transmits its

value. The results are predictable and provided only to motivate and compare with the

pulse communication model. Clearly, if the function is constant, namely attains the same

value for all inputs, then no transmissions are necessary. We show that in all other cases,

the worst-case communication is n.

Lemma 1. For every non-constant n binary-variable functions f ,

C(f) = n, T (f) = n.

Proof If f is non-constant, then fI(α) 6= fI(α + 1) for some 0 ≤ α < n. For j = 1, . . . , n,

let j be the jth sensor to transmit its value xj. Consider the input x = {x1, x2 . . . , xn}

where

xj =







1 j ≤ α,

0 j > α.

It is easy to see that for this input, all processors must transmit to determine the functions

value. 2

Example 2. For the OR function, the α described in the previous lemma is 0. If x = 0,

all processors must transmit.

For the AND function, the α described in the previous lemma is n− 1. If the first n − 1

processors to transmit upon hearing all 1’s in previous transmissions are assigned a 1, and

the last to transmit in that case is assigned a 0, then all processors must transmit. 2

3.2 Pulse communication

We now consider pulse communication, where a node that transmits a pulse does not convey

any other information apart from the fact that it chose to transmit.

An interval is a collection of consecutive integers. For a given function f , an interval in

{0, 1, . . . ,n} is f -constant if fI is constant for all values in the interval. Let Imax(f) be the

cardinality of the largest f -constant interval.

5



Lemma 2. For all symmetric functions f of n boolean variables,

C(f) = n + 1 − Imax(f), T (f) = n. (4)

Proof We can depict a symmetric function of binary variables as in Fig. 1, where the

y-axis represents |x| (the number of ones in the input) and the x-axis represents n− |x| (the

number of zeros in the input). Note that, if for given input we know the exact value of y,

then we also know the value of x since x + y = n. The value of the function is depicted on

the line x + y = n.

Imax T c

xT c
xT b

xT d

T y
c

T y
b

T y
a

T d

T b

T a

n

n

Number of ones

f=a

f=b

f=c

f=d

Number of zeros

Figure 1: A method to represent a binary-input symmetric function.

Each f -constant interval I(f) corresponds to an isosceles triangle, with two equal sides

of length I(f). We will describe a protocol that calculates the value of the function f by

determining in which f -constant interval |x| belongs to. This protocol requires in the worst

case C(f) = n+1− Imax(f) pulse transmissions, thus proving the achievability of Lemma 2.

Each node is allocated a time slot. At time slot i, node i will transmit or remain silent.

We will keep a counter Si = (Si
x, S

i
y) were Si

x denotes the number of 0’s, and Si
y is the number

of 1’s, revealed up to and including time-slot i. Each value of S i corresponds to a point on

the plane, that expresses the information we have gathered thus far regarding the values of

the input. Initially (S0
x, S

0
y) = (0, 0). During each time slot i, either S i−1

x or Si−1
y is increased

by one, which visually corresponds to the point moving either right or up on the plane.

Note that, to uniquely determine the value of the function, we do not need to know the

exact value of all arguments of the function: it is sufficient for the point S i to belong to any

of the triangles. The goal of the following argument is to achieve that using the minimum

number of transmissions.
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Protocol

Let T be the triangle corresponding to Imax(f) and let Tx and Ty denote the coordinates of T ’s

base (namely its lower left corner), with 0 ≤ Tx ≤ n, 0 ≤ Ty ≤ n, and Tx + Ty + Imax(f) = n + 1.

Nodes emit pulses if they have value 1, until time-slot m1, where

• Time-slot m1 = n is reached, or,

• m1 < n but Sm1

y = Ty, i.e., Ty nodes have emitted a pulse.

At this point, from the m1 nodes that had the opportunity to transmit, Sm1

y = Ty have value

1, and Sm1

x = m1 − Ty have value 0. Thus, we know that Ty < |x| ≤ n − m1. If at time m1

the value of the function is not uniquely determined, then from time m1 + 1 and on, nodes

emit pulses when they have value 0, until time-slot m2, where

• Time-slot m2 = n is reached, or,

• m2 < n but Sm2

x = Tx. In this case, since Sm2

y ≥ Sm1

y ≥ Ty and Sm2

x ≥ Tx, the point

Sm2 belongs to the “largest” isosceles triangle, and the value of the function is uniquely

determined.

In the worst case, at most Ty + Tx = n + 1 − Imax(f) nodes will transmit.

We further need to show that there does not exist a protocol, that uses the same commu-

nication model, and results in a smaller worst case complexity. Consider any protocol and

an input such that |x| ∈ Imax(f). For the protocol to determine the value of the function,

we need to learn the value of at least n + 1 − Imax(f) nodes. For any ordering of the nodes,

there exists a worst case input that requires that many pulse transmissions. 2

Example 3. For 0 ≤ α ≤ n + 1, the greater than or equal α function,

geα(x)
def
=







1 |x| ≥ α,

0 |x| < α,

is 1 iff at least α of the n inputs are 1. For example, ge0 is the constant-1 function, ge1 is

OR, gen/2 is majority, gen is AND, and gen+1 is the constant-0 function.

For α = 0 or n + 1, geα has one segment, {0, . . . ,n}, hence Imax = n + 1, implying that

C = 0. Since these functions are constant, they require no communication.

