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Abstract— We consider communication through a cascade ofL
identical Discrete Memoryless Channels (DMCs). The source and
destination node are allowed to use coding schemes of arbitrary
complexity, but the intermediate relay nodes are restricted to
process only blocks ofN symbols. It is well known that for any
L and N → ∞ the relays can use a capacity achieving code
and communicate reliably as long as the rate of this code is
below the capacity of the underlying DMC. The capacity of the
cascade is hence equal to the networkmin-cut capacity. For finite
N and L → ∞, we showed in previous work that the optimal
intermediate processing is the highest rate zero-error code of
length N for the underlying DMC. The capacity of the cascade
coincides with the rate of this zero-error code, and is always
below the zero-error capacity. In this work, we characterize how
N must scale with L in order to achieve rates in between the
zero-error and the min-cut capacity.

In particular, we have observed thatN = Θ(log L) is sufficient
to achieve any rate below the min-cut capacity. Here, we develop
a novel upper bound on the capacity of cascades with optimal
intermediate processing that applies for any(N, L) pairs and
use it to show thatN = Θ(log L) is necessaryto achieve certain
rates above the zero-error capacity. Furthermore, we propose a
method to evaluate our upper bound by establishing a connection
with the Set-Cover Problem in algorithms.

I. I NTRODUCTION

Communication systems today are organized in large scale
networks, with Internet the most conspicuous example, where
information needs to traverse multiple hops in order to reach
its destination. Another such example are wireless ad-hoc
networks where the average number of hops between a source-
destination pair scales as the square root of the number of
nodes in the network [4]. Each of the hops may introduce
errors, which become more and more pronounced as the size
of the network grows.

Motivated by these observations, in [2] we investigated what
benefits finite complexity processing at intermediate nodes
may offer. We modeled the communication path between the
source and the destination as a line network that consists ofL
cascaded identical DMCs, and allowed each intermediate node
to process blocks ofN symbols. This is a reasonable definition
of complexity as it allows to bound not only processing
complexity, but also delay, and memory requirements at inter-
mediate nodes. Moreover, it is well suited to an environment
where information is transmitted in packets.

In [2] we showed that if the network length increases
(L → ∞) but the blocklengthN is fixed, the optimal process-
ing is identical at each relay and corresponds to an optimal

(highest rate) zero-error code of lengthN . Thus, the capacity
of the cascade coincides with the rate of this code and it is
hence always below thezero-error capacityof the underlying
channel. The zero-error capacity is the maximum rate at which
information can be communicated over a channel with zero
probability of error [5]. An intuitive interpretation of this result
is that, asL → ∞, the zero-error capacity is the only part of
the transmitted information rate that we may hope to preserve.
On the other hand, whenN → ∞ the relays can use a capacity
achieving code and communicate reliably as long as the rate
of this code is below the capacity of the DMC. That is, for
N → ∞ we can achieve themin-cut capacity[1].

Since the zero-error capacity and the min-cut capacity might
differ quite substantially, a natural question to ask is what
happens if we allowN to grow with L. In this paper we
investigate howN needs to scale withL in order to achieve
rates above the zero-error capacity. In [3] we showed thatN =
Θ(log L) 1 is sufficient to achieve any rate below the min-cut
capacity. Here, we show thatN = Θ(log L) is necessary to
achieve certain rates above the zero-error capacity.

In order to prove our result, we start by deriving a novel
upper bound on the capacity of cascades with optimal interme-
diate processing that is valid for anyL andN . We decompose
the channel transition matrix into a linear combination of two
stochastic matrices. We then develop a bound that depends
on this decomposition through the smallest rank of these two
matrices. With this bound we show that logarithmic scaling
of N with L is necessary to achieve certain rates above the
zero-error capacity.

We also show that finding the minimum rank decomposition
of a channel transition matrix is equivalent to solving aSet
Cover Problem, for which polynomial time approximation
algorithms are available in the literature. Using such algo-
rithms allows us to compute a decomposition of the channel
transition matrix whose gap from the optimal minimum rank
decomposition vanishes asN increases (recall that here we
are interested in non-finiteN ). Interestingly, the Set-Cover
Problem is the “dual” (in a sense to be made precise later) of
the Maximum Independent Set Problem, whose solution leads
to the channel zero-error capacity.

