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Abstract. Phylogenetic reconstruction from gene-rearrangement data is attract-
ing increasing attention from biologists and computer scientists. Methods used
in reconstruction include distance-based methods, parsimony methods using se-
quence encodings, and direct optimization. The latter, pioneered by Sankoff and
extended by us with the software suite GRAPPA, is the most accurate approach;
however, its exhaustive approach means that it can be applied only to small
datasets of fewer than 15 taxa. While we have successfully scaled it up to 1,000
genomes by integrating it with a disk-covering method (DCM-GRAPPA), the re-
cursive decomposition may need many levels of recursion to handle datasets with
1,000 or more genomes. We thus investigated quartet-based approaches, which
directly decompose the datasets into subsets of four taxa each; such approaches
have been well studied for sequence data, but not for gene-rearrangement data.
We give an optimization algorithm for the NP-hard problem of computing opti-
mal trees for each quartet, present a variation of the dyadic method (using heuris-
tics to choose suitable short quartets), and use both in simulation studies. We
find that our quartet-based method can handle more genomes than the base ver-
sion of GRAPPA, thus enabling us to reduce the number of levels of recursion
in DCM-GRAPPA, but is more sensitive to the rate of evolution, with error rates
rapidly increasing when saturation is approached.

1 Introduction

Modern techniques can yield the ordering and strandedness of genes for genomes; each
chromosome can then be represented by an ordering of signed genes, where the sign
indicates the strand. Rearrangement of genes under inversion, transposition, and other
operations such as duplications, deletions and insertions, is an important evolutionary
mechanism [7]. Reconstructing phylogenies from gene-order data has been studied in-
tensely since the pioneering papers of Sankoff [2, 23]. Because they capture the com-
plete genome, gene-order data do not suffer from the gene tree vs. species tree problem;
and because rearrangements of genes are rare genomic events [19], gene-order data en-
able the reconstruction of evolutionary events far back in time. Many biologists have
embraced this new source of data in their phylogenetic work [7, 17, 18], while com-
puter scientists are slowly solving the difficult problems posed by the manipulations of
these gene orders [16]. Studies conducted by our group [15, 26, 29–31] confirm that
gene-order data support very accurate reconstructions.
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The main software package for analyzing gene-order data is GRAPPA, based on the
BPAnalysis software of Sankoff and Blanchette [23]. GRAPPA achieved a billion-
fold speed-up over BPAnalysis [15]; it can analyze datasets of 13 genomes in 20
minutes on a laptop. Extensive testing has shown that the trees returned by GRAPPA
are better than those returned by other methods based on gene orders, such as distance-
based methods and parsimony based on encodings [6, 31]. However, since GRAPPA ex-
amines every possible tree, it can only handle small datasets – a 17-taxon analysis would
take a month on today’s most powerful computers. We integrated GRAPPA with DCM,
a divide-and-conquer approach pioneered by Warnow [11], to produce DCM-GRAPPA
[29], which can analyze datasets of up to 1,000 taxa without loss of accuracy.

DCM-GRAPPAworks in three steps: it first decomposes the dataset into overlapping
subproblems (disks), then runs GRAPPA on the subproblems, and finally uses a special-
ized supertree method [20] to build a tree for the original dataset from the trees returned
by GRAPPA for the subproblems. Because the decomposition technique of DCM can
still produce subproblems too large for GRAPPA to handle, we call DCM recursively
until each subproblem size falls below a given threshold. Because the threshold is small
(14), large problems require many levels of recursive decomposition, which is time-
consuming and also risks propagating and amplifying errors in the assembly of the
subtrees. On 1,000 genomes, DCM-GRAPPA needs 6–7 levels of recursion if limited to
disks of at most 14 genomes, but only 2–3 levels if allowed disks of up to 20 genomes.

