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Abstract—We consider communication through a cascade of.  (highest rate) zero-error code of length Thus, the capacity
identical Discrete Memoryless Channels (DMCs). The source and of the cascade coincides with the rate of this code and it is
destination node are allowed to use coding schemes of arbitrary hence always below theero-error capacityof the underlying
complexity, but the intermediate relay nodes are restricted to h | Th ity is th . hwhi
process only blocks ofN symbols. It is well known that for any C anne . € zero-error capagty IS the maximum rate ‘T"t Ic
L and N — oo the relays can use a capacity achieving code information can be communicated over a channel with zero
and communicate reliably as long as the rate of this code is probability of error [5]. An intuitive interpretation of ik result
below the capacity of the underlying DMC. The capacity of the s that, asL. — oo, the zero-error capacity is the only part of
cascade is hence equal to the netwonkin-cut capacity For finite the transmitted information rate that we may hope to preserv

N and L — oo, we showed in previous work that the optimal .
intermediate processing is the highest rate zero-error code of On the other hand, wheN — oo the relays can use a capacity

length N for the underlying DMC. The capacity of the cascade achieving code and communicate reliably as long as the rate
coincides with the rate of this zero-error code, and is always of this code is below the capacity of the DMC. That is, for
below the zero-error capacity In this work, we characterize how N — oo we can achieve thenin-cut capacity1].

N must scale with L in order to achieve rates in between the Since the zero-error capacity and the min-cut capacity tigh

zero-error and the min-cut capacity. . . . . .
In particular, we have observed thatN' — O(log L) is sufficient differ quite substantially, a natural question to ask is wha

to achieve any rate below the min-cut capacity. Here, we develop happens if we allowN to grow with L. In this paper we

a novel upper bound on the capacity of cascades with optimal investigate howN needs to scale witll in order to achieve
intermediate processing that applies for any(V, L) pairs and rates above the zero-error capacity. In [3] we showedAhat
use it to show that N = ©(log L) is necessanto achieve certain O(log L) 1 js sufficient to achieve any rate below the min-cut

rates above the zero-error capacity. Furthermore, we propos a . _ .
method to evaluate our upper bound by establishing a connection capacity Here, we show thalv = ©(log L) is necessary to

with the Set-Cover Problem in algorithms. achieve certain rates above the zero-error capacity
In order to prove our result, we start by deriving a novel
|. INTRODUCTION upper bound on the capacity of cascades with optimal interme

Communication systems today are organized in large scdiate processing that is valid for adyand N. We decompose
networks, with Internet the most conspicuous example, hghe channel transition matrix into a linear combinationwed t
information needs to traverse multiple hops in order to meastochastic matrices. We then develop a bound that depends
its destination. Another such example are wireless ad-hoo this decomposition through the smallest rank of these two
networks where the average number of hops between a souroedrices. With this bound we show that logarithmic scaling
destination pair scales as the square root of the numberodfN with L is necessary to achieve certain rates above the
nodes in the network [4]. Each of the hops may introduczero-error capacity.
errors, which become more and more pronounced as the siz&Ve also show that finding the minimum rank decomposition
of the network grows. of a channel transition matrix is equivalent to solvingsat

Motivated by these observations, in [2] we investigatedtwh&over Problem for which polynomial time approximation
benefits finite complexity processing at intermediate nodetgorithms are available in the literature. Using such algo
may offer. We modeled the communication path between thithms allows us to compute a decomposition of the channel
source and the destination as a line network that consisks ofransition matrix whose gap from the optimal minimum rank
cascaded identical DMCs, and allowed each intermediate naecomposition vanishes a§ increases (recall that here we
to process blocks alV symbols. This is a reasonable definitiorare interested in non-finitéV). Interestingly, the Set-Cover
of complexity as it allows to bound not only processindg’roblem is the “dual” (in a sense to be made precise later) of
complexity, but also delay, and memory requirements at-intéhe Maximum Independent Set Problewhose solution leads
mediate nodes. Moreover, it is well suited to an environmetst the channel zero-error capacity.
where information is transmitted in packets. The paper is organized as follows. Section Il introduces

In [2] we showed that if the network length increases , - .

.. . We use Knuth's notationjf(n) = O(g(n)) means that there exists
(L — o0) but the blocklengthV is fixed, the optimal process- 5 constante and integerno such that f(n) < cg(n) for n > mo.
ing is identical at each relay and corresponds to an optimah) = ©(g(n)) denotes thaf(n) = O(g(n)) as well agg(n) = O(f(n)).
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the network model and briefly reviews our previous results. Ao VeN Ay VON Az
Section Il presents the upper bound on the capacity that e .
is used in Section IV to derive the scaling law. Section V X, Y, X, Y,
concludes the paper.

