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Abstract

When delegating complex tasks to a computer tool, eliciting and representing users’
decision preferences is a crucial task. It is usually too complex to get a complete
and accurate model of their preferences, especially regarding the tradeoffs between
different criteria.

We consider decision aid systems where users specify their preferences qualitatively
as the combination of criteria they consider, but the relative weights are uniform for
all users. To compensate for the imprecision of this qualitative model, we let the user
choose among a displayed set of possibilities rather than a single optimal solution.

We then consider how large this set of possibilities has to be to ensure that the
target solution can be found, and how the probability of finding the correct solution
varies with the number of preferences stated. We present a probabilistic analysis,
randomly generated configuration problems and a commercial application. The results
show that the selection mechanism must be carefully designed if the user should be
guaranteed to find the target solution.
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1 Introduction

Many real-world applications require people to select a most preferred item from
a set of choices. For example, in e-commerce an electronic catalog system might
provide access to millions of products, and the user has to navigate the catalog
to find the most preferred one, which we call the target. Decision theory provides
algorithms which guarantee to find this target solution given the options and
an accurate preference model.

In the classical decision theory approach ([1]), solutions are characterized by
a set of criteria and individual users characterize their preferences by the relative
weights they give to criteria or combinations of criteria. Such approaches are
described for example in [2], methods for eliciting the weights are discussed in
more detail in [3, 4]. An example of its application in a decision aid system
is the PC selection tool of IBM described in [5], where users can adjust the
weights of different criteria and interactively see how different PC models rank
according to these weights.

However, there are many practical situations where the space of possible
criteria is too large to expect each user to state a numerical preference model for
all of them. This is the case for example in travel, where there is a huge number
of possible criteria involving times, means of transportation, locations, that vary
from one user to another. In such a case, it is more feasible to characterize a
user’s preference qualitatively as the specific combination of criteria that apply,
without also eliciting their exact weights. While the weights can be set to reflect
those of average users, their values will not be exact and so the result is only an
approximate model that will in general not correctly identify the most preferred
solution. Such qualitative decision theory has recently become the subject of
increased interest in the research community ([6, 7]).

We consider compensating for this shortcoming by letting the user pick the
most preferred solution from a larger displayed set D of k solutions. Such an
approach has been taken in numerous practical systems, for example in [8, 9,
10, 11, 13]. The process will be sound, i.e. allow the user to find the target
solution, only if the displayed set actually contains the solution. It turns out
that this heavily depends on the model used for selecting displayed solutions as
well as on the number of preferences that have been stated.

In this paper, we analyze three different methods for selecting displayed
solutions:

o dominance filters that display k solutions that are not dominated by any
other one.

e sum filters that keep the k solutions with the lowest sum of preference
violations, and

e fuzzy filters that keep the k solutions with the smallest maximum prefer-
ence violation.

Using both a theoretical, probabilistic model and empirical examples, we show



that none of the filters can guarantee soundness in all cases, and that all have
to be carefully tuned to the application at hand.

1.1 Assumptions and Definitions

We assume that solutions are characterized by a fixed (but possible very large)
set of attributes, and that users formulate qualitative preferences in the form of
penalty functions formulated on the attributes, defined as follows:

Definition 1. FEvery configuration solution is characterized by a finite set of n
attributes A = {ay,...,an}. Every attribute can take values from a fized domain
{dy,...,d,}. Attributes can be either attributes of the components or derived
from their composition.

A preference p;(ax) is a mapping dy, — R from an attribute ap to a number
that gives the penalty of that attribute value to the user. We assume that the
smallest values are the most preferred ones. A conditional preference p;(ax|a; =
v) is a preference that only applies to solutions where attribute a; has value v.

Note that each unconditional preference constructs a total order of the do-
main of the attribute ay, while conditional preferences only construct partial
orders.

To simplify, we write p;(S) for p;(a;(S)) .

Example 1: Solution attributes and penalties.
The following attributes and preferences can for example be stated:

o Attributes:
ay = arrival_time (f3)
ay = departure_time (fy) - arrival_time (f;) : transit time
a3 = transfer_airport (fi, f2)
a4 = arrival_time (fy) - departure_time (f;) : travel time

e Penalties:
p1(a1) = maz(0,a; — 18 : 00)
p2(az|az = LHR) = maz(0, 2 hours — a3)
p3(as) = as/5

We assume that the decision support system allows users to choose prefer-
ences from a predefined, but possibly unboundedly large set.