One can also decompose the set of taxa into the smallest possible subsets for which
meaningful answers exist, namely quartets, sets of four taxa. (Sets of two or three taxa
can produce only one tree, but a quartet can give rise to three distinct unrooted trees.)
While there are many such quartets, their tiny size should make them easy to compute.
If every quartet tree is computed correctly from noiseless data, then there is a single tree
compatible with all

(
n
4

)
resolved quartets and that tree is the true tree [4]; in practice,

of course, many of the resolved quartets are in error and no single tree is compatible
with all resolved quartets. With sequence data, biologists have long used the heuristic
method known as quartet-puzzling [25], while computer scientists have developed sev-
eral theoretical methods, such as quartet cleaning [1, 3, 12] – see [24] for a review and
experimental comparison of these methods. In the case of gene orders, however, opti-
mally resolving a quartet is NP-hard – it includes finding the median of three genomes,
a known NP-hard problem [5], as a special case.

We present algorithmic and experimental results that lead to a reconstruction method
from gene-order data which overcomes some of the problems associated with quar-
tet methods. After some background review and definitions, we describe in Section 3
our exact method to compute optimal quartet trees under breakpoint distances; in Sec-
tion 4.1 we present our experimental studies to find the best methods to resolve the
quartets, as well as our use of the dyadic inference rule (see [10]) to obtain a sufficient
set of quartets from a selected subset of short quartets (inspired from the short-quartet
method [8, 32]); in Section 5, we summarize our experiments on simulated and bi-
ological datasets, the results of which suggest that our method can produce accurate
topologies (much more accurate than neighbor-joining) for datasets of up to 25 taxa
within reasonable time, provided that the genomes are large enough to avoid saturation.



Quartet-Based Phylogeny Reconstruction from Gene Orders 65

2 Definitions and Notation

A quartet is a quadruple of taxa; a quartet tree is an unrooted binary tree for such a
quadruple. Given a quartet {a, b, c, d}, we say that a quartet tree on this set is unresolved
if it is a star (four edges, each touching a leaf) and denote it by (abcd). If the quartet tree
has an internal edge separating two pairs of leaves we say that it is resolved and, if the
pairs are a, b and c, d, denote it by ab | cd. The four possible quartet trees induced by a
quartet are depicted in Figure 1. We will use quartet in lieu of quartet tree or resolved
quartet when the sense is clear.

Quartet tree ab | cd agrees with tree T if all four of its taxa are leaves of T and the
path from a to b in T does not intersect with the path from c to d in T . Equivalently,
ab | cd agrees with a tree if the subtree induced in T by the four-taxon subset {a, b, c, d}
is the quartet tree itself. Quartet ab | cd is in error with respect to the tree T if it does not
agree with T . If QT denotes the set of all quartets that agree with T , then T is uniquely
characterized by QT ; moreover, T can be reconstructed in polynomial time from QT

[8]. (Of course, the set Q of
(
n
4

)
quartets that we can construct is only an approximation

of QT .) In Figure 2, quartet ac | bd would be in error, since it does not appear in QT .
Quartet-based methods operate in two phases. First, they construct a set Q of re-

solved quartets – usually by determining the preferred tree for each of the
(
n
4

)
quar-

tets. Because each dataset has size 4, any phylogenetic method can be used to estimate
the quartet tree, including maximum likelihood and maximum parsimony (see [27]),
neighbor-joining [21], the relaxed four-point method [9], and the ordinal quartet method
[13]. In the second phase, the resolved quartets are used to build a single tree on the full
set of taxa. This second phase is simple when all quartets are compatible, but a chal-
lenge when some of the quartets conflict with others – a common occurrence when
insufficient data are present [24].

3 Inferring Quartet Topologies

We can identify maximally parsimonious quartet trees by examining each of the three
possible trees, assigning gene orders to the two internal nodes so as to minimize the
score (the sum of the lengths of the five edges) of each tree, and returning the tree with
the lowest score. However, identifying such gene orders is NP-hard even for just one
internal node and the simplest distance measures [5].

An easy approach is to use GRAPPA to construct a tree for each quartet; although the
result need not be optimal, our experiments, as well as earlier ones [14], show that op-
timality is reached in most realistic cases. If we limit ourselves to breakpoint distances,

Star (abcd)

a

b d

c

ab | cd

a

c d

b

ac | bd

d b

c

ad | cb

a

b

a

d

c

Fig. 1. The four possible quartet trees for quartet {a, b, c, d}.
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e

ab | ce
ab | de
ac | de
bc | de

a

b

c

d

ab | cd

Fig. 2. An evolutionary tree T and its set QT of induced quartet trees.

we can solve the NP-hard optimization problem directly, using variants of the reduction
to TSP devised by Sankoff and Blanchette [22]; we devised two such variations, which
we call Qtsp and Qedge.