The paper is organized as follows. Section II introduces

1We use Knuth’s notation:f(n) = O(g(n)) means that there exists
a constantc and integern0 such thatf(n) ≤ c g(n) for n > n0.
f(n) = Θ(g(n)) denotes thatf(n) = O(g(n)) as well asg(n) = O(f(n)).
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the network model and briefly reviews our previous results.
Section III presents the upper bound on the capacity that
is used in Section IV to derive the scaling law. Section V
concludes the paper.

II. M ODEL AND PREVIOUS RESULTS

A. Model

We consider line networks withL− 1 relays as depicted in
Figure 1. The sourceA0 sends information to the destination
AL via relays{Ai}

L−1
i=1 . Each link corresponds to the same

DMC with finite input alphabetX , finite output alphabetY,
and arbitrary transition probability matrixV . We assume that
all the DMCs in the cascade are the same.

We restrict the relays{Ai}
L−1
i=1 to perform operations from

blocks of N symbols inY to blocks of N symbols inX
in a memoryless fashion across blocks. UsingN times the
channelV betweenAi andAi+1, amounts to connectingAi

and Ai+1 through an equivalent DMC with input alphabet
XN , output alphabetYN , and transition probability matrix
V ⊗N where⊗ denotes the Kronecker product. For the node
Ai, we denote byXi ∈ XN what the relay sends and with
Yi ∈ YN what the relay receives. The outputXi is then a (not
necessarily deterministic) function ofYi. This function can be
described by a transition probability matrixMi specifying
for each realizationx of Xi and y of Yi the probability
Pr[Xi = x|Yi = y].

We allow the sourceA0 and the destinationAL to perform
coding and decoding of arbitrary complexity, across a possibly
infinite number of symbols inXN andYN .

We are interested in identifying the set of processings
{Mi}

L−1
i=1 that achieve

CN,L(V ) , max
{Mi}

L−1

i=1

1

N
C
(

V ⊗N
L−1∏

i=1

(MiV
⊗N )

)

.

Here,C(Q) = maxp I(p,Q) wherep is the input distribution
andQ the channel transition matrix.

In this paper, we will also use the notion of the zero-error
capacity of the underlying channelV . The zero-error capacity
is defined in [5] as the maximum rate at which communication
is possible with zero probability of error and can be computed
as follows. For a channel with transition matrixV , we call two
input lettersk and ` adjacent if there exists an output letter
j such that[V ]k,j > 0 and [V ]`,j > 0. We then construct a
graphG(V ) corresponding to the stochastic matrixV having
as vertex set the possible inputs ofV and in which two vertices
are connected by an edge if the corresponding input letters are
adjacent. Denote byM0

(
V
)

the largest number of input letters
of V no two of which are adjacent. This integer is known in
graph theory as the independence number of graphG(V ). The
zero-error capacity ofV is

C0(V ) , sup
n

1

n
log M0

(
V ⊗n

)
.

A1 V ⊗N A2A0 V ⊗N

X0 X1 Y2Y1

Fig. 1. A line network with two channels and one relay (L = 2).

B. Previous Results

Clearly, for any DMC with transition probability matrixV ,
any intermediate processing of lengthN and any network
lengthL, we have

1

N
log M0(V

⊗N ) ≤ CN,L(V ) ≤ C(V ). (1)

The lower bound in (1) is achievable by using the same zero-
error code of lengthN at each node in the network, while the
upper bound in (1) is achievable by using a capacity achieving
code at each node in the network. That no other coding strategy
can do better thanC(V ) is clear from the min-cut bound.
Hence, the upper bound in (1) is tight forN → ∞ [1].

Our main result in [2] states that the lower bound in (1) is
tight for finite N andL → ∞:

Theorem II.1 (Allerton 2005).

lim
L→∞

CN,L(V ) =
1

N
log M0

(
V ⊗N

)
≤ C0(V )

This theorem tells us that the limitlimL→∞ CN,L(V ) exists
and that the optimal processing is identical at each node in the
limit of large L. This processing corresponds to the best, in
the sense of highest rate, zero-error code of lengthN for the
channelV . Thus, the capacity of the infinite cascade equals
the rate of this zero-error code and is always upper bounded
by the zero-error capacity ofV . Notice that any rate strictly
below the zero-error capacity is achievable withfinite length
processing.

