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Abstract. The Robinson-Foulds (RF) metric is the measure most widely used
in comparing phylogenetic trees; it can be computed in linear time using Day’s
algorithm. When faced with the need to compare large numbers of large trees,
however, even linear time becomes prohibitive. We present a randomized approx-
imation scheme that provides, with high probability, a (1 + ε) approximation of
the true RF metric for all pairs of trees in a given collection. Our approach is
to use a sublinear-space embedding of the trees, combined with an application
of the Johnson-Lindenstrauss lemma to approximate vector norms very rapidly.
We discuss the consequences of various parameter choices (in the embedding
and in the approximation requirements). We also implemented our algorithm as a
Java class that can easily be combined with popular packages such as Mesquite;
in consequence, we present experimental results illustrating the precision and
running-time tradeoffs as well as demonstrating the speed of our approach.

1 Introduction

The need to compare phylogenetic trees is common. Many reconstruction methods (par-
ticularly maximum parsimony and Bayesian methods) produce a large number of possi-
ble trees. Trees are also built for the same collection of organisms from different types
of data (e.g., nucleotide or codon sequences for one or more genes, gene-order data,
protein folds, but also metabolic and morphological data). Phylogenetic trees can be
compared and the result summarized in many ways; for instance, consensus methods
[1] return a single tree that best summarizes the information present in the entire col-
lection, while supertree methods (typically used when the trees are built on different,
overlapping subsets of organisms) [2] combine the individual trees into a single larger
one. A more elementary step is to produce estimates of how much the trees differ from
each other, by computing pairwise similarity or distance measures. Here again, many
approaches have been used, such as computing pairwise edit distances based on tree
rearrangement operators [3, 4]; the most common distance measure between two trees,
however, is the Robinson-Foulds (RF) metric [5]. This measure is in widespread use
because it can be computed in linear time [6], is based directly on the edge structure
of the trees and their induced bipartitions, and is a lower bound on the more expensive
edit distances. Yet, as the size of datasets used by researchers grows ever larger, even a
linear-time computation of pairwise distances becomes onerous.

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 221–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147923473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


222 N.D. Pattengale and B.M.E. Moret

In this paper, we present the first sublinear-time algorithm to compute pairwise RF
distances among a collection of trees. Our algorithm is a randomized approximation
scheme: it returns, with high probability, an approximation that is guaranteed to be
within (1 + ε) of the true distance, where ε > 0 can be chosen arbitrarily small. Our
approach uses a sublinear-space embedding of the trees, combined with an applica-
tion of the Johnson-Lindenstrauss lemma [7] to approximate vector norms rapidly. We
discuss the consequences of various parameter choices (in the embedding and in the
approximation requirements). We also implemented our algorithm as a Java class that
can easily be combined with popular packages such as Mesquite [8]; in consequence,
we present experimental results illustrating the precision and running-time tradeoffs as
well as demonstrating the speed of our approach.

2 Terminology and Definitions

A phylogenetic tree is an undirected, connected, acyclic graph; its leaves (also called
tips) correspond to the taxa about which data was collected, while its internal nodes all
have degree at least 3. If every internal node of a phylogenetic tree has degree equal
to 3, the tree is said to be binary or fully resolved. We will use Tn to denote a set of
phylogenetic trees on n taxa.

Removing an edge (a,b) from a tree T disconnects the tree, creating two smaller
trees, Ta (containing a) and Tb (containing b). Note that a (resp., b) might now have
only degree 2 in Ta (resp., Tb), in which case we remove it (connecting its two neighbors
directly to each other) in order to preserve the constraint that each internal node have
degree at least 3. Cutting T into Ta and Tb induces a bipartition (or split) of the set S of
taxa of T into the set A of taxa of Ta and the set B of taxa of Tb, a bipartition that we
denote A|B. Thus there exists a one-to-one correspondence between the bipartitions of S
and the edges of T , so that each tree is uniquely characterized by the set of bipartitions
it induces. If S has n taxa, then any (unrooted) phylogenetic tree for S has at most 2n−3
edges and so induces at most 2n − 3 bipartitions, only a small subset of the

NB =
� n

2 �

∑
i=1

(
n
i

)
≈ 2n−1

possible bipartitions of the set S. Moreover, n of these bipartitions are trivial biparti-
tions that split S into a one-element set against the remaining n − 1 elements—trivial,
because these n bipartitions are common to all phylogenetic trees on S and thus need
not be explicitly recorded. We shall denote by B(T ) the set of (at most n−3) nontrivial
bipartitions of S induced by T .

The Robinson-Foulds distance [5] between two trees on the same set S of taxa is
simply a normalized count of the bipartitions induced by one tree, but not by the other.

