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Abstract. Phylogenetic reconstruction from gene-rearrangement data has seen
increased attention over the last five years. Existing methods are limited compu-
tationally and by the assumption (highly unrealistic in practice) that all genomes
have the same gene content. We have recently shown that we can scale our recon-
struction tool, GRAPPA, to instances with up to a thousand genomes with no loss
of accuracy and at minimal computational cost. Computing genomic distances
between two genomes with unequal gene contents has seen much progress re-
cently, but that progress has not yet been reflected in phylogenetic reconstruction
methods. In this paper, we present extensions to our GRAPPA approach that can
handle limited numbers of duplications (one of the main requirements for ana-
lyzing genomic data from organelles) and a few deletions. Although GRAPPA
is based on exhaustive search, we show that, in practice, our bounding functions
suffice to prune away almost all of the search space (our pruning rates never fall
below 99.995%), resulting in high accuracy and fast running times. The range of
values within which we have tested our approach encompasses mitochondria and
chloroplast organellar genomes, whose phylogenetic analysis is providing new
insights on evolution.
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1 Introduction

A phylogeny is the evolutionary history of a group of organisms; in most cases, it is
represented (in obviously simplified form) by a tree where the leaves represent current
organisms and the internal nodes represent ancestral organisms, and where the edges
denote evolutionary relationships. Such phylogenies have long been reconstructed on
the basis of morphological data and more recently on the basis of molecular data such
as DNA sequence data.

Biologists can infer the ordering and strandedness of genes on a chromosome, and
thus represent each chromosome by an ordering of signed genes (where the sign in-
dicates the strand). These gene orders can be rearranged by evolutionary events such
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as inversions (also called reversals) and transpositions and, because they evolve slowly
(much more slowly, for instance, than DNA sequences), give biologists an important
new source of data for phylogeny reconstruction (see, e.g., [10, 20, 21, 23]). Appropriate
tools for analyzing such data may help resolve some difficult phylogenetic reconstruc-
tion problems. Developing such tools is thus an important area of research—indeed, the
recent DCAF symposium [27] was devoted to this topic.

A natural optimization problem for phylogeny reconstruction from gene-order data
is to reconstruct an evolutionary scenario with a minimum number of the permitted evo-
lutionary events on the tree. This problem is NP-hard for most criteria—even the very
simple problem of computing the median1 of three genomes with identical gene con-
tent under such models is NP-hard [7, 22]—although the algorithms of Caprara [8] and
of Siepel and Moret [28] have done well in practice (see, e.g., [18]). Indeed, even the
problem of computing the edit distance between two genomes is difficult: for instance,
even with equal gene content and with only inversions allowed, the problem is NP-hard
for unsigned permutations [6].

2 Background

2.1 Genomic distances

Hannenhalli and Pevzner [12] made a fundamental breakthrough by developing an el-
egant theory for signed permutations and providing a polynomial-time algorithm to
compute the edit distance (and the corresponding shortest edit sequence) between two
signed permutations under inversions; Bader et al. [2] later showed that this edit dis-
tance can be computed in linear time. El-Mabrouk [11] extended the results of Hannen-
halli and Pevzner to the computation of edit distances for inversions and deletions and
also for inversions and non-duplicating insertions; she also gave an approximation algo-
rithm with bounded error for computing edit distances in the presence of all three oper-
ations (inversions, deletions, and non-duplicating insertion). Sankoff had proposed the
so-called exemplar strategy [25] (itself an NP-hard problem [4]) to handle duplications:
only one copy of each gene is retained, that which minimizes a breakpoint scoring func-
tion. Experiments we conducted suggested that too much information is lost in reducing
the genomes to a single copy of each gene; working to use all duplicates in the compu-
tation, our group recently extended the work of El-Mabrouk by providing tight approx-
imations for edit distances under arbitrary operations (including duplications) [17].

