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Whole-genome phylogenetic studies require various sswtphylogenetic signals to produce an
accurate picture of the evolutionary history of a group af@mees. In particular, sequence-based
reconstruction will play an important role, especially @solving more recent events. But using
sequences at the level of whole genomes means working withlage amounts of data—large
numbers of sequences—as well as large phylogenetic destaso that reconstruction methods
must be both fast and robust as well as accurate. We studyctheaay, convergence rate, and
speed of several fast reconstruction methods: neighlimingy Weighbor (a weighted version of
neighbor-joining), greedy parsimony, and a new phylogemetonstruction method based on disk-
covering and parsimony search (DCM-NJ+MP). Our study usémnsive simulations based on
random birth-death trees, with controlled deviations fraltnametricity. We find that Weighbor,
thanks to its sophisticated handling of probabilities peuforms other methods for short sequences,
while our new method is the best choice for sequence lendinaeal 00. For very large sequence
lengths, all four methods have similar accuracy, so thasgeed of neighbor-joining and greedy
parsimony makes them the two methods of choice.

1 Introduction

Most phylogenetic reconstruction methods are designe taskd on biomolecular
(i.e., DNA, RNA, or amino-acid) sequences. With the advémeme maps for many
organisms and complete sequences for smaller genomes\ghnbme approaches
to phylogeny reconstruction are now being investigatedartter to produce accurate
reconstructions for large collections of taxa, we will midstly need to combine both
approaches—each has drawbacks not shared by the otheusBeshole genomes
will yield large numbers of sequences, the sequence-bdgedtams will need to
be very fast if they are to run within reasonable time boufidey will also have to
accommodate datasets that include very distant pairs af tdany of the sequence-
based reconstruction methods used by biologists (maxiniketiHood, parsimony
search, or quartet puzzling) are very slow and unlikely talesaip to the size of
data generated in whole-genome studies. Faster methosts(such as the popu-
lar neighbor-joining method), but most suffer from accyrpmblems, especially for
datasets that include distant pairs.
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In this paper, we examine in detail the performance of fost faconstruction
methods, one of which we recently proposed (DCM-NJ+MP), tinele others that
have been used for at least a few years by biologists (nefgbbong, Weighbor, and
greedy parsimony). We ran extensive simulation studiesgusindom birth-death
trees (with deviations from ultrametricity), using abdutge months of computation
on nearly 300 processors to conduct a thorough explorafiamioh parameter space.
We used four principal parameters: model of evolution (§u®antor and Kimura
2-Parameter+Gamma), tree diameter (which indirectly wagt rate of evolution),
sequence length, and number of taxa. We find that Weighbors(fall sequence
lengths) and our DCM-NJ+MP method (for longer sequences)tze methods of
choice, although each is considerably slower than the otiemethods in our study.
Our data also enables us to report on the sequence-lengiineegnts of the various
methods—an important consideration, since biologicalisages are of fixed length.

2 Background

Methods for inferring phylogenies are studied (both thécadly and empirically)
with respect to the topological accuracy of the inferregdreSuch studies evaluate
the effects of various model conditions (such as the segqubmgth, the rates of
evolution on the tree, and the tree “shape”) on the perfoomaithe methods.

The sequence-length requiremenfta method is the sequence length needed by
the method in order to reconstruct the true tree topologk Wigh probability. Ear-
lier studies established analytical upper bounds on theeseg length requirements
of various methods (including the popular neighbor-jogtimethod). These studies
showed that standard methods, such as neighbor-joiniogyee the true tree (with
high probability) from sequences of lengths that are exptiakin the evolutionary
diameter of the true tree. Based upon these studies, we defiparameterization of
model trees in which the longest and shortest edge lenggtfsxac?-3, so that the se-
guence length requirement of a method can be expressed ast®fuof the number
of taxa,n. This parameterization led us to defifast-convergingnethods, methods
that recover the true tree (with high probability) from segces of lengths bounded
by a polynomial inn. once f andg, the minimum and maximum edge lengths, are
bounded. Several fast-converging methods were developed. We and others
analyzed the sequence length requirement of standard dgteach as neighbor-
joining (NJ), under the assumptions thfaandg are fixed. These studi&d showed
that neighbor-joining and many other methods can recowetrie tree with high
probability when given sequences of lengths bounded by etiftmthat grows expo-
nentially inn.