SinceC0(V ) andC(V ) might differ quite substantially, a
natural question to ask is what happens if bothN andL are
allowed to grow. In [3] we derived the following lower bound
on CN,L(V ):

Theorem II.2 (ISITA 2004).

CN,L(V ) ≥ max
r∈[0,C(V )]

r
(
1 − exp

(
− NE(r)

))L
−

1

N
,

where E(r) is the random coding error exponent for the
channelV as a function of the rater.

The bound in Theorem II.2 is tight forN → ∞ [6].

III. U PPERBOUND

In this section, we derive an upper bound onCN,L(V ) that
applies for all values ofN and L. We then use this upper
bound and the lower bound in Theorem II.2 to show that a
processing length ofN = Θ

(
log L

)
is sufficient to achieve

CN,L(V ) ≥ R(α) , (1 − α)C0(V ) + α C(V ) (2)

for all α ∈ [0, 1] and necessary for allα ∈ [β, 1] with β ≤ 1.



Our upper bound forCN,L(V ) is expressed as a linear
combination of the min-cut capacity and of a term remi-
niscent of the limiting capacity1

N log M0(V
⊗N ) derived in

Theorem II.1. The basic idea is to decompose the equivalent
channel transition matrixV ⊗N into a linear combination of
two stochastic matrices, one of which has rank as close as
possible toM0(V

⊗N ). We also discuss efficient algorithms
to determine such a decomposition.

Theorem III.1. For any stochastic matrixV and any integer
N , if there exist two stochastic matricesAN and BN , and
δN ∈ (0, 1] such that

V ⊗N = δN AN + (1 − δN )BN (3)

then

CN,L(V ) ≤
(

1 − (1 − δN )L−1
) log rank(AN )

N
+ (1 − δN )L−1C(V ). (4)

Proof. Assume (3) holds, then,

CN,L(V ) =
1

N
C
(

V ⊗N
L−1∏

i=1

(MiV
⊗N )

)

=
1

N
C
((

δN AN + (1 − δN )BN

)
L−1∏

i=1

(MiV
⊗N )

)

(a)

≤ δN
1

N
C
(

AN

L−1∏

i=1

(MiV
⊗N )

)

+ (1 − δN )
1

N
C
((

BNM1

)
V ⊗N

L−1∏

i=2

(MiV
⊗N )

)

(b)

≤ δN
C(AN )

N
+ (1 − δN )

1

N
CN,L−1(V )

where the inequality (a) follows from the convexity of mutual
information in the channel transition matrix and (b) follows
from the data processing inequality. By repeating the same
argument we get

CN,L(V )≤
(

1−(1−δN )L−1
)C(AN )

N
+ (1−δN )L−1C

(
V
)
.

We can further upper boundC(AN ) by the logarithm of the
rank of AN [7] to yield (4).

In order to obtain the best bound for any givenN , AN

should be chosen to have thesmallest rank possible. A possible
choice isAN = A⊗N

1 andδN = δN
1 which gives

CN,L(V ) ≤
(
1 − (1 − δN

1 )L−1
)
log rank(A1)

+ (1 − δN
1 )L−1C(V )

sincerank
(
AN

)
=
(
rank(A1)

)N
. However, this choice does

not give the best possible bound in general [6].
Notice that, for any matrixAN such that (3) holds, the

inequality in (4) and Theorem II.1 imply

1

N
log M0(V

⊗N ) ≤
1

N
log rank(AN ). (5)

It can be shown that if, for someN , we find a decompo-
sition such thatrank(AN ) = M0(V

⊗N ), then C0(V ) =
1
N log rank(AN ). In this case, the bound in (4) is tight in
the limit as L → ∞ and the decay ofCN,L(V ) to the
limiting capacity is exponentially fast inL. In [2] we showed
that if we impose thatMi = M for all i ∈ {1, ..., L − 1}
(identical processing), then the limiting capacity is equal to
the logarithm on the number of eigenvalues of modulus one
of V ⊗NM and the limit is approached exponentially fast inL.
If rank(AN ) = M0(V

