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Abstract

As more and more genomes are sequenced, evolution-

ary biologists are becoming increasingly interested in

evolution at the level of whole genomes, in scenarios

in which the genome evolves through insertions, du-

plications, deletions, and movements of genes along its

chromosomes. In the mathematical model pioneered by

Sankoff and others, a unichromosomal genome is repre-

sented by a signed permutation of a multiset of genes;

Hannenhalli and Pevzner showed that the edit distance

between two signed permutations of the same set can

be computed in polynomial time when all operations

are inversions. El-Mabrouk extended that result to al-

low deletions and a limited form of insertions (which

forbids duplications); in turn we extended it to com-

pute a nearly optimal edit sequence between an arbi-

trary genome and the identity permutation. In this pa-

per we generalize our approach to compute distances

between two arbitrary genomes, but focus on approxi-

mating the true evolutionary distance rather than the

edit distance. We present experimental results show-

ing that our algorithm produces excellent estimates of

the true evolutionary distance up to a (high) threshold

of saturation; indeed, the distances thus produced are

good enough to enable the simple neighbor-joining pro-

cedure to reconstruct our test trees with high accuracy.

1 Introduction

Gene-content and gene-order data are becoming
more common and are increasingly used in the
study of evolution (see [14]) and in comparative
genomics (see [1]). We can compare genomes from
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various species under the assumption that cer-
tain biologically plausible operations have, through
time, shaped their current conformation from a sin-
gle common original genome. Changes to genomic
content or to gene order are of particular interest,
as they arise infrequently and so offer the poten-
tial for reconstructing very old evolutionary events
as well as computing pairwise evolutionary dis-
tances between distantly related modern genomes
(see [6, 16, 17, 19]).

Biologists can observe the ordering and strand-
edness of genes on each chromosome, thereby pro-
ducing a gene order for each chromosome, a se-
quence of signed integers in which each integer rep-
resents a gene (the same gene may appear multiple
times in the genome) and the sign indicates the
strandedness. In turn, evolutionary events can be
couched in terms of operations on such signed or-
ders: inversions, insertions, duplications, and dele-
tions all have simple representations in this model.
The model then leads naturally to the problem of
defining the distance between two genomes in terms
of these operations. The distance one would want
is simply the actual number of evolutionary events
(from the list of allowed operations) that took
place to evolve one genome into the other—what is
known as the true evolutionary distance. Not only
is that distance of biological interest, but knowl-
edge of the pairwise true evolutionary distances is
sufficient to reconstruct the true phylogeny. Since
that value cannot be computed exactly, however,
computational biologists have instead developed al-
gorithms to compute the edit distance, i.e., the
smallest number of evolutionary events needed to
transform one genome into the other. An edit dis-
tance has the advantage of presenting a clearly de-
fined minimization problem but it also underesti-
mates the true evolutionary distance. Thus com-
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putational biologists have developed methods for
correcting the edit distance (according to empiri-
cal data) in order to produce an estimate of the
true evolutionary distance. Such correction meth-
ods introduce problems of their own, however. In
particular, the variance in the estimator grows as
the distance grows, to the point where, beyond a
certain threshold known as the saturation value,
the estimate is too noisy to be useful.

However, even computing an edit distance is a
very complex problem for whole genomes. Simply
finding the edit distance between two unsigned per-
mutations with only inversions allowed (no change
in content and no duplicate genes) is NP-hard [3];
the same problem with signed permutations is solv-
able in polynomial time thanks to the results of
Hannenhalli and Pevzner [9]—in fact, the edit dis-
tance can then be computed in linear time [2]. On
the other hand, finding an ancestral permutation
that minimizes the sum of distances over a tree of
just three taxa under this model (the so-called me-
dian problem) is NP-hard even for signed permuta-
tions [4]. Computing the edit distance for genomes
with unequal content is barely touched but known
to be NP-hard [5], even when one genome is the
identity [18]; El-Mabrouk [8] showed how to ex-
tend the theory of Hannenhalli and Pevzner to in-
clude deletions, but her results assume no duplicate
genes, obviously a major limitation in practice.

