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We report on our progress in reconstructing phylogenies from gene-order data.

We have developed polynomial-time methods for estimating genomic distances that

greatly improve the accuracy of trees obtained using the popular neighbor-joining

method; we have also further improved the running time of our GRAPPA software

suite through a combination of tighter bounding and better use of the bounds. We

present new experimental results (that extend those we presented at ISMB’01 and

WABI’01) that demonstrate the accuracy and robustness of our distance estima-

tors under a wide range of model conditions. Moreover, using the best of our dis-

tance estimators (EDE) in our GRAPPA software suite, along with more sophisti-

cated bounding techniques, produced spectacular improvements in the already huge

speedup: whereas our earlier experiments showed a one-million-fold speedup (when

run on a 512-processor cluster), our latest experiments demonstrate a speedup of one

hundred million. The combination of these various advances enabled us to conduct

new phylogenetic analyses of a subset of the Campanulaceae family, confirming

various conjectures about the relationships among members of the subset and con-

firming that inversion can be viewed as the principal mechanism of evolution for

their chloroplast genome. We give representative results of the extensive experi-

mentation we conducted on both real and simulated datasets in order to validate and

characterize our approaches.
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1. INTRODUCTION

Genome rearrangements. Modern laboratory techniques can yield the ordering and
strandedness of genes on a chromosome, allowing us to represent each chromosome by
an ordering of signed genes (where the sign indicates the strand). Evolutionary events
can alter these orderings through rearrangements such as inversions and transpositions,
collectively called genome rearrangements. Because these events are rare, they give us
information about ancient events in the evolutionary history of a group of organisms. In
consequence, many biologists have embraced this new source of data in their phylogenetic
work [16, 26, 27, 29]. Appropriate tools for analyzing such data remain primitive when
compared to those developed for DNA sequence data; thus developing such tools is be-
coming an important area of research, as attested by recent meetings on this topic [14, 15].

Optimization problems. A natural optimization problem for phylogeny reconstruction
from gene-order data is to reconstruct an evolutionary scenario with a minimum number of
the permitted evolutionary events on the tree—what is known as a most parsimonious tree.
Unfortunately, this problem is NP-hard for most criteria—even the very simple problem of
computing the median of three genomes under such models is NP-hard [9, 28]. However,
because suboptimal solutions can yield very different evolutionary reconstructions, exact
solutions are strongly preferred over approximate solutions (see [33]). Moreover, the rel-
ative probabilities of each of the rearrangement events (inversions, transpositions, and in-
verted transpositions) are difficult to estimate. To overcome the latter problem, Blanchette
et al. [5] have proposed using the breakpoint phylogeny, the tree that minimizes the total
number of breakpoints, where a breakpoint is an adjacency of two genes that is present
in one genome but not in its neighbor in the tree. Note that constructing the breakpoint
phylogeny remains NP-hard [7].

Methods for reconstructing phylogenies. Blanchette et al. developed the BPAnalysis
[31] software, which implements various heuristics for the breakpoint phylogeny. We reim-
plemented and extended their approach in our GRAPPA [17] software, which runs several
orders of magnitude faster thanks to algorithm engineering techniques [24]. Other heuris-
tics for solving the breakpoint phylogeny problem have been proposed [8, 12, 13].

Rather than attempting to derive the most parsimonious trees (or an approximation
thereof), we can use existing distance-based methods, such as neighbor-joining (NJ) [30]
(perhaps the most popular phylogenetic method), in conjunction with methods for defining
leaf-to-leaf distances in the phylogenetic tree. Leaf-to-leaf distances that can be computed
in linear time currently include breakpoint distances and inversion distances (the latter
thanks to our new algorithm [3]). We can also estimate the “true” evolutionary distance
(or, rather, the expected true evolutionary distance under a specific model of evolution) by
working backwards from the breakpoint distance or the minimum inversion distance, an
approach suggested by Sankoff [32] and Caprara [10] and developed by us in a series of
papers [23, 34, 35], in which we showed that these estimators significantly improve the
accuracy of trees obtained using the neighbor-joining method.

Results in this paper. This paper reports new experimental results on the use of our dis-
tance estimators in reconstructing phylogenies from gene-order data, using both simulated
and real data. We present several new results (the first two are extensions of the results
we presented at ISMB’01 [23] and the third an extension of the results we presented at
WABI’01 [34]):
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• Simulation studies examining the relationship between the true evolutionary distance
and our distance estimators. We find that our distance estimators give very good predictions
of the actual number of events under a variety of model conditions (including those that
did not match the assumptions).

