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ABSTRACT

Motivated by applications in cartography and computer graph-

ics, we study a version of the map-labeling problem that we
call the k-Position Map-Labeling Problem: given a set of
points in the plane and, for each point, a set of up to k al-
lowable positions, place uniform and nonintersecting labels
of maximum size at each point in one of the allowable po-
sitions. This version combines an aesthetic criterion and a
legibility criterion and comes close to actual practice while
generalizing the fixed-point and slider models found in the
literature. We then extend our approach to arbitrary posi-
tions, obtaining an algorithm that is easy to implement and
also dramatically improves the best approximation bounds.

We present a general heuristic which runs in time O(n log n+
nlog R*) , where R is the size of the optimal label, and
which guarantees a fixed-ratio approximation for any reg-
ular labels. For circular labels, our technique yields a 3.6-
approximation, a dramatic improvement in the case of ar-
bitrary placement over the previous bound of 19.35 given
by Strijk and Wolff [11]. Our technique combines several
geometric and combinatorial properties, which might be of
independent interest.

1. INTRODUCTION

The problem of automated label placement has received con-
siderable attention in the computational geometry commu-
nity, due to its theoretical significance as well as its practical
applications in the areas of cartography [7] and computer
graphics [3]. For example, the ACM Computational Geom-
etry Task Force [1] has targeted it as one of the important
areas of research in Discrete Computational Geometry. We
refer the reader to A. Wolff’s Map Labeling website [12] for
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comprehensive information on this subject.

Several models have been developed to study label place-
ment problems; they can be broadly classified into three
types: fixed-position models, slider models, and arbitrary-
orientation models. (For more details, see [2, 5, 9].) We gen-
eralize these models with a model in which the user can spec-
ify a set of k allowable positions for each point. It is crucial
to note that k is not fixed in advance, but can be specified
by the user, so that the k-position model indeed generalizes
fixed-position and slider models and, for arbitrarily large k,
also subsumes the arbitrary-position models. Formally, an
instance of the k-Position Map-Labeling (KPML) problem
consists of a set of points, and, for each point, a set of k
allowable label placements. The goal is to place a label for
each point (with the point lying on the periphery of the la-
bel) in one of the allowable placements so as to maximize the
size of the labels. Our model reflects minimal constraints on
aesthetics and association of labels with point features (as
expressed by the allowed placements) while encouraging leg-
ibility (as expressed by overall size). For brevity and clarity,
we focus on uniform circular labels, but we note that our
technique extends directly to any regular polygonal labels.

Our main result is an efficient, simple, and easily imple-
mentable polynomial-time approximation algorithm with a
performance guarantee 3.6 for the KPML problem restricted
to circular labels. This result has two important extensions:

e As our analysis shows, our algorithm works even for
unbounded k without any loss in the performance,
yielding a dramatic improvement over the previous
bound of roughly 30 by Doddi et al. [5] and the re-
cent bound of 19.35 by Strijk and Wolff [11].

e By using a circumscribed regular polygon and an in-
scribed regular polygon as lower and upper bounds,
the algorithm yields a polynomial-time approximation
with slightly worse performance guarantee for the KPML
problem when restricted to any regular polygon. In
fact, the algorithm works when we are allowed a fixed
set of regular polygons as surrogates for labels, with
each point having a different set of allowable positions.

Our technique combines several combinatorial and geomet-
ric properties on the structure of the label placements. These
properties may be of independent interest. Our approach
is motivated by a similar approach taken by Formann and
Wagner [6] to transform a 4-position map-labeling problem
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to instances of 25AT; in Section 3 we discuss why their idea
cannot be extended directly to apply to our problem.

2. RELATED LITERATURE

Automated map labeling has been studied for nearly three
decades in the cartography community. Current practi-
cal approaches typically include combinations of techniques
such as mathematical programming, gradient descent, sim-
ulated annealing, etc.; a comprehensive survey can be found
in Christensen et al. [3].

Formann and Wagner [6] studied the problem of labeling n
points with uniform and axis-aligned squares. They gave a
O(nlogn) algorithm with performance guarantee of 2 and
showed that this guarantee cannot be improved unless P =
NP. Kucera et al. [10] gave exact algorithms to solve this
problem; one of their algorithms runs in time O(4Y") and
returns an optimal solution.