We assume that the preferences of user u are expressed by a set P*(u) =
{p1,-,pr} as well as a set of weights {wy,..,wy} associated with these prefer-
ences such that the weighted sum W(S,u) = _,. c p+(y) wi - pi(S) reflects the
preference order of solutions, i.e. if W (Si,u) < W(S2,u) then the user prefers
solution S; over solution Ss.

We call the best solutions for the user’s true preference model P*(u) the
user’s target solution Sg(u). It is given as the solution that minimizes W (S,u) =
Zpiep*(u) w; - pi(S).

We assume furthermore that for any penalty function, the average weight
over all users that have chosen it to characterize their preference is equal to 1.



This amounts to a normalization of the penalty functions to fit average users.
We furthermore assume that for a particular user, each weight differs by no
more than € from 1. Users are thus distinguished qualitatively by the choice of
preferences rather than quantitatively by the importance of each preference in
a predefined set.

2 Decision support with qualitative preference models

As the qualitative preference model is imprecise, we cannot be sure that it will
select the target solution. To compensate for this shortcoming, we propose an
approach where we generate a displayed set D of k target solutions and let the
user pick himself from this set.

For this approach to be practical and successful, the following conditions
must be satisfied:

1. it must be possible to limit the computed set D to a size of at most &
displayed solutions so that it can be displayed in a consistent manner.

2. solutions that are pareto-optimal within the set D must also be pareto-
optimal with respect to the set of all feasible solutions. This is important
to keep the user from unknowingly picking a dominated solution as the
final choice.

3. when the user has specified his preferences, the target (user’s most pre-
ferred) solution must be included in the displayed solutions.

We consider three candidate techniques for computing the displayed solu-
tions:

e a dominance filter that retains £ dominant or pareto-optimal solutions.

e a weight filter that retains the k solutions such that the sum of their
penalties is lowest.

e a fuzzy filter that retains k solutions such that their maximum penalty is
lowest.

We now examine the three candidate techniques in detail. In order to allow
a theoretical comparison, we assume that preferences p; are independent, with
real-numbered values in the interval [0..1], and that m solutions are distributed
uniformly in the |P*|-dimensional space of preference combinations. While in
reality both assumptions are not likely to hold perfectly, comparing the theoret-
ical results to measurements on real-world configuration problems shows quite
a good match with reality.

3 Dominance filter

In the dominance filter, we choose as the displayed set a set of k pareto-optimal
solutions, defined as follows:
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Fig. 1: Example of solutions with two penalties. The two coordinates show the values
of preferences p; (horizontal) and p» (vertical). Rectangles show where domi-
nating solutions must fall. For example, solutions dominating solution 5 must
fall into the hatched rectangle.

Definition 2. A solution Sy is dominated with respect to P*(u) iff there is
another solution S’ such that for all p; € P*(u), p;(Sq) > pi(S").
A solution Sy, is pareto-optimal iff it is not dominated.

In Figure 1, the Pareto-optimal set is {1, 3,4, 6}, as solution 7 is dominated
by 4 and 6, 5 is dominated by 3 and 4, and 2 and 8 are dominated by 1.

From the point of view of decision theory, this is the cleanest, since this does
not require any assumption about the weights that are not precisely known.

As shown in Figure 1, a solution S; with preference values p1 = ¢1, ...,pqa = ¢4
is dominated by any solution that falls within the subspace p; € [0..c1], ..., pa €
[0..cq], which is a hypercube. Given a uniform distribution of solutions, the
average probability that a solution S; is dominated by another solution Sy is
thus equal to the probability that S, falls into that subspace. This probability is
given by the proportion of the subspace with respect to the entire space. Since
we assume all attributes to vary between 0 and 1, the size of the entire space is
1¢ =1, so that the probability is just the size of the subspace, i.e.:

PT(SJ' < Sk) = H pi(Sj)
pi EP*(u)

and the probability that a solution \S; is pareto-optimal is the probability that
in the m solutions, not a single one dominates S;:

Pr(S; is pareto-optimal) = (1 — H pi(S;)™
pi€P*(u)
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Fig. 2: Number of Pareto-optimal solutions expected from the probabilistic analysis
for 2 example scenarios.

The expected number of pareto-optimal solutions is given by integrating this
probability over the possible value combinations of the preferences:

1 1
E[|{S;|S; is pareto-optimal}|] = m/ / (1- H p;)"dpy - - - dpg

0 0 pi€P*(u)
where d = |P| is the number of preferences in the set P*(u).