2.2 Gene-order reconstruction

Extending the computation of genomic distances to genomes with unequal gene con-
tents is but the first step in a reconstruction effort. While it is possible to reconstruct the
tree’s topology on the basis of pairwise distances only (using standard methods such
as neighbor-joining [24]), reconstructing ancestral genomes requires additional steps.
Sankoff had proposed an iterative strategy which he called breakpoint analysis [26],

1 The median of k genomes is a genome that minimizes the sum of the pairwise distances be-
tween itself and each of the k given genomes.



which we subsequently improved by combining it with our fast inversion distance com-
putation and various speedup heuristics to produce the software suite GRAPPA [1, 19].
Other approaches include classical parsimony analysis based on binary encodings of
the genome data [9], fast heuristic uses of the reversal distance for ancestral genome
reconstruction [3], and a recent endeavor based on likelihood maximization [16].

2.3 GRAPPA

GRAPPA is based on Sankoff’s breakpoint analysis. It works by enumerating every
possible tree topology for the given collection of organisms and, for each tree, by recon-
structing the ancestral genomes associated with the internal nodes of the tree, thereby
making it possible to score the tree. The trees of lowest score are then returned. An-
cestral genomes are reconstructed through iterative refinement: on successive traversals
of the tree, each ancestral genome is compared with the median of its three neighbors
and replaced by that median if the tree score is thereby improved. Since computing
the median is itself an NP-hard problem, scoring each tree is computationally intensive
and should be avoided if at all possible. We devised and built into GRAPPA an effec-
tive bounding scheme, which runs in linear time, to prune most candidate trees without
having to score them, using nothing more than the triangle inequality. The resulting
speed-up (of up to a billion-fold on many datasets) enabled us to solve datasets of up to
15 genomes. Most recently, we combined the disk-covering approach of Warnow and
her colleagues [13–15] with GRAPPA, thereby scaling up the approach to up to one
thousand genomes with no loss of accuracy [29].

3 Our Approach to Duplication

We assume a fixed set of genes {g1,g2, ...,gk}. Let di ≥ 1 be the number of copies of gi,
which we assume to be equal for all genomes—unequal numbers of duplicates intro-
duce the possibility of deletions, which we address in a later section. Since the number
of copies for a gene is identical for all genomes, we can define the multiset

{g1, . . . ,g1
︸ ︷︷ ︸

d1

,g2, . . . ,g2
︸ ︷︷ ︸

d2

, · · · ,gk, . . . ,gk
︸ ︷︷ ︸

dk

}

and each genome is then an ordering (circular or linear) of this superset, with each gene
copy given an orientation (sign).

We assume that copies of a gene are rearranged as if they were distinct genes;
by renaming the copies, we then obtain a signed permutation of a set of ∑k

i=1 di dis-
tinct genes. For example, given the ordering (1,2,−3,4,3,5), in which gene 3 ap-
pears twice, we can relabel one of the copies as gene 6, yielding two possible new
orderings: (1,2,−3,4,6,5) and (1,2,−6,4,3,5), both signed permutations of the set
{1,2,3,4,5,6}. We call the collection of Πk

i=1di possible new orderings obtained through
the relabeling of copies as new genes a differentiated genome family. Each genome
in the input data has a family of that size. We can then define the inversion distance
between two genomes with identical duplications as the minimum pairwise inversion
distance between a member of the differentiated family of one genome and a member



of the family of the other genome. Because inversion distances between genomes with
equal gene content can be computed efficiently in linear time, this definition can be
computed quickly for modest numbers of duplications by checking all Πk

i=1d2
i pairs.

To solve the median problem—the central computational problem for GRAPPA—
we can extend this simple idea and consider all triples of elements from the three dif-
ferentiated families, for a total of Πk

i=1d3
i possibilities. This number can quickly grow

uncomfortably large since each median computation is potentially very expensive, so
we need to avoid as many of these computations as possible. We can use the same
bounding strategy at this stage as is used by GRAPPA in bounding the cost of individ-
ual trees: by the triangle inequality, the sum of the distances from the median to its three
neighbors is at least as large as half of the sum of the three pairwise distances between
the three neighbors. (Bryant [5] developed a slightly tighter bound, but it is limited
to breakpoint distances and our previous experimental work [19] showed that it is too
slow and gains too little to be useful in pruning the search space.) We can compute
the pairwise distances in linear time and avoid computing the median of a particular
triple of family members whenever their lower bound exceeds the current best median
score. (We still need to examine all Πk