1. MODEL AND PREVIOUS RESULTS Fig. 1. A line network with two channels and one reldy £ 2).

A. Model
. . . . . B. Previous Results
We consider line networks witlh — 1 relays as depicted in

Figure 1. The sourcel, sends information to the destination Cléarly, for any DMC with transition probability matrik’,
Ay, via relays{A;}271. Each link corresponds to the samé™y intermediate processing of lengfii and any network
DMC with finite input alphabet¥, finite output alphabey, €ngthL, we have

and arbitrary transition probability matrik. We assume that 1, ON

all the DMCs in the cascade are the same. N log Mo(VET) < Cn.1.(V) < C(V). (1)

We restrict the relay§4;}/—;" to perform operations from The lower bound in (1) is achievable by using the same zero-
blocks of N' symbols in) to blocks of N symbols inX" error code of lengthV at each node in the network, while the
in a memoryless fashion across blocks. UsiNgtimes the upper bound in (1) is achievable by using a capacity achievin
channelV between4; and A;;1, amounts to connecting; code at each node in the network. That no other coding syrateg
and A4;.; through an equivalent DMC with input alphabetan do better thar(V) is clear from the min-cut bound.
XN, output alphabefy”, and transition probability matrix Hence, the upper bound in (1) is tight fof — oo [1].

VN where® denotes the Kronecker product. For the node Our main result in [2] states that the lower bound in (1) is

A;, we denote byX; € XN what the relay sends and withtight for finite N and L — oco:

Y; € YV what the relay receives. The outp; is then a (not
necessarily deterministic) function &f. This function can be
described by a transition probability matrixf; specifying . 1 SN
for each realizationz of X, and y of Y; the probability ngr;o Cnu(V) = NlogMO(V ) =G(V) O

PriX; = z|Y; = y]. This theorem tells us that the limitn ., Oy, (V) exists

We allow the sourcel, and the destinatiod;, to perform and that the optimal processing is identical at each nodesin t
coding and decoding of arbitrary complexity, across a fygsi [imit of large L. This processing corresponds to the best, in

Theorem I1.1 (Allerton 2005).

infinite number of symbols ift™ and Y. the sense of highest rate, zero-error code of lergtfor the
We are interested in identifying the set of processinghannelV. Thus, the capacity of the infinite cascade equals
{Mi}f;ll that achieve the rate of this zero-error code and is always upper bounded
by the zero-error capacity d. Notice that any rate strictly
1 = below the zero-error capacity is achievable witite length
Cnp(V) %= max —C(V®N H(MiV®N)>. :
’ (Mt N Pl processing

Since Cy (V') and C(V') might differ quite substantially, a
Here,C'(Q) = max, I(p, Q) wherep is the input distribution natural question to ask is what happens if bathand L are
and Q the channel transition matrix. allowed to grow. In [3] we derived the following lower bound
In this paper, we will also use the notion of the zero-erram Cy (V):
capacity of the underlying chann®l. The zero-error capacity Theorem 11.2 (ISITA 2004)
is defined in [5] as the maximum rate at which communication ' '

is possible with zero probability of error and can be comgute ¢, L(V)> max r(l—exp(— NE(r)))L . i7

as follows. For a channel with transition matiX, we call two ’ r€[0,C(V)] N

input lettersk and ¢ adjacent if there exists an output lettefyhere E(r) is the random coding error exponent for the
j such that[V]; ; > 0 and[V],; > 0. We then construct a channelV as a function of the rate. O

graphG(V') corresponding to the stochastic matkix having ) o

as vertex set the possible inputsiéfand in which two vertices ~ 1he bound in Theorem I1.2 is tight faV — oo [6].
are connected by an edge if the corresponding input letters a 1. UPPERBOUND

adjacent. Denote b/, (V') the largest number of input letters . : .
of V' no two of which are adjacent. This integer is known in In this section, we derive an upper bound@q .. (V') that

. AoH applies for all values ofV and L. We then use this upper
g;?glﬁ?gfgészégi g{?eisendence number of g ). The bound and the lower bound in Theorem II.2 to show that a

processing length oV = @(log L) is sufficient to achieve
1
Co(V) £ sup - log My (V®"). Cni(V)>R@)£2(1-a)Co(V)+aC(V) (2
for all a € [0, 1] and necessary for afl € [3,1] with 3 < 1.