We recently initiated studies on a different parameteioratf the model tree
space, where we fix the evolutionary diameter of the tree enthé number of taxa
vary”. This parameterization, suggested to us by J. Huelsenakakis us to examine



the differential performance of methods with respect taxétasampling” strategies
10 n this case, the shortest edges can be arbitrarily stwdiniy the method to re-
quire unboundedly long sequences in order to recover tieseest edges. Hence, the
sequence-length requirements of methods cannot be bouHdeever, for a natural
class of model trees, which includes random birth-deatstreve can assumg =
©(1/n). In this case even simple polynomial-time methods convergiee true tree
from sequences whose lengths are bounded by a polynomial kurthermore, the
degrees of the polynomials bounding the convergence ratesighbor-joining and
the fast-converging methods are identical—they differyamith respect to the lead-
ing constants. Therefore, with respect to this paramettoia, there is no significant
theoretical advantage between standard methods and theofagerging methods.

In a previous study we evaluated NJ and DCM-NJ+MP with respect to their
performance on simulated data, obtained on random birdithdeees with bounded
deviation from ultrametricity. We found that DCM-NJ+MP dorated NJ throughout
the parameter space we examined and that the differenceasgen as the deviation
from ultrametricity or the number of taxa increased.

In an unpublished study, Bruret al.'! compared Weighbor with NJ and BioNJ
12 as a function of the length of the longest edge in the true treiag random birth-
death trees of 50 taxa, deviated from the molecular clock bitiptying each edge
length by a random number drawn from an exponential digichuand using the
Jukes-Cantor (JC) model of evolution. They found that Weagtoutperformed the
other methods for medium to large values of the longest eligiewas inferior to
them for small values—a finding we can confirm only for largemiers of taxa. At
last year's PSB, Bininda-Edmonds et 'dlpresented a study of Greedy Parsimony
(which uses a single random sequence of addition and notbeavepping) in which
they used very large random birth-death trees (up to 1084 tdeviated from the
molecular clock, and with sequences evolved under the Kan2dgparameter (K2P)
model. Unsurprisingly, they found that scaling and accye at odds: the lower
the accuracy level, the better the sequence length scaling.

3 Basics
3.1 Model Trees

The first step of every simulation study for phylogenetiorstruction methods is to
generatenodel treesSequences are then evolved down these trees, the leafisegue
are fed to the reconstruction methods under study, and toms&ucted trees com-
pared to the original model tree.

In this paper, we use random birth-death trees witleaves as our underlying
distribution. These trees have a natural length assigned¢b edge—namely, the
time ¢ between the speciation event that began that edge and the(etgch could
be either speciation or extinction) that ended that edged-tams are inherently ul-



trametric. In all of our experiments we modified each edggtlero deviate from
this restriction, by multiplying each edge by a random numtithin a rangd1/c, c|,
where we set, thedeviation factoyto be4.

3.2 Models of Evolution

We use two models of sequence evolution: Jhkes-Canto(JC) model* and the
the Kimura 2-Parameter+Gamm&2P+Gamma) modeP. In both models, a site
evolves down the tree under the Markov assumption; in the d@einall nucleotide
substitutions (that are not the identity) are equally lkealo only one parameter is
needed, whereas in the K2P model substitutions are pagiimto two classes (again
other than identity)transitions which substitute a purine (adenine or guanine) for a
purine or a pyrimidine (cytosine or thymidine) for a pyrinmd; andtransversions
which substitute a purine for a pyrimidine or vice versa. K& model has a pa-
rameter which indicates the transition/transversiororafie set this ratio to 2 in our
experiments. Under either model, each edge of the treeigneska value\(e), the
expected number of times a random site on this edge will ahéagucleotide.

It is often assumed that the sites evolve identically ancprechdently (i.i.d.)
down the tree. However, we can also assume that the sitesdiféexent rates of
evolution, drawn from a known distribution. One populanasption is that the rates
are drawn from a gamma distribution with shape parametamich is the inverse of
the coefficient of variation of the substitution rate. We use 1 for our experiments
under K2P+Gamma.