• Simulation studies examining the relationship between the topological accuracy of
neighbor-joining and the specific distance measure used: breakpoint, inversion, or one of
our three distance estimators. We find that neighbor-joining does significantly better with
our distance estimators than with the breakpoint or inversion distances.

• A detailed investigation of the robustness of neighbor-joining using our distance esti-
mators when the assumed relative probabilities of the three rearrangement events are very
different from the true relative probabilities. We find that neighbor-joining using our esti-
mators is remarkably robust, hardly showing any worsening even under the most erroneous
assumptions.

• A detailed study of the efficacy of using our best distance estimator, significantly
improved lower bounds (still computable in low polynomial time) on the inversion length
of a candidate phylogeny, and a novel way of structuring the search so as to maximize the
use of these bounds. We find that this combination yields much stronger bounding in the
naturally occurring range of evolutionary rates, yielding an additional speedup by one to
two orders of magnitude for our GRAPPA code.

• A successful analysis of a dataset of Campanulaceae (bluebell flower) using a combi-
nation of these techniques, resulting in a one-hundred-million-fold speedup over the origi-
nal approach—in particular, we were able to analyze the dataset on a single workstation in
a few hours, whereas our previous analysis required the use of a 512-node supercluster.

Our research combines the development of mathematical techniques with extensive exper-
imental performance studies. We present a cross-section of the results of the experimental
study we conducted to characterize and validate our approaches. We used a large variety of
simulated datasets as well as several real datasets (chloroplast and mitochondrial genomes)
and tested speed (in both sequential and parallel implementations), robustness (in particu-
lar against mismatched models), efficacy (for our new bounding technique), and accuracy
(for reconstruction and distance estimation).

2. BACKGROUND
2.1. The Nadeau-Taylor model of evolution

When each genome has the same set of genes and each gene appears exactly once, a
genome can be described by an ordering (circular or linear) of these genes, each gene
given with an orientation that is either positive (gi) or negative (−gi).

Let G be the genome with signed ordering g1, g2, . . . , gk. An inversion between indices
a and b, for a ≤ b, produces the genome with linear ordering

g1, g2, . . . , ga−1,−gb,−gb−1, . . . ,−ga, gb+1, . . . , gk

A transposition on the (linear or circular) ordering G acts on three indices, a, b, c, with
a ≤ b and c /∈ [a, b], picking up the interval ga, ga+1, . . . , gb and inserting it immediately
after gc. Thus the genome G above (with the assumption of c > b) is replaced by

g1, . . . , ga−1, gb+1, . . . , gc, ga, ga+1, . . . , gb, gc+1, . . . , gk
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An inverted transposition is a transposition followed by an inversion of the transposed
subsequence.

The (generalized) Nadeau-Taylor model [25] of genome evolution uses only genome
rearrangement events, so that all genomes retain equal gene content. The model assumes
that the number of each of the three types of events obeys a Poisson distribution on each
edge, that the relative probabilities of each type of event are fixed across the tree, and that
events of a given type are equiprobable. Thus we can represent a Nadeau-Taylor model
tree as a triplet (T, {λe}, (γI , γT , γIT )), where the the triplet (γI , γT , γIT ) defines the
relative probabilities of the three types of events (inversions, transpositions, and inverted
transpositions). For instance, the triplet ( 1

3 , 1
3 , 1

3 ) indicates that the three event classes are
equiprobable, while the triplet (1, 0, 0) indicates that only inversions happen.

2.2. Distance-based estimation of phylogenies
Given a tree T on a set S of genomes and given any two leaves i, j in T , we denote by

P (i, j) the path in T between i and j. We let λe denote the number of events (inversions,
transpositions, or inverted transpositions) on the edge e during the evolution of the genomes
in S within the tree T . This is the actual number of events on the edge. We can then define
the matrix [λij ] of actual distances, λij =

∑
e∈P (i,j) λe, which is additive. When given an

additive matrix, many distance-based methods are guaranteed to reconstruct the tree T and
the edge weights (but not the root). Atteson [1] showed that NJ is guaranteed to reconstruct
the true tree T when given an estimate of the additive matrix [λij ], as long as the estimate
has bounded error:

Theorem 2.1. (From [1]) Let T be a binary tree and let λe and λij be defined as
described above. Let x = mine∈E(T ) λe. Let D be any n × n dissimilarity matrix (i.e. D

is symmetric and zero on the diagonal). If

max
{i,j}⊂L(T )

|Dij − λij | <
x

2
,

then the NJ tree, NJ(D), computed for D is identical to T .

That is, NJ is guaranteed to reconstruct the true tree topology if the input distance matrix
is sufficiently close to an additive matrix defining the same tree topology. Consequently,
techniques that yield a good estimate of the matrix [λij ] are of significant interest.