For 1 ≤ α ≤ n, geα has two segments, {0, . . . ,α − 1}, and {α, . . . ,n}, hence Imax =

max(α, n + 1 − α), implying that C = min(α, n + 1 − α). The protocol that achieves this

complexity is very simple. Assume wolog that α ≤ (n + 1)/2. The processors agree on some

order, and each one in its turn pulses if it has value one and keeps quite otherwise. Once

α processors pulse, or all of them had a chance to communicate, communication stops. If

α > (n + 1)/2, we would have instead nodes that have value zero emmit a pulse. 2
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Example 4. For 0 < α < n, the equal α function,

eqα(x)
def
=







1 |x| = α,

0 |x| 6= α,

is 1 iff exactly α of the n inputs are 1.

Then eqα has three constant segments, {0, . . . ,α − 1}, {α}, and {α + 1, . . . ,n}, hence

Imax = max(α, n − α), and C = min(α + 1, n + 1 − α). The same simple protocol achieves

this number of bits, where if α ≤ (n + 1)/2, nodes that have value one emit a pulse up to at

most C pulses. 2

Example 5. For the Exclusive-Or function,

xor(x) = (|x|)2,

each of the n + 1 singletons in {0, . . . ,n} is a constant interval, hence Imax = 1. It follows

that C = n, namely all processors must transmit. 2

Example 6. For an integer 1 ≤ α ≤ n, the approximate sum function

sumα(x)
def
=

⌊

α|x|

n + 2

⌋

approximates the number of 1’s into α groups. For example, sum2 is majority and sumn is

the number of ones. Then Imax = dn/αe, and therefore C = n + 1− dn/αe. It is easy to see

that if as many processors emit a pulse, we know the value of sumα(x). 2

4 Power-delay tradeoffs

The protocols considered thus far use silence to minimize power consumption. However, the

resulting computation delay can reach (k − 1)n, as is the case in the following example.

Example 7. Consider the “threshold” function f with ternary inputs, i.e., k = {0, 1, 2}.

f(x) =







1 w0 ≥ α and w1 ≥ β and w2 ≥ γ

0 otherwise,

where wi is the number of i values the sensors observe. Assume that the values α, β, γ are

such that α+β +γ << n. Following a protocol similar to the binary-input case, we can first

have up to α nodes that have observed value 1 transmit a pulse, then up to β nodes that

observe value 2 transmit, and finally up to γ nodes that observe value 3 transmit. Thus the

worst case complexity will be C = α + β + γ. It is easy to see that the worst case delay will

be T = 2n. One way to think about it is, that each of the n nodes will need two slots to

convey, using one pulse, which of the three values it has. 2
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For some applications, time/delay may also be of essence. An underlying assumption of

the discussed protocols is that the each node is allocated one time-slot and emits at most

one pulse, basing its possible transmission on those of previous nodes. If computation must

be performed more rapidly, one can relax this constraint and decrease the delay at the cost

of increased power consumption. We now consider simultaneous node transmission where

multiple nodes transmit at the same time, and multi-pulse encodings where nodes use more

than one pulse to encode their values.

4.1 Simultaneous transmissions

In this model nodes are allowed to simultaneously transmit during the same time slot. We

assume that when this happens, the satellite knows how many nodes transmitted. This is

a reasonable assumption, because, transmissions are over a unary alphabet, and thus, the

satellite can simply measure the level of received energy to determine how many nodes have

simultaneously transmitted during a time-slot. To visualize this mode of communication,

one can imagine some subset of the sensors shining what may be a thousand points of light,

and the satellite observing which of the nodes emit light.

In particular, we can divide the n nodes into d sets of size at most dn/de each, and

allocate a time-slot to each set. During each time slot, all nodes in the corresponding set are

allowed to possibly emit a pulse. Lemma 2 corresponds to the case where d = n, and can be

easily generalized as follows.

Lemma 3. For all symmetric functions of n boolean variables, we can achieve

T = d, C ≤ n + dn/de − Imax. 2

4.2 Multi-pulse encodings

For functions over k-size alphabets, each node may take k− 1 time slots to convey its value.

For binary alphabets, this delay is 1. For larger alphabets, the delay is larger. This delay

can be reduced by using multi-pulse encodings.

Let node i observe a value xi in [k]. To convey this value we can achieve the following

complexity-time trade-off.

• One-pulse encoding: T = k − 1, C = 1.

Allocate k − 1 time slots to the node. By not transmitting, or transmitting one pulse at one

of the k − 1 time-slots, the node can convey k values.

• Binary encoding: T = log k, C = log k.

Viewing silences as 0 and pulses as 1, we can convey the value in dlog ke time slots. However,

the number of pulses can be as large as the number of slots.
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• Multi-pulse encoding: T = t ≈ ck
1

c , and C = c.

We can use
(

t

c

)

+

(

t

c − 1

)

+ . . . +

(

t

1

)

+ 1, (5)

distinct values. We are interested in the case where the number of transmissions c is smaller

than t
2

- otherwise we will get that t ≈ c ≈ log k and the resulting complexity will resemble

the binary encoding case. For c << t we can approximate the sum in Eq. (5) as
(

t
c

)

and

thus
(

t

c

)

≈ 2th( c

t
) ≈ 2c log t

c ≈ k.

5 Conclusions

We proposed protocols that use silence and timing to convey information in an energy efficient

manner over wireless sensor networks. We characterized the worst case complexity required

for binary-input symmetric functions, and investigated delay-complexity trade-offs possible

over higher alphabet values.
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