3.3 Phylogenetic Reconstruction Methods

Neighbor Joining. Neighbor-Joining (NJJ is one of the most popular distance-
based methods. NJ takes a distance matrix as input and swtpuee. For every
two taxa, it determines a score, based on the distance matreach step, the algo-
rithm joins the pair with the minimum score, making a subtrd®se root replaces
the two chosen taxa in the matrix. The distances are reedémlto this new node,
and the “joining” is repeated until only three nodes remainese are joined to form
an unrooted binary tree.

Weighted Neighbor Joining. Weighbor'6, like NJ, joins two taxa in each iteration;
the pairs of taxa are chosen based on a criterion that engadikelihood function
on the distances, which are modeled as correlated Gaussidom variables with
different means and variances, computed under a prokabitiedel of sequence
evolution. Then, the “joining” is repeated until only threedes remain. These are
joined to form an unrooted binary tree.

DCM-NJ+MP. The DCM-NJ+MP method is a variant of a provably fast-coniregg
method that has performed very well in previous stutfietn these simulation stud-
ies, DCM-NJ+MP outperformed, in terms of topological aemy; both the provably
fast converging DCN-NJ (of which it is a variant) and NJ. We briefly describe this



method now. Let/;; be the distance between taxand;.

e Phase 1:For eachq € {d;;}, compute a binary tre&,, by using the Disk-
Covering Method, followed by a heuristic for refining the resultant tree iato
binary tree. Letl’ = {T, : ¢ € {d;}}.

e Phase 2:Select the tree frorl which optimizes the parsimony criterion.

If we consider all(}) thresholds in Phase 1, DCM-NJ+MP takesn®) time, but,

if we consider only a fixed number of thresholds, it take®)(pn?) time. In our
experiments, we considered onl9 thresholds, so that the running time of DCM-
NJ+MP isO(n?).

Greedy Maximum Parsimony. The maximum parsimony method that we use in
our study (and that was used by Bininda-Edmoeids.'3) is not, strictly speaking, a
parsimony search: for the sake of speed, it uses no brangipgwvggat all and simply
adds taxa to the tree one at a time following one random orgefithe taxa.

3.4 Measures of Accuracy

Since all the inferred trees are binary we use Rubinson-Fould¢RF) distancé?®
which is defined as follows. Every edgén a leaf-labeled tre@ defines a biparti-
tion 7. on the leaves (induced by the deletiorepfand hence the treE is uniquely
encoded by the s&t(T) = {m. : e € E(T)}, whereE(T) is the set of all internal
edges ofl". If T is a model tree an@” is the tree obtained by a phylogenetic recon-
struction method, then the setdlise Positivess C(T’) — C(T') and the set oFalse
Negativess C(T) — C(T"). The RF distance is then the average of the number of
false positives and the false negatives. We plotRkeratesin our figures, which are
obtained by normalizing the RF distance by the number oftireieedges in a fully
resolved tree for the instance. Thus, the RF rate variesds#t\® and 1 (or 0% and
100%). Rates below 5% are quite good, but rates above 20%haceeptably large.

4 Our Experiments

In order to obtain statistically robust results, we follaltbe advice of*2° and used
a number ofuns each composed of a numbertnéls (atrial is a single comparison),
computed a mean outcome for each run, and studied the meantaanathrd deviation
of these runs. We used 20 runs in our experiments. The sthndaration of the
mean outcomes in our studies varied, depending on the nurfikeexa: the standard
deviation of the mean on 10-taxon trees is 0.2 (which is 2086gghe possible values
of the outcomes range from 0 to 1), on 25-taxon trees is 0.icfwik 10%), whereas
on 200 and 400-taxon trees the standard deviation rangeddrol to 0.04 (which is
between 1% and 4%). We graph the average of the mean outcomtbe fruns, but
omit the standard deviation from the figures.
We ran our studies on random birth-death trees generatad the r8$! soft-

ware package. These trees have diameter 2 (height 1); im tradtain trees with



other diameters, we multiplied the edge lengths by factbés@b, 0.1, 0.25 and 0.5,
producing trees with diameters of 0.1, 0.2, 0.5 and 1.0 getsely. To deviate these
trees from ultrametricity, we set the deviation factor, td (see Section 3). The re-
sulting trees have diameters at moésimes the original diameters, and have expected
diameters of 0.2, 0.4, 1.0 and 2.0. We generated such randmielrtrees with 10,
25, 50, 100, 200, and 400 leaves, 20 trees for each comhiraftetiameter and num-
ber of taxa.We then evolved sequences on these trees usingadels of evolution,
JC and K2P+Gamma (we chose= 1 for the shape parameter and set the transi-
tion/transversion ratio to 2). We used a fix fa¢tasf 1 for distance correction. The
sequence lengths that we studied are 50, 100, 250, 500, HA0AO0.