Distance measures. The edit distance between two gene orders is the minimum num-
ber of inversions, transpositions, and inverted transpositions needed to transform one gene
order into the other. The inversion distance is the edit distance when only inversions are
permitted. The inversion distance can be computed in linear time [3, 18]; the transposition
distance is of unknown computational complexity [4].

Given two genomes G and G′ on the same set of genes, a breakpoint in G is an ordered
pair of genes (ga, gb) such that ga and gb appear consecutively in that order in G, but
neither (ga, gb) nor (−gb,−ga) appear consecutively in that order in G′. The number
of breakpoints in G relative to G′ is the breakpoint distance between G and G′. The
breakpoint distance is easily calculated by inspection in linear time. See Figure 1 for an
example of these distances.

Estimations of true evolutionary distances. Estimating the true evolutionary distance
requires assumption about the model; in the case of gene-order evolution, the assumption
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G0 = 1 2 3 4 5 6 7 8 9 10
G1 = 1 -5 -4 -3 -2 6 7 8 9 10
G2 = 1 -5 -4 -3 -2 -8 -7 -6 9 10
G3 = 1 6 7 8 2 3 4 5 9 10

dT (G0, G3) = 1 dI(G0, G3) = 3 dB(G0, G3) = 3

FIG. 1. Example of transposition, inversion, and breakpoint distances. We obtain G3 from G0 after 3
inversions (the genes in the inversion interval are highlighted at each step). G3 can also be obtained from G0

with one transposition: move the gene segment (6, 7, 8) to the position between genes 1 and 3. dT , dI , and dB

are the transposition, inversion, and breakpoint distances, respectively.

is that the genomes have evolved from a common ancestor under the Nadeau-Taylor model
of evolution. Sankoff’s technique [32], applicable only to inversions, calculates this value
exactly, while IEBP [35] and EDE [23], applicable to very general models of evolution,
obtain approximations of these values, and Exact-IEBP [34] calculates the value exactly for
any combination of inversions, transpositions, and inverted transpositions. These estimates
can all be computed in low polynomial time.

2.3. Performance criteria
Let T be a tree leaf-labelled by the set S. Deleting some edge e from T produces a

bipartition πe of S into two sets. Let T be the true tree and let T ′ be an estimate of T , as
illustrated in Figure 2. The false negatives of T ′ with respect to T , denoted FN(T, T ′), are
those bipartitions that appear in T that do not appear in T ′. The false negative rate is the
number of false negatives divided by the number of non-trivial bipartitions of T . Similarly,
the false positives of T ′ with respect to T are defined as those bipartitions that appear in
T ′ but not in T , and the false positive rate is the ratio of false positives to the number
of nontrivial edges. For example, in Figure 2, the edge corresponding to the bipartition
{1, 2, 3 | 4, 5, 6, 7, 8} is present in the true tree, but not in the estimate, and is thus a false
negative. Note that, if both trees are binary, then the number of false negatives equals the
number of false positives. In reporting our results, we will use the false negative rate.
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(a) True tree T (b) Estimate T ′

FIG. 2. False positive and false negative edges. T is the true tree, T ′ is a reconstructed tree, and bold edges
are false negative edges in (a) and false positive edges in (b).
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3. TRUE DISTANCE ESTIMATORS
3.1. Definitions

Given two signed permutations, we can compute their breakpoint distance or one of the
edit (minimum) distances (for now, the inversion distance), but the actual number of evo-
lutionary events is not directly recoverable. All that can be done is to estimate that number
under some assumptions about the model of evolution. Thus our true distance estimators
return the most likely number of evolutionary events for the given breakpoint or inver-
sion distance. We developed three such estimators: the IEBP estimator [35] approximates
the most likely number of evolutionary events working from the breakpoint distance, us-
ing a simplified analytical derivation; the Exact-IEBP estimator [34] refines the analytical
derivation and returns the exact value for that quantity; and the EDE estimator [23] uses
curve fitting to approximate the most likely number of evolutionary events working from
the inversion distance. All three estimators provide considerably more accurate estimates
of true evolutionary distances than the breakpoint or inversion distances (at least for large
distances); moreover, trees obtained by applying the neighbor-joining method to these esti-
mators are more accurate than those obtained also using neighbor-joining, but based upon
breakpoint distances or inversion distances.