In previous work [12], we gave a polynomial-
time approximation algorithm for the (NP-hard)
computation of the minimum edit distance from
any genome to the identity permutation 1, 2, . . . , n.
Our method relied on the construction of a map-
ping between duplicates in the genomes, yielding a
partial map we called a cover. This cover associates
substrings of genes that exist in both subject and
target genomes (modulo an inversion); any genes
not included in the cover are then treated as dele-
tions from the subject or insertions into the tar-
get. A minimal cover is one that uses the fewest
substrings. While Section 2.2 formally defines the
cover, Figure 1 illustrates the concept: the target
is the identity permutation 1, 2, 3, 4, 5, 6, while the
subject, -2,-1, 2, 3,-6,-5, 3, 4, includes duplicates of
genes “2” and “3”. The cover consists of three sub-
strings, namely “1, 2”, “3, 4”, and “5, 6”; concate-

subject -2-1 23 -6-5 34

target 12 34 56

Figure 1: A minimal cover.

nated, these substrings produce the target string,
while separately they can be found in the subject
string as “-2,-1”, “3, 4”, and “-6,-5”. The third
and fourth genes in the subject string (forming the
substring “2, 3”) are then viewed as lost in the evo-
lution to the target.

Here we generalize this approach to compute
the distance between two arbitrary genomes and
show through extensive simulations that we recon-
struct a sequence of operations that reflects the
true evolutionary distance. Our algorithm com-
putes distances between two genomes in the pres-
ence of insertions (including duplications), dele-
tions, and inversions; in our simulations, the dis-
tance computed very closely approximates the
true evolutionary distance up to a (high) satu-
ration level. The approximation is in fact good
enough that it can be used in conjunction with a
distance-based phylogenetic reconstruction method
(we used the most common one, neighbor-joining)
to reconstruct trees of reasonable sizes (up to 100
genomes) and very large pairwise distances with
high accuracy.

It is worthwhile to note that although we con-
sider only inversions (aside from duplicating inser-
tions and deletions), the properties of a minimum
cover discussed in Section 2.2 imply that it would
likely perform well with other operations such as
transpositions: the cover is a model-independent
method. However, due to the fact that transposi-
tions distances are yet to be well understood we do
not consider them in this exposition.

The rest of the paper is organized as follows.
Section 2 reviews the problem and past results and
establishes notation. Section 3 discusses the dif-
ficulties faced when using two arbitrary genomes
and how we solve them to recover a solution in the
spirit of our earlier results; it outlines our method
for producing a cover in quadratic time. Finally,
Section 4 presents the design of our two studies
while Section 5 shows how our constructed cover



performs when estimating pairwise tree distances
and how these distances can be used in tree recon-
struction.

2 Background

2.1 The problem We consider the problem of
approximating the true evolutionary distance (as
determined through simulations) from an arbitrary
subject genome to an arbitrary target genome.
The operations that we consider are inversions, in
which the order of a substring of genes is reversed
and the sign of each gene in the substring flipped;
deletions, in which a substring of genes is removed;
and insertions (including duplications), in which
substrings of genes (including entirely new genes
not found anywhere else) are added. All duplicates
of one gene form a gene family ; and all genes bear-
ing the same identifier are known as homologs—
that is, they are considered to have been derived
from a common ancestral gene through various cas-
cades of evolutionary events (that include both du-
plications and nucleotide-level changes).

2.2 The cover Our solution attempts to assign
each duplicate gene in the subject to a particular
homolog in the target; that is, it creates a maxi-
mum matching between the genes in corresponding
gene families of the two genomes. However, some
matchings are clearly preferable to others because
they reduce the number of insertions, deletions,
and rearrangement operations required to trans-
form one genome into the other. We say that a
cover is optimal if the correspondence it establishes
leads to a minimum number of operations (inver-
sions, insertions, and deletions) in the shortest se-
quence required to transform the subject into the
target while respecting the map. However, comput-
ing such a cover is NP-hard [18], so we define a min-
imum cover to be a cover that maps the subject to
the target with the fewest common substrings. The
effect of renaming according to a minimal cover
is to yield a breakpoint graph [9] with maximum
number of cycles of length 2, minimizing the num-
ber of breakpoints between the renamed genomes.