Definition 1. Given a set S of taxa and two phylogenetic trees, T1 and T2, on S, the
Robinson-Foulds distance between T1 and T2 is

RF(T1,T2) =
1
2

(|B(T1)− B(T2)|+ |B(T2)− B(T1)|)
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This measure of dissimilarity is easily seen to be a metric [5] and can be computed in
linear time [6].

We mentioned that one could also define edit distances between trees, in the context
of one or more operators that alter the structure of a tree. Two commonly used operators
are the Nearest Neighbor Interchange (NNI) and the more powerful Tree Bisection and
Reconnection (TBR)—see [4, 9] for definitions and discussions of these operators. Ap-
plying the NNI operator to T1 can change RF(T1,T2) by at most 1, while applying the
TBR operator to T1 can change RF(T1,T2) almost arbitrarily. We use these operators in
generating test sets for our RF approximation routine, as discussed in Section 5.

3 Theoretical Basis for the Algorithm

The key concept in our approach is representation. Our approximation algorithm is a re-
duction to the computation of vector norms in a suitable vector space and the sublinear
running time results from our ability to represent the necessary characteristics of phy-
logenetic trees in sublinear space. More specifically, we represent phylogenetic trees as
vectors in such a way that RF distances become simply the ‖ ·‖1-norm of the difference
vector, then generalize the result to arbitrary ‖ ·‖p-norms for p ≥ 1.1 We then borrow a
technique from high-dimensional geometry to reduce the dimensionality of tree vectors
while maintaining pairwise ‖ ·‖2-norms. Finally we combine these techniques to obtain
a fast approximation algorithm for computing RF distances.

3.1 Bit-Vector Representation

Consider a (bijective) function f :
�

T∈Tn
B(T ) → IN that assigns a unique integer in the

interval [1,NB] (recall that NB is the number of possible bipartitions of the set) to each
bipartition.

Definition 2. The bit-vector representation of a phylogenetic tree T is vT ∈ IRb where
we have

vT [i] =

{
1 f −1(i) ∈ T

0 otherwise

Obviously, this representation is quite space-consuming and proportionally time-
consuming to produce; fortunately, we need only consider the bits set to 1, as discussed
in Section 4.2. By construction the ‖.‖1-norm between tree vectors is the
(non-normalized) RF distance.

Theorem 1. ∀T1,T2 ∈ Tn, RF(T1,T2) = 1
2‖vT1 − vT2‖1.

Proof. For all s ∈ B(T1)− B(T2) (resp., B(T2)− B(T1)), we have vT1 [ f (s)] = 1 (resp.,
vT2 [ f (s)] = 1) and vT2 [ f (s)] = 0 (resp., vT2 [ f (s)] = 0). For all s ∈ B(T1)∩B(T2), we also
have vT1 = vT2 = 1 and, for all s ∈�T∈Tn

B(T )−(B(T1)∪B(T2)), we have vT1 = vT2 = 0.
Thus we can conclude

‖vT1 −vT2‖1 = |B(T1)−B(T2)|+ |B(T2)−B(T1)| = 2 ·RF(T1,T2) �

1 The ‖ · ‖p-norm of a vector v = (v1v2 . . .vk) is ‖v‖p =
(
∑k

i=1 |vi|p
) 1

p .
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3.2 Properties of ‖ · ‖p-Norms of Bit-Vectors

Theorem 2. For an arbitrary vector v ∈ IRb where every element is chosen from the set
{−k,0,k} (for arbitrary k > 0), we have ‖v‖1 = k1−p · (‖v‖p)p.

Proof. Assume that v has c entries of value ±k; we can write

‖v‖p =

(
b

∑
i=1

(|vi|)p

) 1
p

= (ckp)
1
p = c

1
p k

‖v‖1 =
b

∑
i=1

|vi| = ck = c
p−1

p (c
1
p k) = c

p−1
p ‖v‖p

Raising the first result to the power (p − 1) and solving for c
p−1

p yields

c
p−1

p = k1−p · (‖v‖p)p−1

and substituting into the second result finally yields

‖v‖1 = k1−p · (‖v‖p)p �

Corollary 1. For bit-vectors (k = 1) we have ‖v‖1 = (‖v‖p)p; in particular, we have
‖v‖1 = (‖v‖2)2.

3.3 Reducing Dimensionality

We briefly outline a result of Johnson and Lindenstrauss [7] for norm-preserving em-
beddings; see [10, 11, 12] for a more detailed treatment and proofs.