Sankoff’s reduction to TSP can be summarized as follows. Given three genomes
with n genes, we build the complete graph K2n on the 2n vertices g1, −g1, g2, −g2,
. . ., gn, −gn. Edge (g, h) in this graph is assigned a weight as follows: if we have
g = −h, then we set the weight to a large negative value to ensure that (g, h) is part of
any solution, otherwise we set it to 3−adj(g, h), where adj(g, h) is the number of times
that −g and h are adjacent in the given genomes. If s = s1,−s1, s2,−s2, · · · sn,−sn

is the solution to the TSP, then the median of the given genomes is g = s1, s2, · · · , sn.
This result applies to one unknown genome, but we need to identify two such for

quartets. Our first algorithm views the two as forming a pair and remaps the problem
into a universe where pairs form the unit of computation and where a single tour (of
pairs) defines both genomes; our second algorithm retains the original formulation, but
looks for a pair of tours.

3.1 The Qtsp Method

We look for one permutation of size n, each entry of which consists of a pair of genes
(gi, gj). Let the two desired internal genomes be e and f , where genome e is connected
to genomes a, b, and f , and genome f is connected to genomes c, d, and e. Build a
complete graph, here on (2n)2 vertices, each a pair of signed genomes. For each edge
{(gi1, gi2), (gj1, gj2)} in this graph, we set the weight of the edge as follows: if we have
gi1 = gj1 and gi1 = gj1, then we set the weight to a large negative value to ensure that
this edge is part of any solution, otherwise, we set it to 4 − u1(gi1, gj1) − u2(gi2, gj2),
where u1(gi1, gj1) is the number of times −gi1 and gj1 are adjacent in the genomes a
and b and u2(gi2, gj2) is the number of times −gi2 and gj2 are adjacent in the genomes
c and d.

Proposition 1. If s = (s11, s12), (−s11,−s12), · · · , (sn1, sn2), (−sn1,−sn2) is the
solution to the TSP on G, then the optimal internal genomes are e = s11, s21, · · · , sn1

and f = s12, s22, · · · , sn2.

After transforming the problem, we can use the efficient TSP routine of GRAPPA to
search for the optimal solution (after modifying it to introduce one more bucket of costs,
since now the edge costs of interest are 1, 2, and 3, not just 1 and 2). The problem is
that the instance thus created is of size quadratic in the number of genes; combined with



Quartet-Based Phylogeny Reconstruction from Gene Orders 67

the extra bucket of costs, the large instance size makes it difficult to obtain solutions to
sizeable instances.

3.2 The Qedge Method

This method uses the original TSP formulation, of size linear in the number of genes,
but seeks simultaneously to optimize tours in two separate graphs. Let a, b, c, d, e, and
f be as before. We set up two complete graphs on 2n vertices each – one for e and
one for f . For each edge {g, h}, we set its weight as follows: if we have g = −h, we
set the weight to a large negative value to force its inclusion; otherwise, we set it to
2 − u(gh), where u(gh) is the number of times −g and h are adjacent in the genomes
a and b (for an edge in the first graph) or in the genomes c and d (for an edge in the
second graph). Now, when adding an edge to the two tours under construction, we can
either pick different edges from the two graphs, each with the minimum weight in its
own graph, and add one breakpoint between e and f to the total cost; or pick the same
edge in both graphs, even if not locally optimal, thereby saving a breakpoint between
e and f ; our algorithm computes the cost of each choice and picks the choice of lower
cost.