2.3 Difficulties with an arbitrary target
The main difference between our previous work [12]

and our new algorithm is the presence of duplicate
genes in the target. When building the cover with
the identity permutation as the target [12], all can-
didate cover elements from the subject are imme-
diately apparent because of the unique correlation
between their identity and their index in the target
genome. In the case of an arbitrary target, how-
ever, this correlation no longer exists. Moreover, a
cover may no longer cover all genes from one or the
other genome: clearly, if genome A has more dupli-
cates of gene x than genome B, and genome B has
more duplicates of gene y than genome A, then any
matching between these two genomes must leave
some duplicates of gene x unassigned in A and some
duplicates of gene y unassigned in B. For example,
with subject 1, 2, 3,-5,-2 and the identity permuta-
tion 1, 2, 3, 4, 5 as target, we have a cover, using
indices in the target, for indices 1 through 3, one
for index 5, and one for index 2; but for the same
subject and for target -7, 1, 2, 3, 5,-3, we obtain par-
tial covers for indices 2 through 4 or for indices 5
through 6.

3 Constructing a (Nearly) Minimum Cover

The algorithm used in [12] looks for the longest
matching substring. As long as such a longest
match is unique, there is no difficulty beyond iden-
tifying such matches as quickly as possible. (A
näıve cubic-time algorithm will do, although, as
we shall see, the same job can be done in quadratic
time.) When the longest match is not unique, how-
ever, finding a minimum cover may require an ex-
ploration of the alternatives and thus exponential
time. Instead, we use a greedy heuristic to break
ties.

We have tried several tie-breaking heuristics
(and compared them to breaking ties at random).
One heuristic is based on identifying a possible
extension of the match (to one or the other side).
If the substring to one side of the match is the
inverse of the substring to the same side of the
match in the other genome, for instance, if we had
substrings “1, 2,-4,-2” in the target and “1, 2, 2, 4”
in the subject, we may prefer to match these
substrings to each other (even though there may be
another “1, 2” elsewhere in both genomes) because
they are only a single inversion from each other.



Another heuristic is to minimize the interaction
between matches. The longer the match we make
at each iteration, the fewer potential matches may
be needed overall, so we may want to choose the
match with a range of indices that crosses the
smallest number of other match ranges. Section 6
contains some conclusions about the effectiveness
of these heuristics.

To find the longest match, we begin by find-
ing all possible maximal matching substrings and
then repeatedly pick the next largest substring, do-
ing necessary bookkeeping to reflect our successive
choices. Let M be the set of all maximal matching
substrings between the subject and the target that
have not yet been picked. For instance, if we start
with target genome 1, 2, 1, 3, 4, 5, 6, 7, 8 and subject
genome 6, 7, 3, 4, 5, 6, 1, 2, 3, 6, 7, 8, we initially have
M = {“6, 7”, “3, 4, 5, 6”, “1, 2”, “6, 7, 8”}. We say
that two matches overlap if their indices in the
target intersect. By picking the longest match
l, we cover a part of the target that may over-
lap with some number s of other matches, call
them o1, o2, . . . , os ∈ M . In our example, match
“3, 4, 5, 6” would be chosen first, covering the 6
from matches “6, 7” and “6, 7, 8” and the 3 from
match “1, 2, 3”. The overlapping portion of each
match oi, 1 ≤ i ≤ s is then removed, resulting in
shorter matches. Thus, two of those matches in our
example will be shortened by 1 yielding “7”, “7, 8”,
and “1, 2”. The resulting algorithm is described in
Figure 2.