We used the prograi®eq- Gen 2?3 to generate a DNA sequence for the root and
evolve it through the tree under the JC and the K2P+Gamma Ismodievolution.
The software for DCM-NJ was written by Daniel Huson. We usadP* 4.024 for
the greedy MP method, and the Weighbor 1.2 software pacRage

The experiments were run over a period of three months ontd@fudifferent
processors, all Pentiums running Linux, including the p28eessor SCOUT cluster
at UT-Austin.

To generate the graphs that depict the scaling of accuradjnearly interpolated
the sequence lengths required to achieve certain accueaels ffor fixed numbers of
taxa, and then, using the interpolation, computed the semulength, as a function
of the number of taxa, that are required to achieve fixed §pecicuracy levels (ones
that are of interest).

5 Resultsand Discussion

5.1 Speed

Because we are studying methods that will scale to largeset@tdlarge numbers of
taxa and long sequences), speed is of prime importancee Tagthows the running
time of our various methods on different instances. Notevéry high speed and
nearly perfect linear scaling of Greedy Parsimony. NJ iskmto scale with the cube
of the number of taxa; in our experiments, it scales sligh#éjter than that. DCM-

Table 1: The running times of NJ, DCM-NJ+MP, Weighbor, and&gty MP (in seconds) for fixed sequence
length (500) and diameter (0.4)

[ Taxa] NJ [ DCM-NJ+MP [ Weighbor [ Greedy MP |

10 0.01 1.82 0.03 0.01
25 0.02 9.12 0.37 0.02
50 0.06 21.3 3.56 0.05
100 | 0.37 64.25 44.93 0.10
200 2.6 470.31 352.48 0.25
400 | 20.13 5432.46 4077.81 0.73




NJ+MP scales exactly as NJ, but runs approximately 200 tim@e slowly. Finally,
Weighbor scales somewhat more poorly—the figures in the adicate scaling that
is supercubic. These figures make it clear that most reakouialasets (up to a
few thousand taxa) can be processed by any of these methageeially with the
help of cluster computing, but also that very large data@€t900 taxa or more) will
prove too costly for Weighbor and perhaps also DCM-NJ+Mme@t in their current
implementations).

5.2 Sequence-Length Requirements

We can sort our experimental data in terms of accuracy andllfdatasets on which
an accuracy threshold is met, count, for each fixed numbead, tthe number of
datasets with a given sequence length, thereby enabling pkt the average se-
guence length needed to guarantee a given maximal error\Mgeshow such plots
for two accuracy values in Figure 1: 70% and 85%. Larger \sabf@ccuracy cannot
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Figure 1: Sequence length requirements under the K2P+Gamnudal as a function of the number of taxa

be plotted reliably, since they are rarely reached undecbalienging experimental
conditions. The striking feature in these plots is the diffece between the two NJ-
based methods (NJ and Weighbor) and the methods using emsi@CM-NJ+MP
and Greedy Parsimony): as the number of taxa increasespitmeif require longer
and longer sequences, growing linearly or worse, whiledtterd exhibit only modest
growth. The divide-and-conquer strategy of DCM-NJ+MP paffdy letting its NJ
component work only on significantly smaller subsets of tax#fectively shifting
the graph to the left—and completing the work with a methoargpnony) that is
evidently much less demanding in terms of sequence lendibse that the curves
are steeper for the higher accuracy requirement: as theamyckeeps increasing, we
expect to see supralinear, indeed possibly exponentaingc



5.3 Accuracy
We studied accuracy (in terms of the RF rate) as a functionehtimber of taxa, the
sequence length, and the diameter of the model tree, vaoyia®f these parameters
at a time. Because accuracy varies drastically as a funofidime sequence length
and the number of taxa, the plots given in this section hafferdnt vertical scales.
For fixed sequence lengths and fixed diameters, we find, unsingly, that the
error rate of all methods increases as the number of taxaases, although the in-
crease is very slow (see Figures 2 and 3, but note the logddthcaling on the
z-axis). Weighbor indeed outperforms NJ, but DCM-NJ+MP eutprms the other
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Figure 2: Accuracy as a function of the number of taxa undeKBP+Gamma model for expected diameter
(0.4) and two sequence lengths

three methods, especially for larger trees—unless theesegs are very short, in
which case Weighbor dominates.