Doddi et al. [5] considered two label-placement problems:
maximizing label size and maximizing the number of labeled
points. They studied these two problems under two different
models, a fixed-position model and a slider model. For the
problem of maximizing the label size, they gave constant-
factor approximation algorithms with performance guaran-
tees of 8(2 + v/3) for circular labels and 8v/2/ sin(w/10) for
square labels. For the problem of maximizing the number of
labeled points subject to placing labels of a minimum size,
they developed a bicriteria approximation in which at least
(1 —¢€) - n labels are placed, each of size at least (1 —c-¢)
times the optimal label, for some positive constant c¢. Strijk
and Wolff [11] recently improved the algorithm of Doddi et
al. for circular labels, obtaining an approximation ratio of
19.35—still over five times worse than the approximation we
describe here.

Agarwal et al. [2] gave a polynomial-time approximation
scheme for the problems of labeling with axis-aligned rectan-
gles of arbitrary sizes and arbitrary length with unit heights.
Kreveld et al. [9] gave 2-approximation algorithms that place
axis-aligned labels for six different problems under a slider
model.

The rest of the paper is organized as follows. In Section 3,
we present the basic idea of the algorithm. Section 4 gives
definitions and notation and a crucial lemma—one that al-
lows us to conduct local searches only. Section 5 develops a
number of lemmata on the geometric relationships inherent
in the problem. Section 6 gives structural characterizations
of the problem and relates them to the geometry. In Sec-
tion 7, we use all of these results to develop an algorithm
that selects two positions for each point; we show that the
selection always contains a feasible solution if any exists.
Finally, in Section 8, we give the main algorithm.

3. THE BASIC IDEA

DEFINITION 1. Given a set S of points in the plane and,
for each point a € S, a set Xo (with | Xa| < K) of possi-
ble label placements, the K-Position Map Labeling (KPML)
problem is to identify the largest R > 0 such that, for each
point a € S, a label of size R can be placed at one of the
positions in X, and no two such circles intersect.

The position of a circular label of a given size that must
include a given point on its perimeter is fully specified by
the angle made by the line passing through the point and
the center of the circle. Thus we shall assume that positions
are given as angles (measured counterclockwise with respect
to the abscissa); note also that a position, unless otherwise
specified, can be any angle whatsoever—it need not be lim-
ited to the allowable positions specified in the input. This
definition can be extended to regular polygons. In such a
case, we need an angle and also allowable orientations for
the polygonal label. Thus for simplicity, as stated earlier,
we focus here on circular labels.

Our main result can be viewed as a polynomial-time reduc-
tion to the 2SAT problem. Our technique generalizes the
idea of Formann and Wagner [6], who reduced the problem of
placing uniform and axis-aligned squares to the 25SAT prob-
lem; we briefly review their algorithm and reduction. Let
S denote the given input, OPT denote the size of labels in
an optimal solution, and p > 1 some constant. A candidate
label of size o labeling point a € S is called p-dead if the
label of size p - o placed in the same position contains some
other point b € S, b # a. If we have p-o < OPT and a can-
didate square of size o is p-dead, then the position used by
that square cannot be used in an optimal solution. A can-
didate label of size o labeling point a € S is called safe if it
does not intersect with any label of equal size labeling (in
any position) a different point of S. Clearly, if there exists
a safe label, then it can be added to the approximate solu-
tion without worrying about the placement of labels at other
points. A candidate label of size o labeling point a € S is
called p-pending if it is neither p-dead nor safe. A p-pending
label of size o labeling point a € S may intersect only with
another p-pending label labeling some other point of S.

The approximation algorithm uses the concept of a p-relaxed
procedure and the corresponding certificates of failure as for-
mulated by Hochbaum and Shmoys [8]. Informally speak-
ing, a polynomial-time p-relaxed procedure TEST for a max-
imization problem II (where the optimal value for instance
I is denoted by OPT(I)) has the following structure: given
a candidate solution with value M, TEST either outputs a
“certificate of failure” implying OPT(I) < p- M or succeeds
with the implication that the heuristic solution value is at
least M.