We proceed to show that COVER can be im-
plemented to run efficiently, first stating the theo-
rem and then providing the necessary background
to prove it.

Theorem 3.1. Algorithm COVER can be imple-
mented to run in quadratic time.

We represent M by a list arranged by match length.
We keep an auxiliary data structure, the index
reference, to maintain the set M through each
iteration. This index reference is an array (0
indexed) of lists, one for each index of the target;
each such list, an index list, contains the matches
that have an endpoint on that target index. For
instance, in our example three such matches would
be “3, 4, 5, 6”, “6, 7”, and “6, 7, 8”. These matches

are associated with indices 3 through 6, 6 through
7, and 6 through 8 of the target. Thus index
6 of the target would have three members to its
index list, because the matches “3, 4, 5, 6”, “6, 7”,
and “6, 7, 8” all have “6” as an endpoint. Index 7,
however, would have a single match “6, 7”, because
“6, 7, 8” does not have “7” as an endpoint. A
simple way to find all possible maximal matches
in quadratic time is to slide the subject over
the target, comparing all possible combinations of
indices between the two. Each match found is
placed in M and the index lists for its endpoints.
The key to this implementation is the efficient
update of overlapping matches. With the index
lists we can find all o ∈ M that overlap a given
m ∈ M by examining each list that corresponds to
an index that m spans. When the match m that
spans indices i through k is chosen, we can shorten
each oi that overlaps from the left by relocating it
from the index list for j, i ≥ j ≥ k, to the index
list for i − 1. Similarly, each ok that overlaps m

from the right can be relocated to the index list for
k + 1.

Lemma 3.1. The maximum number of matches
that can have an endpoint at a given index of the
target is bounded by 4n, where n is the length of
the longer genome.

Proof. Each index in subject or target can be of
two types: a left or right endpoint of a match. All
four combinations of endpoint types can occur for
a given pair of indices. If there were more than one
match per pairing of endpoint types then one of
them could not be maximal, therefore there can be
at most four distinct maximal matches associated
with every pair of indices. Since there are n indices
in the subject, there can be at most 4n matches
associated with a single index of the target.

It follows immediately that the number of maximal
matches between two genomes, the larger of which
has size n, is O(n2).

Lemma 3.2. Initialization of M and of the index
reference takes quadratic time.

Proof. We know that the number of maximal
matches is O(n2) and that the length of a match is



Algorithm COVER:

C = ∅.
M = {s : s is a maximal substring of the subject and target}.
while C cannot cover the Target do:

Add longest l ∈ M to C.

M = M\{l}.
foreach o ∈ M that overlaps l do:

u = o without the substring common to o and l.

M = M\{o} ∪ {u}.
return C

Figure 2: Choosing a nearly minimal cover.

bounded by the size of the genomes. We can add a
match to a list organized by length in constant time
through direct indexing. Likewise, addition to the
end of a given index list can be done in constant
time. Since there are O(n2) matches and place-
ment into the index reference is O(1), we can build
these lists in quadratic time.

Lemma 3.3. A match can be relocated between
index lists at most twice before being removed from
consideration.

Proof. It is sufficient to show that a match e will
not be encroached upon from the same side twice.
Assume that e is shortened from one direction by
match m and later from the same direction by
match m′ without being covered. Because m was
picked by the algorithm first, m′ must not stretch
past the opposite end of m. Therefore, either m′

covers less than e or e must now be removed from
consideration—a contradiction in either case.

We are finally ready to prove Theorem 3.1.

Proof. (of Theorem 3.1) Initialization takes
quadratic time (Lemma 3.2). Each match in each
index list is visited a constant number of times
(Lemma 3.3). When visited, each match is short-
ened, removed from consideration or relocated to
the index list at the edge of the most recently
chosen match, and then relocated in the length

list. Since each of these operations runs in con-
stant time, the running time is bounded by a con-
stant times the total number of matches visited.
Since each index list is visited at most once and
the length of that list is at most linear (Lemmata
3.1 and 3.3), the running time is O(n2).