If we vary sequence length for a fixed number of taxa and fixeeldiameter, we
find that the error rate decreases exponentially with theesgze length (Figure 4).
From this perspective as well, DCM-NJ+MP dominates theratiethods, more ob-
viously so for larger trees. Interestingly, NJ is the worstinod across almost the
entire parameter space.

Finally, if we vary the diameter (which varies the rate of letion) for a fixed
number of taxa and a fixed sequence length, we find an init@kase in accu-
racy (due to the disappearance of zero-length edges)wetldy a definite decrease
(Figure 5). The decrease in accuracy is steeper with inicrgasameter than what
we observed with increasing number of taxa—and continusfigpens. (At larger
diameters—not shown, as we approach saturation, the et®m@approaches unity.)
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Figure 3: Accuracy as a function of the number of taxa undeKBP+Gamma model for expected diameter
(2.0) and two sequence lengths
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Figure 4: Accuracy as a function of the sequence length utiteiK2P+Gamma model for expected
diameter (2.0) and two numbers of taxa

The dominance of DCM-NJ+MP is once again evident. Compayihgnd Weighbor,
we can see that NJ is actually marginally better than Weighbtow diameters, but
Weighbor clearly dominates it at higher diameters—the tlopes are quite distinct.



—— N —_— NJ
------ @i DCM=NJ+MP S @ e DCM-NJ+MP
........ teseneess Wel ghbor tessmssitesnesss el ghbor
———————— MP ———————— MP

0.3 0.3

Avg RF
Avg RF

0.1

0.1

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 L.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 L.6 1.8 2.0
Dlameter Dlameter

(a) 100 taxa (a) 400 taxa
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5.4 The Influence of the Model of Sequence Evolution

We reported all results so far under the K2P+Gamma mode| doky to space lim-
itations. However, we explored performance under the JBe§hCantor) model
as well. The relative performance of the methods we studiasl the same under
the JC model as under the K2P+Gamma model. However, thraighe experi-
ments, the error rate of the methods was lower under the J&Infosing the JC
distance-correction formulas) than under the K2P+Gammdetnaf evolution (us-
ing the K2P+Gamma distance-correction formulas). Thishinie expected for the
Weighbor method, which is optimized for the JC model, buidsas easily explained
for the other methods. Figure 6 shows the error rate of NJewstof diameter 0.4
under the two models of evolution. NJ clearly does bettereutide JC model than
under the K2P+Gamma model; other methods result in similares. Correlating
the decrease in performance with specific features in theehi®d challenge, but the
results clearly indicate that experimentation with vasiowodels of evolution (beyond
the simple JC model) is an important requirement in any study

6 Conclusion

In earlier studies we presented the DCM-NJ+MP method andetithat it outper-
formed the NJ method for random trees drawn from the unifastridution on tree
topologies and branch lengths as well as for trees drawn éramre biologically re-
alistic distribution, in which the trees are birth-deatles with a moderate deviation
from ultrametricity. Here we have extended our result tdude the Weighbor and
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Greedy Parsimony methods. Our results confirm that the acgwf the NJ method
may suffer significantly on large datasets. They also intditt@at Greedy Parsimony,
while very fast, has mediocre to poor accuracy, while Weggtdnd DCM-NJ+MP
consistently return good trees, with Weighbor doing beiteshorter sequences and
DCM-NJ+MP doing better on longer sequences. Among intergsfuestions that
arise are: (i) is there a way to conduct a partial parsimomycsethat scales no
worse than quadratically (and might outperform DCM-NJ+®IH}) would a DCM-
Weighbor+MP prove a worthwhile tradeoff? (iii) can we makeqtitative statements
about the accuracy achievable by any method (not just orfeosttunder study) as a
function of some of the model parameters?
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