3.3 Experimental Results for Qtsp and Qedge

We ran tests for these two methods and GRAPPA on quartets of 10, 20, 30, 40, and
50 genes under evolutionary rates (the expected numbers of events per edge of the
model tree) of r = 1, 2, 3, 4, and 5. The running times of Qtsp and Qedge are
shown in Figure 3. As expected, Qedge runs much faster than Qtsp; however, its
running time depends strongly on the quartet score, so that it may prove unusable in the
reconstruction of large trees, where many of the quartets will have very large scores.
Both Qtsp and Qedge reconstructed the same optimal quartet trees (except for ties),
which were the same as the model tree in 97% of cases (though their scores were usually
lower than the model tree scores); most of the 3% came from the 10-gene case, which
gets quickly saturated for evolutionary rates above r = 3. GRAPPA did almost as well:
96% of the quartets it returned matched the model tree – and it returned answers in a few
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microseconds. Since reconstructing phylogenies from quartets requires the computation
of a large set of quartets, the running time is critical. Therefore, based on our results,
we chose GRAPPA as the method to resolve the quartets.

4 Phylogenetic Reconstruction from Quartets

The computational challenge of quartet recombination (building a single tree from the
collection of quartet trees) is how to deal with quartet errors. Most optimization prob-
lems related to tree reconstruction from quartets are NP-hard, such as the Maximum
Quartet Compatibility problem [12], which seeks a tree T for a given set of quartet Q
such that |QT ∩Q| is maximized. Various methods have been designed to handle quar-
tet errors. The dyadic-closure method simply issues an error message and quits [10].
The Q∗ method seeks the maximum resolved tree T ′ that obeys Q(T ′) ⊆ Q, a conser-
vative method that generally produces many polytomies [4]. Quartet-cleaning methods
establish a bound on the number of quartet errors around each reconstructed tree edge
[1, 3, 12]. None of these methods produces satisfactory results on sequence data [24]. It
is theoretically possible to produce the true tree by selecting a subset of short quartets
and adding to these further quartets derived according to an inference rule [8], but this
result assumes perfect data and gives no simple method by which to select the subset
of quartets. We thus set out to design a selection rule and investigate its performance,
using the dyadic inference rules [10]:

1. If ab | cd is a valid quartet, so are ba | cd and cd | ab.
2. If ab | cd and ac | de are valid quartets, so are ab | ce, ab | de, and bc | de.
3. If ab | cd and ab | ce are valid quartets, so is ab | de.

4.1 Selecting a Subset of Quartets

Figure 4 shows two possible resolutions for quartet {a, b, c, d}. In the first topology, the
two pairs of genomes {a, b} and {c, d} are far apart from each other, but in the second
topology the two pairs {a, c} and {b, d} are quite close: the first topology is more likely
to be correct, an observation supported by the relaxed four-point method [9]:
Compute pairwise distances among a, b, c, and d; return ab | cd if we have dab +dcd <
min(dac + dbd, dad + dbc), but return a star if all sums are equal. Since computing all(
n
4

)
quartets takes too long, we can use this relaxed four-point method to choose quartets

and reduce the overall running time. After resolving the quartets, we can assign a weight
to each resolved quartet to measure our confidence in that quartet: for example, we can
use the inversion distance between the two internal nodes.

a c

ab | cd

b d

c

ac | bd

a

db

Fig. 4. Two quartet trees; the left has a higher probability of correctness.
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4.2 Fixing Quartet Errors

Although GRAPPA is reliable and although we can pick only quartets of larger weight,
quartet errors still arise, especially when we are forced to select some quartets of low
weight in order to resolve every internal tree edge. We propose a simple new method,
quite distinct from quartet cleaning, to handle errors. Since the quartets are weighted
and since we place more trust in quartets of higher weight, we examine the source of
quartet errors and, whenever two quartets are incompatible, we remove the one with
lower weight.

Starting from a large initial set of resolved quartets only returns us to a version of the
NP-hard problem Maximum Quartet Compatibility. Instead, we proceed incrementally.
We select a high weight threshold and only retain quartets (computed on the fly with
GRAPPA) with weights above that threshold; if we find quartet errors, we remove the
incompatible quartets of lower weight. We then apply the dyadic inference rules to
augment our collection of compatible quartets. Finally, if the resulting set of quartets
fully resolves the tree, we are done (a method like Q∗ will recover the tree), otherwise
we lower the threshold and add to our set the newly eligible quartets. By controlling the
decrease in the weight threshold, we can control the tradeoff between running time and
quality.