Our upper bound forCy (V') is expressed as a linearlt can be shown that if, for somé&’, we find a decompo-
combination of the min-cut capacity and of a term remsition such thatrank(Ay) = My(V®Y), then Cy(V) =
niscent of the limiting capacity: log Mo(V®™) derived in 4 logrank(Ay). In this case, the bound in (4) is tight in
Theorem II.1. The basic idea is to decompose the equival¢he limit as L — oo and the decay ofCy (V) to the
channel transition matrid%®" into a linear combination of limiting capacity is exponentially fast ifi. In [2] we showed
two stochastic matrices, one of which has rank as close that if we impose thatMl; = M for all i € {1,...,L — 1}
possible toMy(V®N). We also discuss efficient algorithms(identical processing), then the limiting capacity is dqtea
to determine such a decomposition. the logarithm on the number of eigenvalues of modulus one
of VN M and the limit is approached exponentially fasfin
If rank(Ay) = Mo(V®Y), then the exponential decay also
applies to non identical processing. This implies that efeen
long, but not infinite, cascades the derived limiting resalt

Theorem Ill.1. For any stochastic matri% and any integer
N, if there exist two stochastic matrice4y and By, and
dn € (0,1] such that

VON =6y Ay + (1 — 0y) By (3) Theorem II.1 is meaningful. It also highlights the impoxan
of well chosen intermediate processing. The exponent tirat ¢
then be derived from (4) in the casemk(Ay) = Mo(VEN),
log rank(AN) name|y

CN,L(V) S(l—(l—(sN)L_1> N
+(1-on) o). @) Jlim —% log(cN,LW)—% log M0<V®N>) > —log(1-dn),

Proof. Assume (3) holds, then, is however not tight in general [6].

1 L-1 The problem of finding the matrixdy with minimum
Cnp(V) = NC(V®N H(MiV®N)> rank is equivalent to theSet Cover Problendescribed as
i=1 follows [8]. Given a universé/ of n elements, a collection
1 L1 on S = {&;...85,} of subsets of/, and a cost function for
= ﬁc((‘sN Ay + (1 —6n) By) [[ (MiV )) each subset i5, find a minimum cost subcollection &f that
" - =1 covers all the elements . This problem can be formulated
a 1 - as an integer program by assigning a variabldor each set
< 5NNC<AN 1_[1 (MY"V®N>) S; € S, wherex; = 1 if setS; takes part in the subcollection

X 1 andz; :bO Iotherwise.IThe constr?ir;]t is thstdevery e:]ement in
®N @N U must belong to at least one of the picked s8fsThe set
+(1- (SN)_C((BNMl)V H (M:V )> cover problem and its Linear Program (LP) relaxation (Phma
1 are provided in Table I, for the special case where the cost of
—Cn,-1(V) all sets is one, which is the case of interest here. A variety
N of approximation algorithms are available in the literatfor
where the inequality (a) follows from the convexity of mutuae set cover problem [8]. Those algorithms run in polyndmia
information in the channel transition matrix and (b) fol®W time in» and provide approximations with gap at masgn
from the data processing inequality. By repeating the safygm the optimal solution.
argument we get In our case, the univerdé is the set ofn = |X|V inputs
NC(A B of the channelV®" . The set ofm = |Y|"V outputs defines
COnp(V) < (1_(1_5N)L 1)% +(1—dw)* 1O(V)' S, in that the subsef; contains the i|np|uts that result with
nonzero probability in output, for i = 1, ..., m. We are going
to show that the minimum rank matridy we can find has
rank OPTy,, if and only if OPTy,, is the minimum cost of
In order to obtain the best bound for any givéfh, Ay the described set cover problem.
should be chosen to have thmallest rank possiblé\ possible Consider a solution of the set cover problem. This provides
choice isAy = AY™ anddy = 61 which gives us with a set of outputs that cover all inputs. Construct a
Cnn(V) <(1— (1 - V)"1) log rank(Ay) tmhztr(i;ﬁilév as fO||OYVS. Take the binary matriW‘@Nl, whgre
g operation is component-wise. Replace with the
+(1 - tow) all-zero columns those columns é% V] that correspond
to outputs wherer; = 0 in the set cover problem. Then
normalize all rows so that they sum to one. The matix is
a valid stochastic matrix because its nonzero columns ‘f€ove
all inputs, i.e., each row has at least one nonzero element.
Moreover, Ay contains exactly OPJ, nonzero columns.
These columns are linearly independent, otherwise QPT
would not be an optimal solution. Thusnk(Ay) = OPTy4,, .