3.2. Comparison of distance estimates
We simulated the Nadeau-Taylor model of evolution under different weight settings to

study the behavior of different distance estimators. The numbers of genes in the datasets
are 37 (animal mitochondria [6]), and 120 (chloroplast genome in many plants [20]). For
each dataset in the experiment, we chose a number between 1 and some upper bound B

as the number of rearrangement events. B is chosen to be 2.5 times the number of genes,
which (according to our experimental results) is enough to make the distance between two
genomes similar to the distance between two random genomes. We then computed the BP
(breakpoint) and INV (inversion) distances and corrected them to get IEBP, Exact-IEBP,
and EDE distances. In Figures 3, 4, and 5, we plot the (unnormalized) computed distances
against the actual number of events—using an inversion-only scenario for the case of 37
genes and a scenario with equally likely events as well as an inversion-only scenario for
the case of 120 genes. These figures indicate that, as expected, BP and INV distances
underestimate the actual number of events—although, when the number of events is low,
they are highly accurate and have small variance. The linear region—the range of the x-
coordinate values where the curve is a straight line—is longer for INV distances than for
BP distances so that INV distances produce unbiased estimates in a larger range than do BP
distances. In contrast, the three estimators provide good estimates on the average, although
their variances increase sharply with the edit distance values. Exact-IEBP produces good
estimates over all ranges (clearly improving on IEBP), while EDE tends to underestimate
the distance unless the scenario uses only inversions.

We also plotted the difference between the actual (true) evolutionary distance and the
minimum or estimated distance, under various models of evolution (mixtures of inver-
sions, transpositions, and inverted transpositions), for two different genome sizes (37 and
120), and for various number of events (rates of evolution). Figure 6 shows the results for
three different models of evolution on 37 and 120 genes, respectively; the values are plot-
ted in a cumulative fashion: at position x along the horizontal axis, we plotted the mean
absolute difference for all generated pairs with a true evolutionary distance of at most x.
These figures show that Exact-IEBP is usually the best choice, but that EDE distances are
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FIG. 3. Mean and standard deviation plots for the two distances and three distance estimators, for 37 genes
under an inversion-only scenario. The datasets are divided into bins according to their x-coordinate values (the
BP or INV distance).
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FIG. 4. Mean and standard deviation plots for the two distances and three distance estimators, for 120 genes
under a scenario in which all three types of events are equally likely. The datasets are divided into bins according
to their x-coordinate values (the BP or INV distance).
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FIG. 5. Mean and standard deviation plots for the two distances and three distance estimators, for 120 genes
under an inversion-only scenario. The datasets are divided into bins according to their x-coordinate values (the
BP or INV distance).
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FIG. 6. The mean difference between the true evolutionary distance and our five distances estimates, under
three models of evolution, plotted as a function of the tree diameter, for 37 genes (top) and 120 genes (bottom).



516 MORET, TANG, WANG, AND WARNOW

nearly as good (and occasionally better) when the model uses only inversions—although
the variance for larger distances is high, making it difficult to draw firm conclusions. IEBP
and EDE clearly improve on BP and INV.

3.3. Neighbor-joining performance
We conducted a simulation study to compare the performance of NJ using the same five

distances. In Figure 7, we plot the false negative rate against the normalized pairwise in-
version distances, under three different model weights settings: (1, 0, 0) (inversion only),
(0, 1, 0) (transpositions only), and ( 1

3 , 1
3 , 1

3 ) (all three events equally likely). In each plot
we pool the results for the same model weight but different numbers of genomes: 10, 20,
40, 80, and 160. Note that NJ(EDE) is remarkably robust: even though EDE was en-
gineered for an inversion-only scenario, it can handle datasets with a significant number
of transpositions and inverted transpositions almost as well. NJ(EDE) recovers 90% of
the edges even for the nearly saturated datasets where the maximum pairwise inversion
distance is close to 90% of the maximum value. That NJ(EDE) improves on NJ(IEBP),
in spite of the fact that IEBP is a comparable estimator, may be attributed to the greater
precision (smaller variance) of EDE for smaller distances—most of the choices made in
neighbor-joining are made among small distances, where EDE is more likely to return an
approximation within a small factor of the true distance. Exact-IEBP, the most expensive
of our three estimators to compute, yields the second best performance, although the differ-
ence between the error rates of NJ(EDE) and NJ(Exact-IEBP) is too small to be statistically
significant.

� NJ(BP) * NJ(INV) + NJ(IEBP) . NJ(Exact-IEBP) / NJ(EDE)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Normalized Maximum Pairwise Inversion Distance

F
al

se
 N

eg
at

iv
e 

R
at

e 
(%

)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Normalized Maximum Pairwise Inversion Distance

F
al

se
 N

eg
at

iv
e 

R
at

e 
(%

)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Normalized Maximum Pairwise Inversion Distance

F
al

se
 N

eg
at

iv
e 

R
at

e 
(%

)

(a) inversions only (b) transpositions only (c) equally likely events

FIG. 7. False negative rates of NJ methods under various distance estimators as a function of the maximum
pairwise inversion distance, for 10, 20, 40, 80, and 160 genomes. (Results for different numbers of genomes are
pooled into a single figure when the model weights are identical.)