⊗N ), then the exponential decay also
applies to non identical processing. This implies that evenfor
long, but not infinite, cascades the derived limiting resultin
Theorem II.1 is meaningful. It also highlights the importance
of well chosen intermediate processing. The exponent that can
be derived from (4) in the caserank(AN ) = M0(V

⊗N ),
namely

lim
L→∞

−
1

L
log
(

CN,L(V )−
1

N
log M0(V

⊗N )
)

≥− log(1−δN ),

is however not tight in general [6].
The problem of finding the matrixAN with minimum

rank is equivalent to theSet Cover Problemdescribed as
follows [8]. Given a universeU of n elements, a collection
S = {S1 . . .Sm} of subsets ofU , and a cost function for
each subset inS, find a minimum cost subcollection ofS that
covers all the elements inU . This problem can be formulated
as an integer program by assigning a variablexi for each set
Si ∈ S, wherexi = 1 if set Si takes part in the subcollection
andxi = 0 otherwise. The constraint is that every element in
U must belong to at least one of the picked setsSi. The set
cover problem and its Linear Program (LP) relaxation (Primal)
are provided in Table I, for the special case where the cost of
all sets is one, which is the case of interest here. A variety
of approximation algorithms are available in the literature for
the set cover problem [8]. Those algorithms run in polynomial
time in n and provide approximations with gap at mostlog n
from the optimal solution.

In our case, the universeU is the set ofn = |X |N inputs
of the channelV ⊗N . The set ofm = |Y|N outputs defines
S, in that the subsetSi contains the inputs that result with
nonzero probability in outputi, for i = 1, ...,m. We are going
to show that the minimum rank matrixAN we can find has
rank OPTAN

, if and only if OPTAN
is the minimum cost of

the described set cover problem.
Consider a solution of the set cover problem. This provides

us with a set of outputs that cover all inputs. Construct a
matrix AN as follows. Take the binary matrixdV ⊗Ne, where
the ceiling operation is component-wise. Replace with the
all-zero columns those columns ofdV ⊗Ne that correspond
to outputs wherexi = 0 in the set cover problem. Then
normalize all rows so that they sum to one. The matrixAN is
a valid stochastic matrix because its nonzero columns “cover”
all inputs, i.e., each row has at least one nonzero element.
Moreover, AN contains exactly OPTAN

nonzero columns.
These columns are linearly independent, otherwise OPTAN

would not be an optimal solution. Thusrank(AN ) = OPTAN
.



TABLE I

MAXIMUM INDEPENDENT SET PROBLEM, SET COVER PROBLEM, AND

THEIR LP RELAXATIONS .

Set Cover Problem LP Relaxation (Primal)
min

∑

i xi min
∑

i xi∑

i:u∈Si
xi ≥ 1, ∀u ∈ U

∑

i:u∈Si
xi ≥ 1, ∀u ∈ U

xi ∈ {0, 1}, ∀i 0 ≤ xi ≤ 1, ∀i

Max Independent Set Problem LP Relaxation (Dual)
max

∑

j yj max
∑

j yj
∑

j∈Si
yj ≤ 1 ∀Si ∈ S

∑

j∈Si
yj ≤ 1 ∀Si ∈ S

yj ∈ {0, 1}, ∀j 0 ≤ yj ≤ 1, ∀j

ChooseδN to be the largest number such that the matrix

BN =
1

1 − δN
(V ⊗N − δNAN )

is a valid stochastic matrix. It is easy to see that thisδN is
at least as large as the minimum of the entries ofV ⊗N that
correspond to a non-zero entry inAN .

For the reverse direction, note that we can always take
matrix AN to be binary. Moreover, the requirement that
AN and BN are stochastic implies thatAN has either zero
columns, or columns fromdV ⊗Ne. The result follows.

By using one of the available approximation algorithms, we
can calculate in polynomial time inn a matrix AN that has
rank bigger than the minimum by a factor of at mostlog n =
N log |X |. As we are interested in1

N log(rank(AN )) this
implies that the loss we incur by using these approximation
algorithms to find anAN matrix vanishes asN → ∞.