=2

(b) C(A
< M%Hl—&v)

We can further upper boun@(Ay) by the logarithm of the
rank of Ay [7] to yield (4). O

sincerank(Ay) = (rank(Al))N. However, this choice does
not give the best possible bound in general [6].

Notice that, for any matrixA such that (3) holds, the
inequality in (4) and Theorem II.1 imply

1 1
N log My(VEN) < N log rank(Ay). (5)



TABLE |

IV. SCALING LAWS
MAXIMUM INDEPENDENT SET PROBLEM SET COVER PROBLEM AND

THEIR LP RELAXATIONS. In this section, we show that logarithmic growth &f with
Sat Cover Problem [P Relaxation (Primal) L is sufficient, and in many cases also necessary, to achieve
min}>, x; miny>, a; rates above the zero-error capacity.
Dimes; Ti 2 L, Vueld Diues; Ti 2 L Vu el Recall that any rate strictly below the zero-error capacity
z; € {0,1}, Vi 0<z; <1, Vi

can be achieved with finite blocklength processing. Here we

Max 'Z"deyp,endem Set Problem ';HZXRgaX;t'O” (bual) are interested in rates that indeed need an infinite blogkten
i Y5 i Yj . .

zjes_Jyj <1VS, €S E],GS‘Jyj <1VS, €8 For anya € [0, 1] and for R(«) as in (2), we define

Yj € {07 1}7 V] 0 S Yj S 11 V]

N*(L,a) £ min {N : Cy.(V) > R(a)}.

Choosedy to be the largest number such that the matrix The next theorem gives an upper bound o (L, «),
1 N establishing that logarithmic growth @¥ with L is sufficient
=1 oy (VEN — 6N AN) to achieveR(a).

is a valid stochastic matrix. It is easy to see that thisis Theorem IV.1. For everye > 0 and for all N > 1
at least as large as the minimum of the entried/6t" that

correspond to a non-zero entry dy. N*(L,a) < inf ! log RL
For the reverse direction, note that we can always take re(R(a)+e.0(V)] E(r) | - fle)te

r

matrix Ay to be binary. Moreover, the requirement tha]-g sufficient to achievé(a) = (1 — a) C(V oV
Ay and By are stochastic implies thad ; has either zero (@) = ( @) Co(V) +aC(V).

By

columns, or columns froniV &N, The result follows. Proof. Theorem I1.2 asserts that for amye [0, C(V)]
By using one of the available approximation algorithms, we L 1
can calculate in polynomial time in a matrix Ay that has Cni(V) > 7“(1 —exp (- NE(T))) -~
rank bigger than the minimum by a factor of at mag{n = 1
Nlog|X|. As we are interested in% log(rank(Ay)) this = 7’(1 — Lexp (- NE(T))) -5 ©

implies that the loss we incur by using these approximati
algorithms to find anA 5 matrix vanishes agV — oco.

The problem of finding the matrixdy with minimum
rank is closely related to computinfy (V). To see this,
consider the (strong) LP dual of the set cover LP relaxati(%w
described in Table I. The dual LP is the LP relaxation of the
Maximum Independent Set Problemhich takes as input a
graph adjacency matrix and calculates the graph indepeade
number. This is the largest number of vertices in the graélﬁ]us for all v > %
no two of which are connected by an edge. This maximum 1
independent set problem can be formulated as an integer 1V < E(r) (10g(L) — log (1 - @)

rogram as follows. Assign a varia for each vertex of . L
prog g blg But since this is true for alt € (R(a) +¢,C(V)], we can

the graph,y; = 1 if the vertex takes part in the independent ™ > . ; .
set andy; = 0 otherwise. The constraint is that no two piCke(g]olzlrrm?jlze the right hand side of (7) overto get the t'ghtESt

vertices are connected with an edge.
For our purposes we use the adjacency matrix corresponding@he next theorem establishes that logarithmic growttVof

to the graphG(V®"). The solution of the maximum inde-with L is necessary to achievg(a) for all o« > f3,, where

pendent set problem foi(V®¥) directly gives an optimal B is @ non-negative constant.

zero-error code of lengttiv for the channelV. Denote by

OPT,,, this optimal solution. Obviously, OPRi, is lower-

bounded by OPJ;,. In fact, OPT,,, is the minimum number log(L — 1) — loglog

Ylnce the right hand side of (6) is always smaller tharn
order to attainR(«), » must satisfyr > R(«a). Setting the
right hand side of (6) to be greater than or equaRi@), we

log <1 - M) <log(L) — N E(r).