i=1d3
i triples of family members, but our intended

application, to organellar genomes with only a hundred or so genes and typically fewer
than 10 duplicates in all, yields reasonable values for this product.) Clearly, we will get
better bounding if we can start with some reasonable choice of median; in particular, the
choice of initial family members for the genomes at the leaves has a huge impact on the
pruning rate for median computations. We found the following initialization method to
be very effective: for each leaf genome, we pick that member of the differentiated family
which minimizes the sum of the minimum pairwise distances to the other leaf genomes.

4 Experimental Results for Duplications

We ran simulation tests on trees of 10, 11, and 12 genomes (sizes easily handled by the
basic GRAPPA), under two different models of topologies (uniform random trees and
birth-death trees) and three different rates of evolution (with r, the expected number of
inversions per edge, set to 2, 4, and 8). For a given rate of evolution r, we generate an
actual number of evolutionary events for each edge by using a random integer in the
set {0,1, . . . ,2r}. We then start with the identity permutation on the genes at the root of
the tree topology and evolve permutations down the tree by applying to the parent per-
mutation the number of events prescribed by the edge; each event is an inversion, with
its two endpoints chosen independently and uniformly at random. All genomes have a
total of 100 genes; a duplication is generated by selecting two of the genes at random
and calling them duplicates of each other. We used three scenarios with limited dupli-
cations: (i) one gene is duplicated once; (ii) two genes are duplicated, one once and the
other twice; and (iii) three genes are duplicated, two once and one twice. Overall, then,
we used 54 combinations of parameters; we generated 20 datasets for each combina-
tion and report in the tables below the average value of the 20 runs. We ran all of our
experiments on a 2.4GHz desktop Pentium-4 machine with 1GB of memory running
Linux; running times naturally increased with the number of genomes, but, even at 12



Table 1. Average numbers of edges in error for one duplication: (a) uniform trees, (b) birth-death
trees.

(a)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0 0 0 0.05 0 0
11 0.15 0.20 0 0 0 0.10
12 0.10 0.10 0 0.10 0 0

(b)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0 0 0 0 0 0
11 0 0 0.10 0.10 0 0
12 0.10 0.15 0 0 0 0

Table 2. Average numbers of edges in error for two duplications (2,3): (a) uniform trees, (b)
birth-death trees.

(a)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0.20 0.20 0 0 0 0
11 0.10 0.10 0 0 0 0.10
12 0 0 0.10 0.10 0 0

(b)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0.05 0.15 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0.20

Table 3. Average numbers of edges in error for three duplications (2,2,3): (a) uniform trees, (b)
birth-death trees.

(a)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0.10 0.10 0 0 0 0
11 0 0 0 0 0 0.05
12 0.05 0.20 0 0 0 0.10

(b)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0.10 0.10 0 0 0 0
11 0 0 0 0.10 0 0
12 0 0.05 0 0 0.10 0.10

genomes (cases in which GRAPPA must examine half a billion trees), the running time
never exceeded five minutes.

Tables 1 through 3 show the average numbers of false positive (FP) and false nega-
tive (FN) edges in the reconstructed trees when compared to the model trees generated
by the simulations. A false negative arises when the reconstructed tree does not include
an edge present in the model tree; conversely, a false positive arises when the recon-
structed tree includes an edge not present in the model tree. The reconstructed trees are
not always binary (fully resolved), because some of their edges may have length zero;
edges of zero length are removed and thus may give rise to false negatives—unless the
true tree itself had edges of zero length, something that does occur at lower evolutionary
rates. Observe that both FN and FP remain extremely low, often even zero, indicating
high accuracy in the reconstruction, a consequence, we conjecture, of matching all du-
plicates in the reconstruction process.