Theorem 3.2. The distance function can be com-
puted in O(n2) time.

Proof. The cover can be generated and applied in
O(n2) time. Then the algorithm presented in [12]
or [8] can be applied. Both methods run in O(n2)
time.

4 Experimental Design

We used two types of tests to assess the accuracy
and utility of our tree distance algorithm. The first
set of tests were designed to determine if our dis-
tance function accurately modeled the true pair-
wise tree (true evolutionary) distances. The sec-
ond set of tests were used to evaluate the effec-
tiveness of our distance function within the most
simple distance-based phylogenetic reconstruction
algorithm.

4.1 Pairwise Error For this experiment, we
generated evolutionary trees with known edge
lengths and compared the pairwise distances be-
tween the leaves with those computed by our algo-
rithm. Variance in tree shape does not matter here;



in fact, since we want a large range of pairwise tree
distances, a perfectly balanced tree is best.

In the following tests we used the simplest ver-
sion of the method described earlier. The algo-
rithm picks the largest match to make and in the
case of ties picks one of the tied matches at random.
Clearly other information is present in the genomes
that could provide a better choice of match and
thus lead to a more accurate distance score. How-
ever, all of the heuristic methods that we used
failed to have a noticeable impact on the accuracy
of the distance value returned. Furthermore, in ex-
periments with a large number of random restarts,
we found that most of the values clustered around
the true value with a small number of outliers; we
also found that averaging over a smaller number of
random restarts and discarding any substantially
outlying points provided a distance estimate that
was nearly indistinguishable from the distance esti-
mate computed with the use of our best heuristics
(see Section 6). While the use of biological informa-
tion to select the best match could prove effective in
generating more biologically plausible evolutionary
paths, the current method seems to perform quite
well in terms of distance computations.

Not enough is known about inversions, dele-
tions, insertions, and duplications to enable one to
set good parameters (such as lengths of inversion,
for instance) a priori, so we chose values so as to en-
sure that a single operation would not completely
alter the genome. Most of our tests were conducted
with a root genome of 800 genes on a tree of depth
4; such a tree has 16 leaves and thus 120 pairs of
genomes with paths from 2 to a maximum of 8
edges between genomes.

4.2 Tree Reconstruction We tested the per-
formance of our distance functions using neighbor-
joining, the standard distance-based tree recon-
struction method. Due to the dearth of real-world
trees reconstructed using biological techniques, we
had to generate model trees that would exercise
our algorithm over a wide range of plausible models
of gene-order evolution. (We conducted one study
using real data with very large numbers of inser-
tions and deletions; partial results to date show
promise [7].) We generated one thousand trees us-

ing a variation of the birth-death model that pro-
duces a larger variation in tree topologies, espe-
cially imbalanced ones that are known to be insuf-
ficiently represented in a pure birth-death model
[10]. The only constraint that was placed on the
operations was that the expected number of in-
serted elements was equal to the expected number
of deleted elements, in order to keep all genome
sizes within a reasonable range. (Cases where cer-
tain genomes are much smaller than others, due,
e.g., to symbiosis, certainly exist, but the variation
generated by our mechanism nearly encompasses
that case already.) Three random restarts of our
distance algorithm were used for each pair of nodes
to produce the pairwise distance matrix.

Within the thousand trees the percentage of
inversions varied from 50% to 90%. The remain-
ing percentages were split evenly between inser-
tions (duplicating and non-duplicating) and dele-
tions. Non-duplicating insertion and duplication
percentages were varied over three different tests,
in which each received a quarter, a half, and three
quarters of the percentage. The expected Gaussian
distributed length of each operation filled a range
of combinations from 5 to 30 operations per oper-
ation type. Finally, the expected number of event
per edge was 20 with a Gaussian distributed vari-
ance of 10 operations.