Figure 2 shows graphs of this number for two example scenarios that match
experiments we made with randomly generated configuration examples' shown
in Figure 3. The scenarios involve either m = 778 and m = 6,444 and the
number of preferences d ranging from 3 to 12. We can observe that in the
experiments the randomly generated preferences are not completely independent
of one another, so that the number for 12 preferences in the experiments are
already reached with 8 preferences in the theoretical analysis, and similarly 8
preferences in the experiments correspond to about 5 preferences in the theory.
However, besides this effect, there is a very good match, showing that the model
is quite realistic.

A consequence of this rapid rise in the number of pareto-optimal solutions
is that when there are few preferences, there may not be enough solutions to fill
the displayed set, while with too many preferences, there will be too many and
random sampling will be required. Thus, in order to satisfy condition (1), the

1 The generation of the randomly generated configuration problems is described in Section 4.



Experimental results on random configuration problems
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Fig. 3: Average number of Pareto-optimal solutions actually observed on randomly
generated configuration examples in the two example scenarios.

filter has to perform random sampling when the number of preferences gets too
high.

Condition (2) is trivially satisfied as only solutions that are pareto-optimal
in the entire set of feasible solutions are shown.

For verifying condition (3), we assume that the target solution is pareto-
optimal. However, as already mentioned, it will often be necessary to make a
random selection of solutions to actually display. Thus, the probability of it
being included in the k displayed solutions can be estimated as:

k
maz(k, E[|{S;|S; is pareto-optimal}|])
k

maa:(k,mfol . fol(l = I, ep (wy Pi)™dp1 - - - dpip|)

Pr(S; is included) =

Figure 4 shows a plot of this probability vs. |P| =3,...,12 for m = 778,k =
30 and m = 6,444,k = 60. We can see that the probability of including the
target solution rapidly decreases as the overall set of pareto-optimal solutions
becomes too large and the target often is no longer selected, even for a relatively
small number of preferences. Thus, the method does not satisfy condition (3)
very well.



Theoretical model (dominance filter)

- T T T
\ 6444 solutions, k=30 ———
Voo 6444 solutions, k=60 -------
09\ " 778 solutions, k=30 ------- -
- 778 solutions, k=60

08 | i i

probability to include the target solution

number of preferences

Fig. 4: Probability that the target solution is actually in the displayed set for different
numbers of preferences.

3.1 Penalty sum filter

In this model, we choose as displayed solutions the k best solutions according
to the unweighted sum of the penalties:

cS)= Y, mS)

pi €P*(u)

This set can be generated efficiently using branch-and-bound algorithms; in fact
it can often be integrated with the generation of the feasible set itself.

The method obviously satisfies condition (1).

The following Theorem shows that it also satisfies condition (2):

Theorem 1
Given a set of m solutions S = {S1,...,Sm} and a set of d preference penalties
{p1,--.,pa}.- Let be 8" = {S;,,...,5:.} C S the best k solutions:VS' € ', VS ¢
S':C(8") <C(9).

If S; € 8’ and S, is not dominated by any other solution S, € &', then S,
is pareto-optimal in S.

Proof. Assume that S, is not pareto-optimal in S. Then, there is a solution
S. € 8’ which dominates solution .S;, and by definition:

Vpi, pi(S:) < pi(S;) and



Elpjapj(sz) < pj(Sw)

As a consequence, we also have:

d d
Zpi(sz) < sz' (S:I:)
i=1 i=1

and therefore C'(S,) < C(S;). But this contradicts the fact that S, € §' and
S, ¢S O

Thus, the method also satisfies condition (2).

To understand how far the method satisfies condition (3), consider the re-
lation between the sums of penalties for the best solutions and the number of
preferences.

Let S;(t) be the j-th best solution according to the sum of the penalties
C(S) = Xop.epr(uPi(S), and let Sy be the target solution. Since the target
solution is optimal for the weighted sum, we have:

W(S)= > wi-p(S)< Y wi-pi(S;); t#j

pi€P*(u) pi €EP* (u)
As we assume that the weights are close to 1:
l—e<w; <1l+e€
We can rewrite this as:

Yo (l—epiS) < D) (+e-p(S)) ; t#]

pi€P*(u) pi€P*(u)
(I-€)-C < (1+¢€)-Cj
1
Ct S +€Cl
1—¢

where (] is the sum of the penalties of the best solution according to the penalty
sum filter.