The problem of finding the matrixAN with minimum
rank is closely related to computingM0(V

⊗N ). To see this,
consider the (strong) LP dual of the set cover LP relaxation
described in Table I. The dual LP is the LP relaxation of the
Maximum Independent Set Problem, which takes as input a
graph adjacency matrix and calculates the graph independence
number. This is the largest number of vertices in the graph
no two of which are connected by an edge. This maximum
independent set problem can be formulated as an integer
program as follows. Assign a variableyj for each vertex of
the graph,yj = 1 if the vertex takes part in the independent
set andyj = 0 otherwise. The constraint is that no two picked
vertices are connected with an edge.

For our purposes we use the adjacency matrix corresponding
to the graphG(V ⊗N ). The solution of the maximum inde-
pendent set problem forG(V ⊗N ) directly gives an optimal
zero-error code of lengthN for the channelV . Denote by
OPTM0

this optimal solution. Obviously, OPTAN
is lower-

bounded by OPTM0
. In fact, OPTAN

is the minimum number
of outputs such that all inputs are covered. Since all inputs
are covered, this implies that any OPTAN

+ 1 inputs have at
least one output in common. Thus OPTM0

≤ OPTAN
, which

provides an alternative derivation of Eq. (5).
Note that, in the instances where the integrality gap be-

tween the maximum independent set problem and its LP
relaxation is small, then there exists a matrixAN such
that 1

N log rank(AN ) ≈ 1
N log M0(V

⊗N ), i.e., the inequality
in (5) becomes an equality with all the discussed consequences
that this entails.

IV. SCALING LAWS

In this section, we show that logarithmic growth ofN with
L is sufficient, and in many cases also necessary, to achieve
rates above the zero-error capacity.

Recall that any rate strictly below the zero-error capacity
can be achieved with finite blocklength processing. Here we
are interested in rates that indeed need an infinite blocklength.
For anyα ∈ [0, 1] and forR(α) as in (2), we define

N?(L,α) , min {N : CN,L(V ) ≥ R(α)}.

The next theorem gives an upper bound onN?(L,α),
establishing that logarithmic growth ofN with L is sufficient
to achieveR(α).

Theorem IV.1. For everyε > 0 and for all N ≥ 1
ε

N?(L,α) ≤ inf
r∈(R(α)+ε,C(V )]

1

E(r)
log

(

L

1 − R(α)+ε
r

)

is sufficient to achieveR(α) = (1 − α)C0(V ) + α C(V ).

Proof. Theorem II.2 asserts that for anyr ∈ [0, C(V )]

CN,L(V ) ≥ r
(

1 − exp
(
− N E(r)

))L

−
1

N

≥ r
(

1 − L exp
(
− N E(r)

))

−
1

N
. (6)

Since the right hand side of (6) is always smaller thanr, in
order to attainR(α), r must satisfyr > R(α). Setting the
right hand side of (6) to be greater than or equal toR(α), we
get

log

(

1 −
R(α) + 1

N

r

)

≤ log(L) − N E(r).

Thus for allN ≥ 1
ε

N ≤
1

E(r)

(

log(L) − log
(

1 −
R(α) + ε

r

))

. (7)

But since this is true for allr ∈ (R(α) + ε, C(V )], we can
minimize the right hand side of (7) overr to get the tightest
bound.

The next theorem establishes that logarithmic growth ofN
with L is necessary to achieveR(α) for all α ≥ βm where
βm is a non-negative constant.

Theorem IV.2.

N?(L,α) ≥
log(L − 1) − log log 1

α−βm

1
m log 1

δm

(8)

for all

α ≥ βm ,
1
m log rank(Am) − C0(V )

C(V ) − C0(V )
,

where m is any integer such that the stochastic matrices
Am, Bm, and the real-valued constantδm ∈ (0, 1] in
the decompositionV ⊗m = δmAm + (1 − δm)Bm satisfy
1
m log rank(Am) ≤ C(V ).