Since we do not know the weight of a quartet until we resolve it, but want to avoid
resolving useless quartets, we need a fast method to select quartets to resolve. Given
quartet q = {a, b, c, d}, define the width of q as
qw = max(dab + dcd, dac + dbd, dad + dbc) − min(dab + dcd, dac + dbd, dad + dbc)
As qw increases, the two pairs of genomes move further apart and the weight increases:
hence we can decide which quartets to resolve by comparing their width with the weight
threshold. Even if the threshold is lowered to zero, the set of compatible quartets may
remain inadequate to resolve the tree – in which case we have no choice but to leave
these unresolved polytomies in the output.

5 Experimental Results

If the true tree has an edge defining a bipartition with no equivalent in the reconstructed
tree, that edge is a false negative (FN); conversely, if the reconstructed tree has an edge
with no equivalent in the true tree, that edge is a false positive (FP). FP edges are more
problematic than FN edges.

We generated model tree topologies from the uniform distribution on binary trees,
each with 12, 16 and 20 leaves respectively. On each tree, we evolved signed permuta-
tions of 40, 60 and 80 genes, using evolutionary rates (the expected numbers of events
along a tree edge) of 2, 4, 6. For each combination of parameters, we generated 20 trees;
the final results are averaged on the 20 datasets. We computed quartets using GRAPPA
and built the resulting tree using our algorithms for selecting quartets of high weight,
eliminating conflicting quartets, and expanding the set with the dyadic rules. Figure 5
shows FP and FN rates for datasets with 80 genes. Our method did well, but saturation
(high evolutionary rates leading to ill-defined estimates of distances) causes a small in-
crease in the error rate. This observation is confirmed by our results on datasets with 40
genes, where saturation occurs much sooner and the results are unacceptable, as seen
in Figure 6. It can also be seen in Figure 5 that, with very low evolutionary rates, many
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Fig. 5. Performance of our method on genomes of 80 genes.
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Fig. 6. Performance of our method on genomes of 40 genes.

quartets cannot be satisfactorily resolved (we get equalities and thus star topologies),
leading to poor resolution and many false negatives.

Our tests verified that a small subset of quartets suffices to infer the complete set of
quartets. For datasets with 12 genomes, only 75 quartets (15% of the total) are needed;
with 20 genomes, only 270 quartets (6%) are needed. Our selection rule worked well:
of the quartets selected, fewer than 2% overall were found to be incompatible. Inter-
estingly, the set of resolved quartets produced by our method produced very accurate
reconstructions, while the set produced directly by the relaxed four-point method gave
very poor results.

We compared the results obtained by our method with those obtained by simply
running the (very fast) neighbor-joining (NJ) method on breakpoint and inversion dis-
tance matrices (computed by GRAPPA) for each dataset. For 80-gene genomes, the
Robinson-Foulds rate (the average of FP and FN rates) for NJ varied from 20% (for
r = 2) down to 2–5% (for r = 6, with lower rates for 12 genomes and larger rates
for 20 genomes), compared to a maximum of 10% (for r = 2) down to 1.5–4.5% (for
r = 6) for our method. For 40-gene genomes, as we observed, our method suffers from
saturation effects with 16 or 20 genomes, where its error rate roughly matches that of
NJ (10-20%); for 12 genomes, where saturation is less of a problem, our method again
easily surpasses NJ, with a median error rate of 8.5% compared to NJ’s rate of 14%.

6 Conclusions

We have presented a quartet-based phylogeny reconstruction method for gene-order
data and reported its performance on simulated datasets. Our method produces accurate
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topologies for trees with up to 25 leaves in reasonable time when the datasets do not
exhibit significant saturation. The results we have obtained promise well, especially be-
cause we have many possible avenues of improvement. For instance, we have recently
developed a linear-programming method that can accurately estimate the edge lengths
of fairly small trees [28]; by using this method to estimate the length of quartet edges,
we can further improve our quartet selection, in terms of both speed and accuracy. Such
improvement should also enable us to handle datasets with larger pairwise distances.
We designed this method to extend the range of base methods that can be used in con-
junction with a disk-covering method: thus the limitation to sets of 20–30 taxa is not an
issue, but in fact a potentially significant gain over the direct use of GRAPPA as a base
method, since this last is limited to 12–15 taxa.
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