In order to ensure that C; is among the k best solutions with probability 1
once all preferences are specified, we need to choose k sufficient large so that:

1
Ck/01> te

For example, if we assume a maximum error in the weights of ¢ = 0.2, then
Cr < 1.5C.

We now consider how the ratio Cy/C; depends on the number of stated
preferences. The k best solutions are characterized by C(S) > Ck. Assuming
a uniform distribution of solutions, C} is the height of the volume between the
hyperplane C' = C}, and the point p; = 0 such that the volume is equal to k/m.
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Fig. 5: The volume containing the k solutions with the smallest sum of penalties is
bounded by the surface C(S) = Ck. It delimits a fraction 8(d) of the volume
of a cube whose size is equal to Ck.

As shown in Figure 5, the hyperplane C = C}, cuts out a portion §(d) of a d-
dimensional hypercube H of size C}, where 3(d) is a constant depending on the
dimension, for example 3(1) = 1, B(2) = 1/2. H thus has a volume of 3(d)Cy.
As B(d) of the cube should contain a fraction k/m of the solutions, the volume
of the displayed set is equal to:

B(d)CY = k/m

o~ ()

Cr/Ch = kY4

which somewhat surprisingly is independent of the total number of solutions m.

We again compare the theoretical curve with the one observed on practical
experiments. Figure 7 shows the curve obtained for the same random configu-
ration problems mentioned earlier for £ = 30 and k& = 60 displayed solutions.
Figure 6 shows the corresponding curves which were generated on random con-
figuration problems. For the case of m = 6444 solutions, the curve match
exactly, while for m = 778 solutions, we observe a significant discrepancy when
the number of preferences is low. This is due to the fact that many solutions to
the configuration problem have identical quality and thus often score the same
when only a few preferences are stated. In general, we can again conclude that
the theoretical model is a good match of reality.

and thus

and
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Fig. 7: Observed ratio of the summed penalty for the k-th best and the best solution
as a function of the number of criteria.
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Fig. 8: Size of the displayed set required to ensure that the target solution is displayed,
for different values of |P| and e.

Given the error margin € as described above, we can compute the expected
maximal rank ¢ of the target solution in terms of the summed penalty metric

by the fact that:
1+e€ t 1/d
a=0ie= ()

‘= mﬂ(d)(af%ﬁ))d

_ 1+€\?
a 1—c¢

This function can be used to calculate the number of solutions that have to
be displayed for a given number of preferences and a given tolerance e for user
diversity. This can be used in the design of a decision support system, or to
adaptively adjust the number of displayed solutions during a decision process.
Figure 8 shows a plot of this function.

With the weight errors at the maximum admissible limits, the probability

from which we obtain:
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Fig. 9: Probability that the target solution is within the displayed set.

that the target solution lies within the displayed set is given by:

pr(S; is included) = { li/t gz E llz
Figure 9 shows a plot of this probability for |P| = 2,...,12 and combinations
of € =0.2,0.3 and k = 30, 60.

We can see that in comparison to the dominance filter, we can often accom-
modate significantly more preferences. However, this depends strongly on the
weight diversity and the number of displayed solutions. While the approach in
principle can be expected to perform better than dominance filtering, careful
tuning is still required for each application.

3.2 Fuzzy filter

In this method, we choose as displayed solutions the k solutions that minimize
the maximum of any penalty, i.e. that minimize:

maxy,c p+(u)Pi(S)

where ties are broken randomly. The method corresponds to the decision cri-
teria used in fuzzy logic, and has the advantage that it can be very efficiently
implemented using constraint satisfaction techniques.

This method obviously satisfies condition (1), as it generates exactly k solu-
tions.
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However, it does not at all satisfy condition (2). In fact, on the random
configuration problems mentioned earlier, we never found that among of the
solutions that were pareto-optimal in the displayed set, there were never more
than 2% that were also pareto-optimal in the full set of solutions!

As for condition (3), there is no guarantee that the target solution will be
included in the displayed set, as there is no relation between fuzzy and weighted
sum optimization criteria. Only if the target solution is dominant, i.e. better
than any other solution with respect to all preferences, will it also be the best
with respect to the fuzzy criterion.

We thus consider fuzzy filters fundamentally inadequate for this task.

4 Experimental results on randomly generated problems

In order to validate the theoretical results, we have analyzed the concepts de-
scribed in this paper with randomly generated configuration problems. We
model configuration problems with preferences as valued Constraint Satisfac-
tion Problems (VCSP [14, 15]) as described in [12].