3.4. Robustness of distance estimators
As discussed earlier, estimating the true evolutionary distance requires assumptions

about the model parameters. In the case of EDE, we assume that evolution proceeded
through inversions only—so how well does NJ(EDE) perform when faced with a dataset
produced through a combination of transpositions and inverted transpositions? In the case
of the two IEBP methods, the computation requires values for the respective rates of inver-
sion, transposition, and inverted transposition, respectively, which obviously leaves a lot of
room for mistaken assumptions. We ran a series of experiments under conditions similar
to those shown earlier, but where we deliberately mismatched the evolutionary parameters
used in the production of the dataset and those used in the computation of the distance
estimates used in NJ. Figure 8 shows the results for the Exact-IEPB estimator (results for
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FIG. 8. Robustness of the Exact-IEBP method with respect to model parameters. Triples in the legend
indicate the model values used in the Exact-IEBP method.

the other estimators are similar), indicating that our estimators, when used in conjunction
with NJ, are remarkably robust in the face of erroneous model assumptions.

4. MAXIMUM PARSIMONY AND TOPOLOGICAL ACCURACY

The main goal of phylogeny reconstruction is to produce the correct tree topology. Two
basic approaches are currently used for phylogeny reconstruction from whole genomes:
distance-based methods such as NJ applied to techniques for estimating distances and
“maximum parsimony” (MP) approaches, which attempt to minimize the “length” of the
tree, for a suitably defined measure of the length.

We examine two specific MP problems in this section: the breakpoint phylogeny prob-
lem, where we seek to minimize the total number of breakpoints over all tree edges, and the
inversion phylogeny problem, where we seek to minimize the total number of inversions.
We want to determine, using a simulation study, whether topological accuracy is improved
by reducing the number of inversions or the number of breakpoints. If possible, we also
want to determine whether the breakpoint phylogeny problem or the inversion phylogeny
problem are topologically more accurate under certain evolutionary conditions, and if so,
under which conditions.

We ran a large series of tests on model trees to investigate the hypothesis that minimizing
the total breakpoint distance or inversion length of trees would yield more topologically
accurate trees. We ran NJ on a total of 209 datasets with both inversion and breakpoint
distances. Each test consists of at least 12 data points, on sets of up to 40 genomes. We
used two genome sizes (37 and 120 genes, representative of mitochondrial and chloroplast
genomes, respectively) and various ratios of inversions to transpositions and inverted trans-
positions, as well as various rates of evolution. For each dataset, we computed the total
inversion and breakpoint distances and compared their values with the percentage of errors
(measured as false negatives).

We used the nonparametric Cox-Stuart test [11] for detecting trends—i.e., for testing
whether reducing breakpoint or inversion distance consistently reduces topological errors.
Using a 95% confidence level, we found that over 97% of the datasets with inversion
distance and over 96% of those with breakpoint distance exhibited such a trend. Indeed,
even at the 99.9% confidence level, over 82% of the datasets still exhibited such a trend.

Figures 9 and 10 show the results of scoring the different NJ trees under the two opti-
mization criteria: breakpoint score and inversion length of the tree. In general, the relative
ordering and trend of the curves agree with the curves of Figure 7, suggesting that de-



518 MORET, TANG, WANG, AND WARNOW

0 0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

1.1

1.12

Normalized Maximum Pairwise Inversion Distance

R
el

at
iv

e 
B

re
ak

po
in

t S
co

re

(a) breakpoint score, 37 genes

0 0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

1.1

1.12

Normalized Maximum Pairwise Inversion Distance

R
el

at
iv

e 
In

ve
rs

io
n 

Le
ng

th

(c) inversion length, 37 genes

NJ(BP)  
NJ(INV) 
NJ(IEBP)
NJ(EDE) 

0 0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

1.1

1.12

Normalized Maximum Pairwise Inversion Distance

R
el

at
iv

e 
B

re
ak

po
in

t S
co

re

(b) breakpoint score, 120 genes
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FIG. 9. Scoring NJ methods under various distance estimators as a function of the maximum pairwise
inversion distance for 10, 20, and 40 genomes. Plotted is the ratio of the NJ tree score to the model tree score
(breakpoint or inversion) on an inversion-only model tree.
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FIG. 10. Scoring NJ methods under various distance estimators as a function of the maximum pairwise
inversion distance for 10, 20, and 40 genomes. Plotted is the ratio of the NJ tree score to the model tree score
(breakpoint or inversion) on a model tree where the three classes of events are equiprobable.
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creasing the number of inversions or breakpoints leads to an improvement in topological
accuracy. The correlation is strongest for the 120-gene case; this may be because, for the
same number of events but a larger number of genes, the rate of evolution effectively goes
down and overlap of events becomes less likely. Finally, this trend still holds under the
other evolutionary models (such as when only transpositions occur).