Formann and Wagner’s algorithm [6] starts by placing in-
finitesimally small and equal-sized candidate labels at all
positions of each point. At each step, the size of each label
is uniformly increased; any p-dead label is removed and its
corresponding position eliminated. In the case of square,
axis-aligned labels that must touch the labeled point at one
corner, Formann and Wagner showed that, for p = 2, there
are at most two p-pending labels. Using this fact, a 2SAT
instance is constructed and solved. The process is repeated
until the 2SAT instance is not satisfiable; the last feasi-
ble solution found is then returned. The transformation
to a 2CNF formula combined with a procedure for solving
2SAT problem forms a 2-relaxed procedure in the sense of
Hochbaum and Shmoys. Thus the approximation algorithm
has a performance guarantee of 2. The 25AT instance itself
simply describes, using implications, the possible intersec-
tions among p-pending labels. Since there are at most two



possible positions per point, the choice at each point can be
encoded by a single Boolean variable. Let z, and z; denote
the variables corresponding to points a € S and b € S, re-
spectively, where x, is set to true whenever the first of the
two p-pending labels for point a is chosen (and similarly for
point b). If, say the first p-pending label for a intersects with
the second p-pending label for b, this is encoded with the im-
plication z, — p, or, in 2SAT form, the clause {Zq, zs}-
It is easily verified that a feasible solution exists for the la-
beling problem whenever the constructed 2SAT instance is
satisfiable.

Our main algorithm uses the idea of reduction to 2SAT.
However, the number of p-pending positions for the KPML
problem is much larger than 2—and, with just p = 3, the
technique of Formann and Wagner will yield an instance of
3SAT, which is of course NP-hard. Thus our main contri-
bution can be viewed as a selection technique that combines
several geometric and combinatorial properties to select at
most 2 feasible positions for each point—at the cost of using
a slightly larger p (in the case of circular labels, we use p <
3.6). The selection procedure combined with an algorithm
for solving 25SAT yields the required p-relaxed procedure.

In broad outline, our selection procedure works as follows.
We call a position dead, safe, pending if the label placed at
that position is dead, safe, or pending, respectively. We can
ignore safe positions, since we can always place a label at a
safe position regardless of the placement of labels at other
points. Let a € S and let C, denote the circle of radius OPT
such that its center coincides with a (i.e., a is the center of
C,). Let S, C S denote the set of all points of S that lie
inside C,. We show that, while placing labels at a, we can
ignore any point of S that lies outside C,. This is a crucial
result: it allows us to restrict our attention only to the points
in S;; using a packing argument, we further show |S;| < 4.

We identify and eliminate all dead positions of a. Let b € S;
observe that b lies inside a conical section (i.e., a contigu-
ous set) of dead positions of a, which we call a dead region.
We consider only maximal dead regions, in the sense that
no two such regions share a dead position. Thus any two
dead regions must be separated by a region of pending po-
sitions, which we call a pending region. We calculate the
minimum angle of a dead region and show that the num-
ber of dead regions (and thus also of pending regions) is at
most 2. Our aim is to select at most one position from each
pending region, thereby allowing us to encode the problem
as an instance of 25AT.

Let P, be a pending region of a. We show that P, forms one
of two equivalent classes, a clique-set or a uniform set. We
call P, a clique-set w.r.t. b if, for each p-pending position 8,
of b, a label of size OPT/p placed at 6, intersects with a la-
bel of the same size placed at 6, € P, and a p-enlarged label
(of size OPT) placed at 6, intersects every p-enlarged label
placed at any position inside P,. We call P, a uniform set
w.r.t b if there exists a p-pending position 8 at b such that a
label of size OPT'/p placed at 6, intersects every label of the
same size placed at a position in P,. In either case, no opti-
mal solution can simultaneously place a label at positions 6,
and 0, € P,, since they intersect each other. In other words,
the entire P, can be treated as a single position w.r.t. b.

4. DEFINITIONS AND PRELIMINARIES

Figure 1 illustrates our notations.

Figure 1: Our Notation

d(a,b) denotes the distance between points a,b € S.