To generate a tree we began with the identity
genome on 800 genes and performed 200 evolution-
ary operations on it using the same parameters that
are specified for generating the tree. This genome
was then used as the root of the tree. For each node
we checked if it should become a leaf, based on the
maximum depth allowed and a random choice, if
not we stopped. Otherwise we created each of the
two children by performing the randomly selected
operations (as specified in the previous paragraph)
on the parent. Each type of operation (inversion,
non-duplicating insertion, duplication, and dele-
tion) was selected at random according to a fixed
distribution. The interval over which an operation
acts is produced with one endpoint selected at
random and a length drawn from a Gaussian
distribution. For duplications, the interval to be
duplicated is selected and then inserted at an
index chosen uniformly at random in the genome.



5 Experimental Results

5.1 Pairwise Error We present results for one
of the many mixes of operations used in our simu-
lations; other mixes gave very similar results. This
particular data set used a mix of 70% inversions,
16% deletions, 7% insertions, and 7% duplications.
The inversions had a mean length of 20 and a stan-
dard deviation of 10. The deletions, insertions, and
duplications all had a mean length of 10 with a
standard deviation of 5. We used four trees of 16
leaves as described earlier, with 10, 20, 40, and
60 expected operations per tree edge; these choices
can result in very large pairwise distances—up to
an expected 480 operations (on just 800 genes) for
the most distant pairs. For these four trees, our al-
gorithm was run with 10 random restarts and sim-
ple randomization for the selection of the match-
ings.

Figures 3 through 6 show the results (as a scat-
ter plot of the 120 data points for each experi-
ment) for these four datasets. In each figure, the
left-hand plot shows the estimated tree distance on
the ordinate against the true evolutionary distance
(from the simulation) on the abscissa. A perfect
result would simply trace the 1:1 diagonal, which
is lightly marked on each plot to aid in evaluating
the results. The right-hand plot displays the devi-
ation from the 1:1 ideal as a function of the true
evolutionary distance, plotting largest and smallest
differences between computed values and the true
value, for each true value.

These plots show that our distance estimator
tracks the true evolutionary distance very closely
up to a saturation threshold, where it starts lag-
ging seriously behind the true value. Such satu-
ration is of course expected; what is surprising is
how high that saturation threshold is. On genomes
of roughly 800 genes, saturation appears to occur
only around 250 evolutionary events and our esti-
mator tracks very accurately to at least 200 events.
Moreover, the smaller plots indicate that the vari-
ance is very small up to 200 events and remains
reasonable up to 250 events.

These results are not limited to small trees.
We ran another series of tests involving trees of
50 leaves; while the main purpose of these tests
was to assess the quality of tree reconstruction

using our distance computations, we checked the
computed distances against the true distances for
these trees as well. Figure 7 shows the same
two scatter plots (this time on roughly 1,250 data
points) for one such tree. For these larger trees,
we used a root genome of 1,200 genes in order
to prevent early saturation; the example reported
in the figure used an expected edge length of 20
evolutionary events. With the larger number of
genes, saturation now does not occur until we
reach at least 350 evolutionary events. The error
plot shows that the error remains sharply bounded
throughout the range of values tested.

5.2 Tree Reconstruction Since our distance
computation tracks tree distances so accurately
and since distance-based methods are guaranteed
to do well when given distances that are close to
the true evolutionary distances, we also ran a se-
ries of tests designed to ascertain the quality of
tree reconstruction obtained with the most com-
monly used distance-based reconstruction method,
neighbor-joining (NJ). The NJ method runs in low
cubic time and thus is applicable to large datasets,
but, like all distance-based methods, it is known
to produce poor results when the range of tree dis-
tances gets large (see, e.g., [15].

Recall that we generated a very large number
of diverse tree topologies, producing a population
of trees that more closely matches the observed
balance statistics [10] than would be the case
with a pure birth-death process. We evaluated
results using the standard Robinson-Foulds (RF)
distance [20], which is simply (in the case of binary
trees, as in our series of experiments) the number
of edges (or bipartitions) present in one tree, but
not in the other. In several cases, we present
the RF error rate, which is the ratio of the RF
distance to the number of taxa in the tree. In
terms of the latter measure, most systematists will
consider rates above 10% to be unacceptable and
rates below 5% to be very good.