5. SEARCHING FOR MAXIMUM PARSIMONY TREES
5.1. The lower bound and its use

The following theorem is well known:

Theorem 5.1. Let d be a n × n matrix of pairwise distances between the taxa in a
set S; let T be a tree leaf-labelled by the taxa in S; and let w be an edge-weighting on T ,
so that we have wij =

∑
e∈Pij

w(e) ≥ dij . Set w(T ) =
∑

e∈E(T ) w(e). If 1, 2, . . . , n is
a circular ordering of the leaves of T , under some planar embedding of T , then we have
2w(T ) ≥ d1,2 + d2,3 + . . . + dn,1.

This corollary immediately follows:

Corollary 5.1. Let d be the matrix of minimum distances between every pair of
genomes in a set S, let T be a fixed tree on S, and let 1, 2, . . . , n be a circular ordering of
leaves in T under some planar embedding of T . Then the length of T is at least 1

2 (d1,2 +

d2,3 + . . . + dn,1).

This corollary forms the basis of the old “twice around the tree” heuristic for the TSP
based on minimum spanning trees [19]. Note that the theorem and its corollary hold for
any distance measure that obeys the triangle inequality.

In earlier work [22, 24], we used these bounds in a simple manner to reduce the cost of
searching tree space.

• We obtain an initial upper bound on the minimum achievable inversion length by
using NJ with inversion distances. This upper bound is updated every time the search finds
a better tree.

• Each tree we examine is presented in the standard nested-parentheses format (the
nexus format [21]); this format defines a particular circular ordering of the leaves. We use
that ordering to compute the lower bound of Corollary 5.1, again using inversion distances.
If the lower bound exceeds the upper bound, the tree can be discarded.

This bounding may reduce the running time substantially, because the bound can be com-
puted very efficiently, whereas scoring a tree with a tool like GRAPPA [17] involves solving
numerous TSP instances. However, when the rate of evolution is high for the size of the
genome, the bound often proves loose—the bound is exact when distances are additive, but
high rates of evolution produce distances that are much smaller than the additive value.

We thus set about improving the bound as well as how it is used in the context of
GRAPPA to prune trees before scoring them. Our new results come from three separate
ideas: (i) tighten the lower bound; (ii) return more accurate scores for trees with large edge
lengths; and (iii) process the trees so as to take better advantage of the bounds.

5.2. Tightening the bound
The particular circular order defined by the tree description is only one of a very large

number of circular orderings compatible with that tree: since the tree has no internal or-
dering (i.e., no notion of left vs. right child), swapping two subtrees does not alter the
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phylogeny, but does yield a different circular ordering. Any of these orderings defines
a valid lower bound, so that we could search through all orderings and retain the largest
bound produced in order to tighten the bound. Unfortunately, the number of compatible
circular orderings is exponential in the number of leaves, so that a full search is too ex-
pensive. We developed and tested a fast greedy heuristic, swap-as-you-go, that provides a
high-quality approximation of the optimal bound. Our heuristic starts with the given tree
and its implied circular ordering. It then traverses the tree in preorder from an arbitrarily
chosen initial leaf, deciding locally at each node whether or not to swap the children by
computing the score of the resulting circular ordering and moving towards larger values, in
standard greedy fashion. With incremental computations, such a search takes linear time,
because each swap only alters a couple of adjacencies, so that the differential cost of a
swap can be computed in constant time. In our experiments, the resulting bound is always
very close, or even equal, to the optimal bound and much better than the original value in
almost all cases.

We tested a related bounding technique proposed by Bryant [8], but found it to be very
slow (in order to yield reasonably tight bounds, it requires the introduction of Lagrangian
variables and the solution of a system of linear equations to determine their values) and
always (in our experiments) dominated by our algorithm. Since we use bounding strictly
to reduce the total amount of work, it is essential that any lower bound be computable with
very little effort.