C(a,0, R) denotes the labeling circle of radius R labeling
point a € S in position @ (which may or may not be
in the allowed set of positions X, ).

R* denotes the radius of the labeling circles in the optimal
solution.

C,, denotes the circle (not a label) of radius 0.8 R* centered
at a € S; similarly C. denotes the circle of radius
0.4R* centered at a € S. (The constants produce the
desired bounds in later lemmata.)

N(C;) and N(C,) denote the number of points (other than
a) of S that lie inside C, and C/, respectively.

Angle(6;,0;) denotes the angle between 6; and 6; in coun-
terclockwise direction, starting from 6;.

Cone(a,61,62) denotes the conical region containing posi-
tions between 6; and 62 such that 6; < 62.

€ denotes an infinitesimally small positive value.

We now formalize the definitions introduced in Section 3.
We use p > 1 to denote the approximation ratio; later, we
shall fix p = 3.6.

DEFINITION 2. Assume a € S and let 6 be a position
with respect to a (not necessarily in X, ). We call 6 dead if
C(a,0,R™) contains a point b € S distinct from a. We call
0 p-safe if C(a,0,R*[p) does not intersect with a circle of
size R* /p placed at any point b € S distinct from a. We call
0 p-pending if it is neither dead nor p-safe.

A position 6 is dead if an optimal solution (using labeling
circles of size R*) cannot use it. In contrast, an approx-
imation algorithm with performance p can safely place a
labeling circle of size R*/p at a p-safe position regardless
of chosen positions of labeling circles of equal size labeling
other points. Finally, p-pending positions are those that
may be used to place a labeling circle of size R*/p only for
certain placements of other labeling circles (of the same size)
at other points.



We show that there is a minimum separation beyond which
two points can be handled independently of each other in an
approximate solution. From here on, we assume without loss
of generality that points a and p share the same abscissa.

LEMMA 1. Assume a,p € S with p ¢ C. and let 6, be a
p-pending position of a. Then any position 0, of p such that
C(p,0p, R*[p) intersects C(a,0q,R*[p) is a dead position.

PROOF. Let a’ and a”’ denote the centers of C(a,8,, R*/p)
and C(a, ., R*) respectively, and let p’ and p” denote the
centers of C(p,0,,R*/p) and C(p,6,, R*) respectively. We
proceed to show that, for any d(a,p) > 0.8R*, we have
d(a,p"”) < R*, which implies that 6, is a dead position.

d(a,p") is maximized by maximizing §, and minimizing 6,.
0, is maximized just as the position that it denotes becomes
dead, so that we can assume that §, is € away from being
dead, for arbitrary small € > 0. Therefore p lies just outside
C(a, 84, R*); since ¢ is infinitesimal,’ we simply assume that
p lies on the perimeter of C(a,8,, R*). The triangle aa’’p
is thus isosceles; note that, if the line pp” intersects that
triangle, we are done, since we must then have §(a,p”) <
d(p,p") = R*. (Equality occurs when we actually have a” =
p"”.) Thus we need only show that, whenever the line pp”
lies outside that triangle, no intersection of the two p-scaled
labels can occur.

The farthest extent of C(a’,6,, R*/p) when projected onto
the ap segment is one radius (or 5R* /18 with our choice of p)
plus the projection of the segment aa’, or 2R* /18; similarly,
the farthest extent of C(p,8,, R*/p) when projected onto
the ap segment occurs when the line pp” is (nearly) aligned
with pa’”’ and is then also one radius plus the projection of
the segment pp’ (minus some infinitesimal constant), for a
contribution of 7R*/18. Thus the projection of the two cir-
cles onto the segment ap (which has length 0.8R*) spans
at most 14R*/18 < 0.8R", so that the two circles do not
intersect. [

This lemma is crucial in our development, as it implies
that, while placing a label (circle) of size R*/p (p = 3.6)
at point a, we can safely ignore any points outside Cj, and
thus restrict our scope to a strictly local search.

Consider a point p € C,. Suppose there exists no pend-
ing position 8, € X, such that the corresponding circle
C(p, 6y, R*/p) intersects the circle C(a, 6., R*/p), for any
pending position 6, € X,. Then the point p can also be
ignored, as it does not affect the placement of a label of
size R*/p at a. From here on, we assume that, for each
point p € C,, there exists a pending position 6, such that

C(p,0p, R*/p) intersects a circle C(a, 4, R*/p) for some pend-

ing position 6, € X,.