The tree reconstruction performed very well
on the generated trees, as shown in Figure 8.
Approximately 65% of the reconstructed trees had
a Robinson-Foulds error rate of less than 5% and
only 15% of the trees had an error above 10%.
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Figure 3: Experimental results for 800 genes with expected edge length 10. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.
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Figure 4: Experimental results for 800 genes with expected edge length 20. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.
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Figure 5: Experimental results for 800 genes with expected edge length 40. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.
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Figure 6: Experimental results for 800 genes with expected edge length 60. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.
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Figure 7: Experimental results for 1,200 genes with expected edge length 20. Left: generated distance
vs. reconstructed distance; right: the variance of computed distances per generated distance.



This reconstruction was done without any use of
error correction, variances, or knowledge of the
underlying model that generated the trees; it also
used the simplest form of neighbor-joining. Thus,
it would be easy to improve these results by refining
the reconstruction method.

As an additional check, we also compared how
well our method performs with respect to sim-
ply removing duplicate content and applying El-
Mabrouk’s exact method [8]. This comparison
gives us an indication of how important it is to han-
dle duplication in estimating true tree distances.
We computed a distance matrix for each tree where
a single entry of a matrix was obtained by pairwise
removal of all duplicate content and subsequent
computation using El-Mabrouk’s exact method.
The NJ method was applied to each matrix to ob-
tain a tree. Over all thousand trees the reconstruc-
tion without duplicates had a lower RF error rate
than ours on only 14% of the trees; furthermore, in
three quarters of those cases, the overall RF error
rate for both methods was lower than 10%—that is,
these were relatively easy cases. Thus, our method
does better on the harder cases; the average differ-
ence in RF error rate on the trees where our method
did worse on was 1.2, while the average difference in
RF error rate on the trees our method did better on
was 3.5. This is strong evidence that our method
makes significant improvements on the state of the
art. Furthermore, because of this low error rate in
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Figure 8: The histogram of RF error rates for re-
constructions based on our distance computation.
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Figure 9: The difference in RF distance between
our method and the method without duplicates as
a function of the number of duplicates on an edge.

the 14% of cases where our method was not the
best, there is good reason to believe that a slightly
better tie breaker (see Section 6) will yield even
more cases where the method presented here wins.

To examine how well our technique handled
copies, we compared (for every test run) the RF
distances of our reconstruction with those of the
reconstruction without duplicates as a function of
the total number of duplications. Figure 9, a scat-
ter plot of the differences in RF distance, indicates
that, as the number of duplicates increases, our
method does correspondingly better at reconstruct-
ing the tree.

6 Improved Heuristics

For distances used in tree reconstruction, the rela-
tive ordering of the values is more important than
their absolute magnitude; it is most important to
see computed distances increase as the simulated
distances do. Our major goal with the introduc-
tion of more sophisticated heuristics is to reduce
the variance of the scores so that the distance or-
dering will be more consistent and potentially re-
sult in more accurate trees.

The results presented earlier in the paper used
a very simple heuristic; we selected the longest
match for a cover element and then chose a match
at random in the cases of ties. We investigate two



more promising tie-breaking heuristics (introduced
in Section 3): picking a match that has the smallest
overlap with the other cover elements or picking
a match by looking at the immediate context of
the cover elements in the source genome. By
choosing the match that has minimal overlap with
all other matches, we maximize the number of
longest-match candidates for the next round. To
understand the motivation for the context driven
heuristic suppose we are trying to find a cover
element for a subsequence (of genes) s in the target.
Also suppose that in the target, the subsequence to
the left of s is sl and to the right of s is sr. Then
we would like to pick a match in the source genome
that has the context subsequences s′

l
and s′r that

are as similar to sl and sr as possible.
To assess the improvements when using these