5.3. Accurate scoring of long edges
Long edges in the tree suffer from the same problem as large leaf-to-leaf distances: they

are seriously underestimated by an edit distance computation. Thus we decided to use
the same remedy presented in the first part of this paper, by correcting edit distances with
one of our true distance estimators. We chose the EDE estimator, because it offers the best
tradeoff between accuracy and computational cost of our three estimators and used it within
GRAPPA wherever distances are computed: in computing the distance matrix for NJ, in
computing circular lower bounds from that matrix, and, more importantly, in computing
the distance along each edge and in computing the median-of-three that lies at the heart of
the GRAPPA approach [24]. Because a distance estimator effectively stretches the range
of possible values and because that stretch is most pronounced when the edit distances are
already large (the worst case for our circular bounds), using a distance estimator yields
significant benefits—a number of our more challenging instances suddenly became very
tractable with the combination of EDE distances and our improved circular bound.

5.4. Layered search
We added a third significant improvement to the bounding scheme. Since the bound

itself can no longer be significantly improved, obtaining better pruning requires better use
of the bounds we have. Our original approach to pruning [24] was simply to enumerate all
trees, keeping the score of the best tree to date as an upper bound and computing a lower
bound for each new tree to decide whether to prune it or score it. In this approach, each
tree is generated once, bounded once, and scored at most once, but the upper bound in
use through the computation may be quite poor until close to the end if optimal and near-
optimal trees appear only toward the end of the enumeration—in which case the program
must score nearly every tree. To remedy this problem, we devised a novel and radically
different approach, which is motivated by the fact that generating and bounding a tree is
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very inexpensive, whereas scoring one, which involves solving potentially large numbers
of instances of the Travelling Salesperson Problem, is very expensive.

Our new approach, which we call a layered search, still bounds each tree once and still
scores it at most once, but it typically examines the tree more than once; it works as follows.

• In a first phase, we compute the NJ tree (using EDE distances) and score it to obtain
an initial upper bound, as in the original code.

• In a second phase, every tree in turn is generated, its lower bound computed as de-
scribed above, and that bound compared with the cost of the NJ tree. Trees not pruned
away are stored, along with their computed lower bound, in buckets ordered by the value
of the lower bound.3

• We then begin the layered search itself, which proceeds on the principle that the lower
bound of a tree is correlated with the actual parsimony score of that tree. The search looks
at each successive bucket of trees in turn, scoring trees that cannot be pruned through their
lower bound and updating the upper bound whenever a better score is found.

This search technique is applicable to any class of optimization problems where the cost
of evaluating an object in the solution space is much larger than the cost of generating that
object and works well whenever there is a good correlation between the lower bound and
the value of the optimal solution.

Our experiments indicate that, unless the interleaf distances are all nearly maximal (for
the given number of genes), the correlation between our lower bound and the parsimony
score is quite strong, so that our layered search strategy very quickly reduces the upper
bound to a score that is optimal or nearly so, thereby enabling drastically better pruning—
as detailed below, we frequently observed pruning rates of over 99.999%.

5.5. An experimental assessment of bounding
We measured the percentage of trees that are pruned through bounding (and thus not

scored) as a function of the three model parameters: number of genomes, number of genes,
and number of inversions per edge. We used an inversion-only scenario as well as one with
approximately half inversions and half transpositions or inverted transpositions. Our data
consisted of two collections of 10 datasets each for a combination of parameters. The
number of genomes was 10, 20, 40, 80, and 160, the number of genes was 10, 20, 40, 80,
and 160, and the rate of evolution varied from 2 to 8 events per tree edge, for a total of 75
parameter combinations and 1,500 datasets. We used EDE distances to score edges and our
“swap-as-you-go” bounding computation, but not layered search—because layered search
requires enumerating all trees up front, something that is simply not possible for 20 or
more genomes.

For each data set with 10 genomes, GRAPPA tested all trees, scored and updated the
upper bound if necessary, and kept statistics on the pruning rate. For 20 or more genomes,
the number of trees is well beyond the realm of enumeration—with 20 genomes, we have
35!! ≈ 2 · 1020 trees! For these cases, we began by running GRAPPA for 6 hours to score
as many trees as possible, then used the best score obtained in this first phase as an upper
bound in a second phase where we ran another 6 hours during which a random selection

3The required storage can exceed the memory capacity of the machine, in which case we store buckets on disk
in suitably-sized blocks. The cost of secondary memory access is easily amortized over the computation.
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r = 2 r = 4 r = 8 r value

10 20 40 80 160 10 20 40 80 10 20 40 80 # genomes

10 95 100 5 1 1 71 5 0 1 70 0 0 1

20 100 100 96 1 1 94 90 0 0 90 0 0 0

40 100 100 100 100 100 100 100 0 0 100 0 0 0

80 100 100 100 100 100 100 100 100 0 100 0 0 0

160 100 100 100 100 100 98 100 100 100 - - - -

# genes

FIG. 11. Percentage of trees eliminated through bounding for various numbers of genes and genomes and
three rates of evolution.

of trees are bounded using our method and their bounds compared to the upper bound
obtained in the first phase. The result is a (potentially very) pessimistic estimate of the
pruning rate.