Tables 4 and 5 show the pruning rates for the median computations and for the tree
enumeration. The latter shows very high pruning rates: in most cases fewer than one
tree in 100,000 remains to be scored. Pruning rates for medians are also excellent: we
only rarely have to compute more than a couple of medians per node.



Table 4. Pruning rates (percentage of eliminated problems) for uniform trees.

(a) one duplication

r = 2 r = 4 r = 8
n Medians Overall Medians Overall Medians Overall
10 85.4 100 85.0 100 85.5 99.999
11 85.5 100 85.1 100 85.6 100
12 82.1 100 83.6 100 82.9 100

(b) two duplications (2,3)

n Medians Overall Medians Overall Medians Overall
10 99.4 99.999 99.4 100 99.5 99.999
11 99.0 99.999 99.1 100 98.7 100
12 98.8 100 98.8 100 99.2 100

(v) three duplications (2,2,3)

n Medians Overall Medians Overall Medians Overall
10 99.8 99.999 99.7 100 99.8 100
11 99.8 99.999 99.8 100 99.6 100
12 99.8 100 99.8 100 99.5 100

Table 5. Pruning rates (percentage of eliminated problems) for birth-death trees.

(a) one duplication

r = 2 r = 4 r = 8
n Medians Overall Medians Overall Medians Overall
10 85.1 99.999 85.6 99.999 79.8 99.999
11 85.5 99.999 80.2 99.999 74.5 100
12 85.6 100 85.5 99.999 84.0 100

(b) two duplications (2,3)

n Medians Overall Medians Overall Medians Overall
10 98.9 99.995 99.0 99.998 99.3 99.999
11 99.3 100 98.9 100 99.0 99.999
12 99.3 100 99.2 100 98.7 100

(c) three duplications (2,2,3)

n Medians Overall Medians Overall Medians Overall
10 99.6 100 99.8 100 99.8 99.999
11 99.8 100 99.6 100 99.5 100
12 99.8 100 99.8 100 99.7 100

5 Our Approach to Deletions

For simplicity, we now consider genomes without duplications to present our approach
to deletions. (The two strategies can easily be combined to handle both duplications
and deletions, albeit at the usual multiplicative cost of cases.) We need to devise strate-
gies for computing pairwise distances between two genomes, for computing the median
of three genomes, and for initializing ancestral labels at internal nodes. In developing
these strategies, we will ignore “silent” changes (such as a gene loss followed by an in-
sertion that restores the same gene). We will also assume that the probability of a gene
loss is small enough that, when faced with the choice of assigning the loss to a parent
or assigning it to both children, we always choose to assign it to the parent, since the
probability of that one loss is some small p, but the probability of its being lost within
the same time frame by both children is an infinitesimally small p2.



Assume G1 has N genes and G2 has N −m genes, i.e., G2 lost m genes. There are
N ×N −1×·· · ×N −m, or roughly Nm different ways to equalize the two gene con-
tents; using the same approach as for duplications, we define the distance between G1

and G2 to be the smallest pairwise inversion distance between G1 and the various “com-
pletions” of G2. In fact, we could directly use the method of El-Mabrouk [11] to solve
this problem exactly in polynomial time, but we use the brute-force paradigm because
it extends easily to the computation of medians, something that El-Mabrouk’s approach
does not. Consider now the computation of the median. For simplicity, assume we have
m = 1—our reasoning easily extends to arbitrary values of m. Given three genomes G1,
G2, and G3, each of which could have lost a given gene, we face three cases:

– All three genomes lost that gene or none did. Then the median is in the same situa-
tion and the computation proceeds as currently implemented in GRAPPA.

– One genome, say G1, lost that gene, but the other two still have it. Then the median
retained the gene and thus a single loss event took place between the median and
G1. This gives us N choices of completion for G1—we compute the median for each
choice (if needed, since we can prune some choices through the same bounding
strategy used for duplications).

– Two genomes lost that gene—say that only G1 retains it. Then the median also lost
that gene, so that we again have a single loss event, between the median and G1.
We remove that gene from G1 and compute the median in the usual manner.