A random valued CSP is defined by: < n,m,hc, ht, sc, st >, where n is
the number of variables in the problem and m the size of their domains. hc
is the graph density in percentage for unary and binary hard constraints. ht
is the tightness in percentage for disallowed tuples in unary and binary hard
constraints. sc and st are the graph density and tightness in percentage for
unary and binary soft constraints. Valuations for soft constraints can take
values from 0 to 1. For simplicity, hard and soft constraints are separated and
we are not considering mixed constraints, therefore hc + sc < 100.

For building random instances of valued CSPs, we choose the variables for
each constraint following a uniform probabilistic distribution. In the same way
we choose the tuples in constraints. Valuations for soft tuples are randomly
generated between 0 and 1 and valuations for hard tuples are represented by a
maximum valuation (00).

The algorithms have been tested with different set of problems of valued
CSPs with 5 variables and 10 values for each variable. Hard unary/binary
constraint density hc has been varied from 20% to 80% in steps of 20, and the
tightness for hard constraints ht varies also from 20% to 80% in steps of 20. Soft
unary/binary constraint density sc has been varied from 20% to 80% in steps
of 10, resulting in 3, 5, 8, 9, 11 and 12 soft constraints with tightness st = 100.
In total there could be 5 + (5% 4)/2 = 15 constraints (5 unary constraints and
10 binary constraints).

For every different class of problems, 40 different instances were generated.
For the different problem topologies the average of the results for each instance
are evaluated.

For simplicity and easing the readability of the graphs presented in this
paper, only the graphs for problems with the topology < n = 5,m = 10, hc =
20, ht = {80,60}, sc = {20,...,80},st = 100 > are shown. The total number
of solutions for these two problem topologies (ht = 60 and ht = 80) on average
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are 778 and 6,444.

5 reality: a commercial application for decision support in
business travels

reality is an application commercialized by i:FAO? which significantly extends
the reach of electronic commerce in travel (for more details about this appli-
cation, refer to [13]). In particular, reality addresses the challenge of modeling
customers’ personal preferences and providing solutions that are tailored to just
those preferences. In contrast to existing technology, which allow to optimize
only a small and predefined set of preferences, our tool allows a wide variety
that can accurately model the preferences of different customers. reality thus
allows customers to more quickly find solutions of better quality than existing
tools.

The idea underlying reality is to replace the travel agent while keeping the
same interaction model, i.e. keeping a kind of dialog between the customer and
the system by means of a mixed-initiative system.

Following the analysis presented in this paper, the solution generation adopted
for reality consists on the penalty sum filter presented in Section 3.1. We have
chosen k = 30 (the number of solutions to be displayed) as the optimal number
since we found that users typically state between 3 and 6 preferences for a trip
and that € = 0.3 is a good upper bound on their diversity.

Figure 10 shows how reality displays the best 30 solutions out of the gener-
ation process to the user. A scatterplot (inspired by [16]) shows how solutions
are positioned with respect to two criteria. The criteria to visualize the solu-
tions are chosen by the user who can easily evaluate the characterization of the
solution space. Below the scatterplot, the details of the current selected solution
are displayed by a standard table of flight attributes. Preferences can be posted
in any attribute of the shown solution. In the example of Figure 10, the user is
posting a preference on the transit time for the itinerary segment from Geneva
to San Francisco. The scatterplot shows the 30 best solutions with respect to
criterion satisfaction and total travel time. The satisfaction criterion represents
the penalty sum of all the preferences, i.e. the quality of the solutions.

6 Conclusions

In this paper, we have considered the problems posed by the use of a qualitative
preference model in decision aid systems. We have considered compensating
for the inaccuracy of a qualitative model by letting the user choose among a
displayed set of alternatives. A key issue in such a system is then how to select
the solutions to be displayed to the user to ensure that the target solution can
indeed be found.

We have shown that of three candidate methods, only the penalty sum filter
is sufficiently robust against incompleteness and approximativeness of the model

2 http://www.ifao.net
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Fig. 10: The user analyzes the solutions shown in a starfield where two criteria are
compared (in this case satisfaction vs. total flying time).

to guarantee (at least with the proper size of the displayed set) that the target
solution can be found by the user.

More precisely, we can show that the decision aid system using the penalty
sum filter is sound, i.e. finds the target solution, if the size of the displayed
set k is sufficiently large for the € and the number of preferences that the users
poses, and if the user correctly and completely states his preferences. While the
first condition can be satisfied by experiments during the development of the
system, the second condition would deserve further study.
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