Figure 11 shows the percentage of trees pruned away by the circular lower bound; in
the table, the parameter r denotes the expected number of inversions per edge used in the
simulated evolution. (We could not run enough tests for the setting of 160 genes and r = 8,
because merely scoring such a tree accurately can easily take days of computation—the
instances of the TSP generated under these circumstances are very time-consuming.) In
comparison with the similar table for our earlier approach [23], our new approach shows
dramatic improvement, especially at high rates of evolution. We found that most circular
orderings in datasets of up to 20 genomes were eliminated. However the table also shows
that the bounding does not eliminate many trees in datasets with 40 or more genomes—
not unless these datasets have large numbers of genes. The reason is clear: the number
of genes dictates the range of values for the pairwise distances and thus also for the tree
score—in terms of inversion distances, for instance, we have roughly mn possible tree
scores, where m is the number of genes and n the number of genomes; yet the number of
distinct trees is (2n− 5)!!, a number so large that, even when only a very small fraction of
the trees are near optimal, that fraction contains so many trees that they cannot efficiently
be distinguished from others with only mn buckets. Of course, GRAPPA in 6 hours can
only examine a vanishingly small fraction of the tree space, so that the upper bound it uses
is almost certainly much too high. In contrast with these findings, our layered method gave
us pruning rates of 90% in the 10-genome case for r = 8 and 10 or 20 genes, a huge
improvement over the complete failure of pruning by the normal search method.

6. A TEST OF OUR METHODS ON REAL DATA

We repeated our analysis of the Campanulaceae dataset, which consists of 13 chloro-
plast genomes, one of which is the outgroup Tobacco, but this time to reconstruct the EDE
(as opposed to the breakpoint or inversion) phylogeny. Each of the 13 genomes has 105

gene segments and, though highly rearranged, has what we consider to be a low rate of
evolution. In our previous analysis, we found that GRAPPA, with our first bounding ap-
proach, pruned about 85% of the trees, for a substantial speedup (on the order of 5–10)
over a version without pruning. By using EDE distances and our improved bound compu-
tation, we increased this percentage to over 95%, for another substantial speedup of 5–10.
By adding layered search, however, we managed to prune almost all of the 13.75 billion
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trees—all but a few hundred thousand, which were quickly scored and dispatched, for a
further speedup of close to 20. The pruning rate was over 99.99%, reducing the number
of trees that had to be scored by a factor of nearly 800. As a result, the same dataset that
required a couple of hours on a 512-processor supercluster when using our first bounding
strategy [2, 22, 24] can now be run in a few hours on a single workstation—and in one
minute on that same cluster. In terms of our original comparison to the BPAnalysis
code, we have now achieved a speedup (on the supercluster) of one hundred million! We
also confirmed the results of our previous analysis—that is, the trees returned in our new
analysis, which uses EDE distances, match those returned in an analysis that had used
minimum inversion distances, a pleasantly robust result.

The speedup obtained by bounding depends on two factors: the percentage of trees that
can be eliminated by the bounding and the difficulty of the TSP instances avoided by using
the bounds. As Table 11 shows, when the rate of evolution is not too high, close to 100%
of the trees can be eliminated by using the bounds. However, the TSP instances solved in
GRAPPA can be quite small when the evolutionary rate is low, due to how we compress
data (see [24]). Consequently, the speedup also depends on the rate of evolution, with
lower rates of evolution producing easier TSP instances and thus smaller speedups. The
Campanulaceae dataset is a good example of a dataset that is quite easy for GRAPPA, in
the sense that it produces easy TSP instances—but even in this case, a significant speedup
results. More generally, the speedup increases with larger numbers of genomes and, to a
point, with higher rates of evolution. When one is forced to exhaustively search tree space,
these speedups represent substantial savings in time.

7. CONCLUSIONS AND FUTURE WORK

We have described new theoretical and experimental results that have enabled us to an-
alyze significant datasets in terms of inversion events and that also extend to models incor-
porating transpositions. This work is part of an ongoing project to develop fast and robust
techniques for reconstructing phylogenies from gene-order data. The distance estimators
we have developed clearly outperform straight distance measures in terms of both accuracy
(when used in conjunction with a distance-based method such as neighbor-joining) and ef-
ficiency (when used with a search-based optimization method such as implemented in our
GRAPPA software suite). Our current software suffers from several limitations, particu-
larly its exhaustive search of all of (constrained) tree space. However, the bounds we have
described can be used in conjunction with branch-and-bound (based on inserting leaves
into subtrees or extending circular orderings) as well as in heuristic search techniques.
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