Thus we can compute the median in the case of a one-gene loss with at most N regu-
lar median computations; in the case of an m-gene loss, the number of regular median
computations is on the order of Nm.

Before we can apply the median computations, however, we need to initialize the
internal nodes of a tree with ancestral genomes. The first step in this initialization is
to determine the gene content at each node. We accomplish this task using the same
principle of always preferring a single loss event to a pair of concurrent loss events.
Specifically, we run the following iterative algorithm:

– Identify all sibling pairs of leaves.
– For each sibling pair of leaves, assign to their parent the larger of the two gene

contents—corresponding to a single loss event from the parent to the smaller child.
– Remove all processed leaves (thus turning their parents into leaves) and repeat.

6 Experimental Results for Deletions

Our test simulations are structured in the same manner as those we used for dupli-
cations. We tested for minimal gene loss (only two of the genomes lost a gene) and
widespread gene loss (half of the genomes lost that gene). Once again, we ran 20
datasets for each combination of parameters and we report the average of the runs.
Tables 6 and 7 show the average numbers of false positive and false negative edges in
our reconstructions. As in the case of duplications, the reconstructions are remarkably
accurate. Tables 8 and 9 give the corresponding pruning rates. The rates remain ex-
tremely high for tree pruning, but the simple triangle inequality proves fairly weak for
pruning median computations.



Table 6. Average numbers of edges in error for one missing gene in two genomes: (a) uniform
trees, (b) birth-death trees.

(a)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0.10 0.10 0 0 0 0
11 0.10 0.15 0 0 0.05 0.10
12 0.20 0.20 0 0 0 0

(b)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0 0.10 0 0 0 0.05
11 0 0 0 0.10 0 0
12 0 0.05 0 0 0 0

Table 7. Average numbers of edges in error for one missing gene in half the genomes: (a) uniform
trees, (b) birth-death trees.

(a)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0 0 0 0 0 0
11 0.10 0.10 0 0 0.10 0.10
12 0 0 0 0.10 0 0

(b)

r = 2 r = 4 r = 8
n FP FN FP FN FP FN

10 0.10 0.10 0 0.05 0 0.10
11 0 0 0 0 0 0
12 0.10 0.15 0 0 0.10 0.10

Table 8. Pruning rates (percentage of eliminated problems) for uniform trees.

gene lost in two genomes

r = 2 r = 4 r = 8
n Medians Overall Medians Overall Medians Overall
10 71.7 99.999 62.5 100 64.1 99.999
11 72.2 99.999 57.4 100 66.8 100
12 68.6 100 65.2 100 60.5 100

gene lost in half the genomes

n Medians Overall Medians Overall Medians Overall
10 57.6 99.999 73.4 99.999 63.3 100
11 77.9 100 52.9 100 55.8 100
12 78.5 100 62.1 100 65.6 100

Table 9. Pruning rates (percentage of eliminated problems) for birth-death trees.

gene lost in two genomes

r = 2 r = 4 r = 8
n Medians Overall Medians Overall Medians Overall
10 70.8 99.999 53.6 100 53.8 99.999
11 58.2 100 64.8 100 62.6 100
12 72.5 100 54.5 100 55.4 100

gene lost in half the genomes

n Medians Overall Medians Overall Medians Overall
10 68.9 100 65.7 100 51.2 99.999
11 68.8 99.999 51.2 100 74.6 100
12 78.5 99.999 62.6 100 67.8 100

7 Conclusions

We have presented a simple approach to the handling of a limited number of gene du-
plications and gene losses in the reconstruction of phylogenies from gene-order data.
While the exhaustive nature of our approach limits its applicability to a fairly modest



number of duplication and deletion events, it does allow us to analyze many datasets of
organellar genomes, particularly chloroplast and mitochondria genomes, which are of
special interest to evolutionary biologists. The success of our approach on such datasets
also opens up the possibility that it could be scaled up through some type of divide-and-
conquer paradigm, much in the manner in which we successfully scaled up GRAPPA,
usually limited to 13–14 genomes, to one thousand genomes through the application of
the sophisticated divide-and-conquer approach known as disk-covering.
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