Proof. From Theorem III.1,

CN,L(V ) ≤
(
1 − (1 − δN/m

m )L−1
) 1

m
log rank(Am)

+ (1 − δN/m
m )L−1C(V ).

In order to achieveR(α) it is hence necessary that

(
1 − α

)
C0(V ) + αC(V ) ≤ (1 − δN/m

m )L−1C(V )

+
(
1 − (1 − δN/m

m )L−1
) 1

m
log rank(Am).

By re-arranging the different terms, we get

α − βm ≤ (1 − δN/m
m )L−1 C(V ) − 1

m log rank(Am)

C(V ) − C0(V )
︸ ︷︷ ︸

,γm

.

If the value ofm is such that the hypothesis of the theorem
are satisfied we haveβm ∈ [0, 1] andγm ∈ [0, 1], and hence

(1 − δN/m
m )L−1 ≥ α − βm.

By using the fact that− log(1 − x) ≥ x for all x ∈ [0, 1], we
get that for allα ≥ βm

log
1

α − βm
≥ (L − 1) log

1

1 − δ
N/m
m

≥ (L − 1) δN/m
m ,

and hence

N
1

m
log

1

δm
≥ log(L − 1) − log log

1

α − βm
,

from which the result in (8) follows.

Notice that, since we are interested in the regimeN � 1,
the assumptions of the theorem about the integerm can be
relaxed tolimm→∞

1
m log rank(Am) ≤ C(V ).

The following examples illustrate the use of Theorems IV.1
and IV.2.

Example IV.1. [Binary Symmetric Channel]
Consider a cascade ofL binary symmetric channels with

crossover probabilityp. For this channelC0(V ) = 0 and hence
we get from Theorem II.1 that any finite length processing
performed at every node in the network will result in a zero
end-to-end rate asL → ∞. From Theorem IV.1, we see that
logarithmic growth ofN with L is sufficientto achieve any
fraction of the min-cut capacity. We will now show thatN =
Θ
(
log L

)
is also necessaryto achieve any positive fraction

of the min-cut capacity. The equivalent channel matrixV ⊗N

has smallest entrypN . By collectingpN from all the entries
of V ⊗N , we can write

V ⊗N = pN
11

T +
(
1 − (2p)N

)
B,

for some stochastic matrixB, and where1 is the all one
column vector of length2N . By using this decomposition we
get from Theorem IV.2 that

N∗(L,α) ≥
log(L − 1) − log log 1

α

log 1
δ

,

with δ , 2p. Hence logarithmic growth ofN with L is
necessary for all positive rates. ♦

Example IV.2. [Pentagon Channel]
Consider the “pentagon” channel whose transition matrix

V , for p ∈ (0, 1), is

V =









1 − p p 0 0 0
0 1 − p p 0 0
0 0 1 − p p 0
0 0 0 1 − p p
p 0 0 0 1 − p









.

HereC(V ) = log(5) − H(p) andC0(V ) = 1
2 log(5).

For m = 1 we can find a matrixA1 with rank(A1) =
3. However, for m = 2 we can find a matrixA2 with
rank(A2) = 8 < rank(A1)

2 = 9. Using the decomposition
for m = 2, we obtain from Theorem IV.2

β2 =
1
2 log rank(A2) − C0(V )

C(V ) − C0(V )
=

log(8/5)

log 5 − 2H(p)
,

showing that logarithmic growth ofN with L is necessary to
achieve anyR(α) with α ≥ β2. With m = 2, Theorem IV.2
does in this case not allow to state that logarithmic growth is
necessary for allα ∈ [0, 1]. ♦

V. CONCLUSIONS

In this paper, we investigated communication through a
cascade ofL channels, where intermediate nodes can perform
processing on blocks ofN symbols, and studied howN must
scale withL in order to achieve rates above the zero-error
capacity. We derived bounds on the capacity of finite length
cascades and used them to show that logarithmic growth of
N with L is sufficient to achieve any rate below the min-
cut capacity and necessary to achieve certain rates above the
zero-error capacity. We conjecture that logarithmic growth is
actually necessary to achieveany rate above the zero error
capacity. Proving this conjecture and extending the work to
more general networks, traffic configurations and resource
constraints is part of ongoing work.
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