In the remaining sections, we assume p = 3.6 (and thus drop
the p from terms like safe or pending, although we still use
it in some equations in order to show where the constants
come from) and, when working on the labeling of point a,

!Many of the sets we define in this paper are open sets; in all
cases, we treat them as closed sets in order to derive bounds.

restrict our attention to points within C,—i.e., to points
within 0.8R* of a.

5. SOMEINTERESTING CONICAL REGIONS

We extend Definition 2 to a conical region Cone(a, 61, 62).
We first consider a region formed by a contiguous set of dead
positions.

DEFINITION 3. Assumea € S andp € C,; then Cone(a, 61, 62)

18 a maximal dead conical region (a D-region for short)
whenever

1. every position 8, 61 < 8§ < 03, is dead; and

2. neither 81 — € nor 02 + € is dead.

The second condition indicates that any two D-regions are
separated by at least one non-dead position. If some point
p is located within C., then it must be surrounded by a
D-region, as illustrated in Figure 2.

C(a‘a 01 ’ R*)

C(a7 027 R )

Figure 2: A D-Region of a w.r.t. p

We now determine the minimum angle of a D-region, which
will enable us to bound the number of D-regions and other
types of regions that can exist for a point in S.

LEMMA 2. The minimum angle of a D-region is 132.8°.

PROOF. Assume a,p € S with p € C. and denote by
D = Cone(a,b61,62) the D-region of a w.r.t. p. For any
€ > 0, the point p must lie outside both C(a,0; —&, R*) and
C(a,02 + ¢,R"). It is easily seen that, as d(a,p) increases,
Angle(61,02) decreases, so that Angle(61,62) is minimized
when p lies on the perimeter of C},. Let a’ denote the center
of C(a,61 — e, R*), for any fixed ¢ > 0; note that we have
d(p,a’) > d(a,a’) = R*. By the law of cosines, we can write

8(a,p)®+d(a,a’)%—6(a’,p)*
26(a,p)é(a,a’)

cos(Za'ap) =
Substituting known values yields

8(a;p)>+R*>—R*? _ §(a,p)

COS(ZG’(J/p) < 25(a,p)R* 2R*

Because p lies in C,, we have d(a,p) < 0.8R*; substitut-
ing, we get cos(Za’ap) < 0.4 and thus Za'ap > 66.4°. By
symmetry, the minimum angle of a D-region is 132.8°. [



COROLLARY 1. For any given point a € S, there exist at
most two D-regions.

We now consider conical sections formed by only pending
positions for a given point. Let a,p € S be as above and
let Cone(a, 61, 62) be a conical section of pending positions,
with 6; adjacent to the D-region surrounding p. Suppose
there exists a position 6, (not necessarily in X,) at point
p such that C(p,6,, R*/p) intersects C(a,6:1,R*/p). If we
enlarge the size of the labeling circles to the optimal value,
then C(p, 6, R*) will intersect potential labeling circles for a
placed at positions closer to #2; consider the case where it
intersects C(a, 62, R*) itself. Then C(p,0,, R*) intersects ev-
ery C(a,6, R*), for 8; < 6 < . Clearly, no optimal solution
can simultaneously place a labeling circle for point a at po-
sition 8 and one for point p at position 65, since C(p, 6p, R*)
and C(a, 6, R") intersect. Thus Cone(a, 61, 62) is an equiv-
alence class of positions w.r.t. p and 6,.

DEFINITION 4. Assume a,p € S. If Cone(a,0:1,02) de-
notes a conical section such that 61 is adjacent to the D-
region of a w.r.t. p, we call it a clique-set of a w.r.t. p when-
ever there exists a position 0, such that:

1. C(p,6p, R"/p) intersects C(a, b1, R"/p);

2. C(p,0p, R"[p) does not intersect C(a,01 + &, R"[p);
and

3. V0, 6, <6 <6, C(p,0p, R*) intersects C(a,0, R").

A maximal clique-set of a w.r.t. p is a clique-set of a w.r.t. p
that is not properly contained in any clique-set of a w.r.t. p.