heuristics we ran two sets of pairwise distance com-
parisons. One set used genomes of length 800 with
200 operations from the identity to the first taxa
and 200 operations between the taxa. The sec-
ond set used genomes of length 1200 and took 400
operations between the identity genome and the
first and between the first and the second taxa.
In both data sets the probability of an operation
being an inversion was 80%, of being a deletion
10%, of being a duplicating insertion 5%, and of
being a non-duplicating insertion 5%. The dis-
tance between each pair was then computed us-
ing three heuristics, first the random selection was
run, then the score was computed using overlap
minimization, and finally the score was computed
using the overlap minimization with context. Fig-
ure 10 indicates that there is little difference in the
error values for the various methods. More impor-
tantly, the more sophisticated heuristics have very
little impact on the variance. All methods resulted
in a sample variance of about 22.6 for the genomes
constructed with 400 operations.

7 Saturation

Unsurprisingly, the high-error trees have arisen
from saturation in the pairwise distance data. To
this point, we have referred to saturation as being
the point where the variance grows too large to
make the calculated distances useful. We now use
a numerical definition: saturation occurs whenever
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Figure 10: Number of cases with error for each
tie-breaker.

the true evolutionary distance exceeds the distance
computed under our method (which, it should be
recalled, is not an edit distance).

We compared reconstructed trees with an RF
error greater than 10% to trees with RF errors
of less than 5%. In the high RF error category
over 91% of the distance matrices show saturation,
whereas in the low RF error category 75.5% of the
matrices are devoid of any saturation. The distri-
bution of the number of operations where satura-
tion occurs for the high and low RF error groups
is shown in Figure 11. Further investigation into
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Figure 11: Saturation occurs early for those cases
where the RF error is bad.

the properties of the trees in the high and low RF
categories revealed little correlation between fac-
tors such as tree size, genome size (in genes), or



distribution of operations. The major limiting fac-
tor in the accurate reconstruction of trees using
this distance score is thus definitely the onset of
saturation. Since the average genome size in our
experiments was approximately 1000 elements, re-
construction is highly accurate when the computed
edit distance does not exceed 10% of the genome
size and in general performs well until the number
of operations exceeds 25% of the genome size. Even
in these cases the distance computation performs
quite well up to the saturation point, as illustrated
in Figure 12. The vertical axis is the difference
between the actual and computed distances while
the horizontal axis is the ratio of the computed dis-
tance to the genome size. Note that in a regime of
saturation the computed distance stays the same
while the actual distance is rising, so only the pos-
itive points should be considered when looking for
saturation.

8 Conclusion and Future Directions

We have outlined a method that accurately com-
putes tree distances (true evolutionary distances)
under the full range of evolutionary operations be-
tween two arbitrary genomes. Our experimental
results indicate that the accuracy is excellent up
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Figure 12: Histogram of the error (actual
distance − computed distance) as the ratio of the
computed distance to the genome size increases.

to saturation, which is reached remarkably late—
for instance, with genomes of roughly 800 genes,
our distance computation remains highly accu-
rate up to 200–250 evolutionary events. Indeed,
these distances are accurate enough that the simple
neighbor-joining method applied to distance ma-
trices computed with our algorithm reconstructs
trees with high accuracy. These findings open up
the possibility of reconstructing phylogenies from
whole-genome nuclear data, as opposed to the or-
ganellar data that have been used so far. How-
ever, in order to use more sophisticated methods
than neighbor-joining for such reconstructions, the
problem of computing good medians must be ad-
dressed. While our experiments show that our dis-
tance computation is accurate, the accompanying
sequence of evolutionary events is only one of many
possible sequences (it uses a “canonical form” [12]);
hence our level of confidence in the correctness of
reconstructed ancestral genomes is low. In order to
reconstruct good ancestral genomes, we will need
additional biological information, such as boundary
constraints (centromere, origin of replication, etc.),
length distributions, and sequence data around
each gene.
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