Consider an m × NB matrix V in which we want to compute the ‖ · ‖2-norm be-
tween pairs of row vectors. Naı̈vely calculating a pairwise norm costs O(NB) time. The
Johnson-Lindenstrauss lemma states that, if we first multiply V by another matrix F
of size NB × 4lnm

ε2 , filled with random numbers from the normal distribution (0,1), we
can then use the pairwise norms between rows of V · F as good approximations of the
pairwise norms between corresponding rows of V . Specifically, for given ε and F , we
have, with probability at least 1 − m−2,

NB O(      m)

=

V F V’

xm NB m O(      m)x x

logx

log

Fig. 1. A sketch of randomized embedding. Each tree is a row in V ; F is a random matrix; each
row of V ′ is the embedded representation of the corresponding row vector in V .



A Sublinear-Time Randomized Approximation Scheme for the RF Metric 225

∀u,v ∈ V, (1 − ε)‖u − v‖2 ≤ ‖(u − v)F‖2 ≤ (1 + ε)‖u − v‖2

The dimensionality of (u − v)F is now 4lnm
ε2 and thus independent of NB. Other prob-

ability distributions can also be used for populating the elements of F , as discussed in
Section 4.3. Figure 1 illustrates the basic embedding technique.

3.4 Assembling the Pieces

By combining Theorem 1, the Johnson-Lindenstrauss Lemma, and Corollary 1, we can
produce our algorithm. Given a set of m phylogenetic trees:

1. stack their bit-vector representations (recall that each has dimensionality NB) to
form an m× NB matrix;

2. perform the embedding of Section 3.3 (see also Section 4.3 for implementation
considerations) thereby compacting the row dimensionality of the matrix while pre-
serving pointwise ‖ · ‖2-norms between row vectors; and

3. for any pair of row vectors vT 1, vT 2 (i.e., embedded trees), compute the approximate
RF distance by computing (‖vT1 − vT2‖2)2.

However, this is the theoretical form of the algorithm. In practice, we do not compute
the large matrix, but use a compact representation from the beginning, one whose size is
determined by the number of bipartitions present in a tree, which is just n − 3. We also
use a sampling matrix with entries in {−1,0,+1} (see Section 4.3) rather than arbitrary
reals in [0,1]. Since the dimensionality of the embedded row vectors is O(logm), the
time complexity of for our approximate RF distance between two trees is also O(logm),
so that our technique is asymptotically faster whenever we have logm = o(n).

4 Implementation

We have implemented our algorithm as a Java class that can be used as one of many dis-
tance functions from within popular packages such as TreeViz [14, 15] and
Mesquite [8]. Our source code can be obtained from http://compbio.unm.edu.

Implementation raises a number of nontrivial issues, which we now address.

4.1 Dimensionality Is Not Prohibitive

Although the bit-vector representation is presented as having dimensionality NB ≈
2n−1, we need not produce, store, or manipulate exponentially large vectors. Since the
number of bipartitions present in a single tree is at most n − 3, tree vectors are very
sparse; by representing them as lists of indices (corresponding to the bits that are set),
we avoid the issue of exponentially large vectors.

4.2 Indexing Bipartitions

In order to embed a tree we must read the entire tree, so that the embedding step, for
each tree, must run in Ω(n) time. Day’s algorithm [6] computes the RF distance in O(n)
time. Thus our algorithm (with inclusion of the embedding step) cannot asymptotically
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outperform Day’s algorithm for a single distance computation. We can expect an asymp-
totic speedup, however, if we compute an all-pairs distance matrix for a set of trees: for
such a computation the standard technique costs O(n) per pair on

(m
2

)
= O(m2) pairs,

yielding a total complexity of O(m2n). If embedding costs some function g(n), our
technique will cost O(m ·g(n)) for the embedding step and O(m2 logm) for the distance
computations on pairs of embedded trees, for a total of O(m · (g(n)+ m logm)).

One of the notable attributes of Day’s algorithm, that we have not yet achieved in
our embedding routine, is the ability to determine in constant time whether a biparti-
tion found in one tree exists in the other tree. As currently implemented, our cluster-
matching routine takes O(n) time, inflating the cost of embedding a single tree to O(n2)
and thus causing the overall all-pairs algorithm to run in O(m(n2 + m logm)) time. We
are pursuing the design of a subquadratic-time embedding algorithm, but note that the
current implementation already performs well in practice, especially in the common
situation where the number of trees to be compared far exceeds the number of taxa in
these trees.

4.3 Filling the F Matrix

Generating a large number of Gaussian random numbers and performing floating-point
arithmetic (for matrix-vector multiplications) on them is costly. Fortunately Achlioptas
[13] has shown that simpler distributions can populate the embedding matrix. The best
distribution in implementation terms is as follows:

p(X = −
√

3) = 1/6

p(X = 0) = 2/3

p(X =
√

3) = 1/6

The
√

3 is just a normalizing factor and can be omitted until the very end of the com-
putation, so we use values in {−1,0,1}, with two major advantages: (i) it is an easy
distribution to sample with a uniform random number generator; and (ii) multiplying
by elements in {0,±1} can be done through additions embedded in a three-way condi-
tional. Using this distribution requires a slightly different row dimensionality for F : for
some β > 0, F must have size NB × k0 with

k0 ≥ (4 + 2β) · logm
ε2

2 − ε3

3

and the embedded matrix is normalized by
√

k0. The dimensionality is O(logm) and
the error bound of (1 + ε) is obeyed with probability at least 1 − m−β.