Note that the roles of §; and 8> in this definition are in-
terchangeable. Figure 3 illustrates the basic tenets of the
definition. From Definition 4, it is clear that a maximal

02)-:

)

N0, 0, R/

Figure 3: A Maximal Clique-Set of a w.r.t. p

clique-set is adjacent to a D-region, so that a point a € S
has at most two maximal clique-sets w.r.t. some given point
peC..

LEMMA 3. Assume a,p € S with p € C., and assume that
no other point of S lies within C,. Let Cone(a,61,02) and

Cone(a, 83, 04) denote two mazimal clique-sets of a w.r.t. p.
Let 6, be as in Definition 4 and let o' and p" denote the
centers of C(a,0a, R*) and C(p,0,, R*), respectively. We
then have

3(a,p)
2R*
2
8(a,p)%+6(a,p" )2~ R* )
26(a,p)é(a,p’")
5(ap™)2+R*> _ar*’ )—
25(a,p’")R*

1. 6; = — arcsin

2. 02 = arccos(

+ arccos(

vl

3. 03

4. 0, = 5 — arccos(

T —02 and 04 = — 61
(2p—1)é(a,p) )
2v/p(p—1)8(a,p)2+R*>
p(p—1)8(a,p)®—2R* )
2R*\/p(p—1)8(a,p)2 +R*>

— arccos(

Figure 4 illustrates the situation (incidentally, note that two
maximal clique-sets may overlap).

62

03

'""._C(a: 62, R*)

Figure 4: The Geometry of Lemma 3

PrOOF. The first relationship falls easily from consid-
ering the isosceles triangle aa’’p; the second from writing
62 = ZLpap” + £p”ab — %; the third from symmetry along
the ap axis; and the last from writing 6, = 7/2 — Zp'pa’ —
Za'pa, where o' and p’ are the centers of C(a, 61, R*/p)
and C(p,0,,R*/p), respectively, and noting the equality

8(p,a)? = (R + p(p — 1)é(a,p)?) /p*. O
Now we can write
8(a,p")* = R* + 6(a,p)(8(a,p) — 2R" cos(Zapp"))

Substituting in the expression for 6, we conclude that 6>
monotonically increases as §(a,p) increases.

COROLLARY 2. Assumep € Cy—Cy, i.e., assume §(a,p) >

0.4R*; then we have: (i) Angle(02,04) < 132.6°; (i1) Angle(61,63) <

132.6°; and (4ii) 02 > 58°.

The bound of 132.6° is the reason for our specific choice of p:
our proof of Lemma 8 will need these angles to be no larger
than 132.8°, the minimum angle of a D-region.



Suppose now that there exists p € S and 6, such that

C(p, 0y, R* /p) intersects both C(a, 81, R* /p) and C(a, 82, R* / p).

Clearly, C(p, 6, R* / p) intersects every C(a, 8, R*/p), for 6, <
0 < 6.

DEFINITION 5. Cone(a,01,02) is a (p-)uniform set for a
w.r.t. p and 6, whenever C(p,6,, R*/p) intersects both
C(a,01,R*/p) and C(a, 62, R*/p). A maximal uniform set
for a w.r.t. p and 0, is a uniform set for a w.r.t. p and 6,
of largest angle. A maximal uniform set for a w.r.t. p is a
mazimal uniform set for a w.r.t. p and 6, where 8, is the
largest angle preserving a ¢ C(p,0,, R*).

Figure 5 illustrates the second part of the definition; note
that uniform sets, like clique-sets, are contiguous regions
of pending positions, so that, even though Cone(a, o, 61)
meets the intersection requirements, it is not a uniform re-
gion, since all of Cone(fg,01) falls within a dead region.