o))

Theorem 1V.2.
1

a—Bm
of outputs such that all inputs are covered. Since all inputs N*(L,a) 2 ilog% ®)
are covered, this implies that any ORJ + 1 inputs have at " ”
least one output in common. Thus ORT< OPT4,,, which for all
provides an alternative derivation of Eg. (5). S L logrank(A,,) — Co(V)
i i [ i - o m = )
Note that, in the instances where the integrality gap be =z CV) = Co(V)

tween the maximum independent set problem and its LP ] ) ) )
relaxation is small, then there exists a mattky such Wherem is any integer such that the stochastic matrices
that 3, logrank(A ) ~ 3 log Mo(V®Y), i.e., the inequality Am, Bp, and the ®rf;:atl-wsllued constant,, € (0,1] in

in (5) becomes an equality with all the discussed conse@sengfe decompositioV “™ = 6, Ay + (1 — 6) By, satisfy
that this entails. 77 logrank(A,,) < C(V).



Proof. From Theorem Ill.1, with 6 £ 2p. Hence logarithmic growth ofV with L is

Mmooy L necessary for all positive rates. %
Cnrp(V)<(1-(1-6,/™"")—1 k(A

(V) *( ( m'") )m og rank(Am) Example 1V.2. [Pentagon Channel]

+ (1 = oN/mL=1c(v). Consider the “pentagon” channel whose transition matrix

. - V,forpe (0,1),is
In order to achieveRk(«) it is hence necessary that peOD

1—»p p 0 0 0
(1-a)Co(V)+aC(V) < (1-865™E1oWV) 0 1-p p 0 0
iy 1 V= 0 0 1-p p 0
(1 _ sN/m\L-1\ *
+ (1= (1 =63™) )m log rank(A,,). 0 0 0 1-p p
By re-arranging the different terms, we get p 0 0 0 1=p
C(V) — L log rank(A,,) Here C(V) =log(5) — H(p) and Co(V') = 5 log(5).

o — Bm S (1 - 6’,«]}1{/”1)1;71

For m = 1 we can find a matrix4; with rank(A;) =
cv) - Gv) 3. However, form = 2 we can find a matrix4, with
Ly rank(As) = 8 < rank(A;)? = 9. Using the decomposition
If the value ofm is such that the hypothesis of the theorerP" " = 2, We obtain from Theorem [V.2
are satisfied we havg,, € [0,1] and~,, € [0, 1], and hence 5 1 logrank(As) — Co(V) log(8/5)
2 = = ’
(1= N/m)L=t> o 5. C(V)—Co(V) log5 — 2H (p)
] showing that logarithmic growth oV with L is necessary to
By using the fact that-log(1 —z) > = for all z € [0,1], we  5cpjeve anyR(a) with a > fB,. With m = 2, Theorem V.2
get that for alla > f,,, does in this case not allow to state that logarithmic growth i

necessary for alv € [0, 1].
log > (L—-1)log Nm > (L —1)6N/™, Y 0. 1] 0
&= B 1—6n/" V. CONCLUSIONS
and hence In this paper, we investigated communication through a

cascade of. channels, where intermediate nodes can perform
processing on blocks a¥ symbols, and studied how must
scale with L in order to achieve rates above the zero-error
capacity. We derived bounds on the capacity of finite length
Notice that, since we are interested in the regivies>> 1, cascades and used them to show that logarithmic growth of
the assumptions of the theorem about the integecan be N with L is sufficient to achieve any rate below the min-

1 1 1
N=log — > log(L — 1) — log1l
—log > log( ) og log Z—7—,

m - Mm

from which the result in (8) follows. O

relaxed tolim,, ., = logrank(A,,) < C(V). cut capacity and necessary to achieve certain rates abeve th
The following examples illustrate the use of Theorems [v.4€r0-€rror capacity. We conjecture that logarithmic grovet
and IV.2. actually necessary to achiewemy rate above the zero error
_ _ capacity. Proving this conjecture and extending the work to
Example IV.1. [Binary Symmetric Channel] more general networks, traffic configurations and resource

Consider a cascade df binary Symmetric channels with constraints is part of Ongoing work.
crossover probability. For this channel’s (V') = 0 and hence
we get from Theorem 1.1 that any finite length processing ACKNOWLEDGMENTS
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logarithmic growth of N with L is sufficientto achieve any
fraction of the min-cut capacity. We will now show that =
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