5 Experiments

Two major factors influence the usefulness of our technique in practice: the effect of ε
and the overhead of embedding. We ran a series of experiments to assess both factors.
The experiments were run on the CIPRES cluster at the San Diego Supercomputing
Center, a 16-node Western Scientific Fusion A8 running Linux, in which each node is
an 8-way Opteron 850 system with 32GB of memory.
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5.1 The Effect of ε on Clustering Quality

Choosing a large ε cuts down the dimensionality of embedded trees and thus speeds up
the computation. To assess the effect on clustering quality of a big ε, we generated a
large set of test data using the following procedure:

1. Generate a phylogenetic tree Tseed uniformly at random from TnumTaxa

2. do numClusters times
(a) create a new tree TclusterSeed by doing a random number (0 ≤ k < maxTBR) of

TBR operations to Tseed .
(b) write TclusterSeed to file
(c) do treesPerCluster times

i. create a new tree T ′ by doing a random number (0 ≤ j < maxNNI) of NNI
operations to TclusterSeed .

ii. write T ′ to file

with the following parameters:

– numTaxa = 100
– numClusters = 2,3,4,5,6,7,8,9,10
– treesPerCluster = 50,100
– maxTBR = 5,8,11,14
– maxNNI = 10,20,30,40,50,60,70,80,90,100

This procedure creates the classic “islands” of trees [16] by providing pairwise distant
trees as seeds and generating a cluster of new trees around each seed tree. We created
10 files for each combination of parameters, yielding a total of 7,200 data files, varying
from easy to very hard to cluster correctly.

For each data set we performed hierarchical agglomerative clustering with a range
of ε values. We then compared the results with the known intended clustering by using
the Rand index [17]. Figure 2 shows the results. These results indicate that, even with
ε = 1.0, we identify the correct clustering quite often, even on very challenging datasets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

〈R
〉

ε

Fig. 2. The mean Rand index, 〈R〉, obtained by running the entire battery of 7,200 datasets for
values of ε ranging from 0.1 to 1.0 by increments of 0.1. The datapoint at ε = 0 was obtained by
the standard RF algorithm.
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Fig. 3. The running time for computing an all-pairs distance matrix as a function of the number
of trees with 250 taxa (left) and 1,000 taxa (right)

Given that biological datasets tend to yield well resolved clusters of trees (due to the
nature of the algorithms that produce them), we expect that our algorithm will perform
well in analyses of biological data.

5.2 The Effect of Embedding on Running Time

Figure 3 demonstrates the speedup afforded by our technique when we hold constant the
number of taxa and plot the running time (of an all-pairs distance matrix computation)
as a function of the number of trees. We include results form experiments in which the
number of taxa is held fixed at 250 (typical of trees being used today) as well as 1,000
(typical of trees to be used in the near future). Times shown are somewhat pessimistic as
a “cold” run (with memory management overhead) was averaged into each of the trials.

If we fix the number of trees and vary the number of taxa—admittedly not a real-
istic scenario—, we are limited by the O(mn2) embedding cost. In this case we do not
perceive a significant advantage to using our technique, but our algorithm will easily
outperform the standard technique even in this setting if we can design an embedding
technique that runs in subquadratic time.

6 Conclusion

We used an embedding in high-dimensional space and techniques for computing vector
norms from high-dimensional geometry to design the first sublinear-time approximation
scheme to compute Robinson-Foulds distances between pairs of trees. We implemented
our algorithm and provided experimental support for its computational advantages. As
computational biologists everywhere increasingly turn to phylogenetic computations to
further their understanding of genomic, proteomic, and metabolomic data, and do so on
larger and larger datasets, a fast computational method to compare large collections of
trees will enable interactive analyses (in the type of setting provided by Mesquite).
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While our algorithm easily outperforms repeated applications of Day’s algorithm
for large collections of trees, its relatively expensive embedding step prevents it from
achieving similarly spectacular speedups for smaller collections of very large trees (al-
though even there it runs nearly as fast as Day’s algorithm). A natural question is
whether the embedding can be run in subquadratic time. Given the close connection
between RF distances and the strict consensus tree, another natural question is whether
similar randomized techniques could be used to speed up the computation of consensus
trees.
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