—— -

N

/ C(a,\‘{z,R*/p)

6o C(p’ GP’R*//))

Figure 5: A Maximal Uniform Set for a w.r.t. p and
b»

Maximal uniform sets must be adjacent to D-regions; in
Figure 5, 61 delimits both a D-region of a w.r.t. p and a
maximal uniform set for ¢ w.r.t. p and 8,. Thus we al-
ready know one of the angles from Lemma 3. The other
angle is also easy to compute: denote by p’ the center of
C(p,6,,R*/p) and by a’ the center of C(a, 6>, R*/p) and
write 2 = Zpap’ + Zp'aa’ — Z. Maximizing the angle 6,
gives a situation similar to that of Lemma 3 and allows us

to write (a,p’)? = (R*2 +p(p— 1)6(a,p)2)/p2.

LEMMA 4. Let Cone(a,01,02) denote a mazimal uniform
set w.r.t. p and let 61 be adjacent to the D-region surround-
ing p. We have

_ i 9(a.p)
1. 61 = —arcsin 532!
2. 6> = arccos( (2p—1)3(a.p) )

2v/p(p—1)8(a,p)2+R*>
pp—1)é(a,p)?—2R*" ) —
2R*\/p(p—1)3(a,p)2+R*2

+ arccos( 3

Note that 6> decreases as d(a,p) increases.

COROLLARY 3. Let Cone(a, 61, 62) be a mazimal uniform
set w.r.t. p, with p € (C, — C.). Then we have 0> < 48°.

Let D be a D-region of p with limiting angle 6; and let
Cone(a,01,621) denote a maximal clique-set w.r.t. p and
Cone(a,61,622) denote a maximal uniform set w.r.t. p—in

both conical sections, 6; is adjacent to D. Assume p €
C., — CY; by Corollaries 2 and 3, we have f21 > 022, so that
Cone(a, 61, 622) is also a clique-set w.r.t. p.

We now allow more than one point in (C, —C.). Let p € S
and g € S be located within (C, — C.) and within D, a D-
region of a. (The three points a, p, and g of S are distinct.)
Let Cone(a,81,02) denote the conical section of minimum
angle surrounding the maximal uniform sets of a w.r.t. p
and q. (Assume that the position 6, is adjacent to D.)

LEMMA 5. Letp, q and Cone(a, 61, 62) be defined as above.
Suppose the minimum angle of each of the mazimal uni-
form sets of a w.r.t. p and q is greater than zero. Then
Cone(a,61,02) is a clique-set w.r.t. both p and q.

PRroOOF. We assume d(a,q) > d(a,p). Let Cone(a,61,65)
and Cone(a, 61,63 ) be the maximal uniform sets of a w.r.t. p
and q respectively—by assumption, we have Angle (83, 01) >
0 and Angle(65,61) > 0.

Let 6, be a pending position of p such that C(p,6,, R*/p)
almost intersects C(a, 62, R*/p), i.e., 0, is € away from be-
ing a dead position. Let 6, be a pending position of p
of least absolute angle such that C(p,8,,R"/p) intersects
C(a,61,R*/p). (That is, Cone(p,6,,6;) is a maximal uni-
form set of p w.r.t. a.) Let 6, be a pending position at ¢
such that C(q, 8y, R*/p) intersects C(a, 61, R* /p)—in order
for our assumption, i.e., Angle(65,61) > 0, to hold, §, must
exist.

We claim that g cannot lie inside C(p,6,, R*) and outside
C(p,6,,R*/p). Suppose q lies inside C(p, 6, R*). It can be
verified that every 6, € Cone(a, 0, ,6,) becomes a dead po-
sition, implying Cone(a, 1, 63) is not a maximal uniform set
w.r.t. p, a contradiction. Suppose q lies outside C(p, 8;,, R*/p).
Then C(q,8y, R*/p) cannot intersect C(a, 61, R*/p), imply-
ing Cone(a, 61,0%) is not a maximal uniform set w.r.t. ¢, a
contradiction. Thus g must lie inside C(p,6,,R*/p). Now
we can verify that 6, > 65. By Corollaries 2 and 3, we can
further verify that Cone(a, 61, 6-2) is a clique-set of a w.r.t.
pand ¢ both. [

‘We have so far considered two types of conical regions con-
taining pending positions: clique-sets and uniform sets. Let
D denote a given D-region. We know that each boundary
position of D is adjacent to a maximal clique-set and to a
maximal uniform set. Given a maximal clique-set w.r.t. p
and a maximal uniform set w.r.t. g, both adjacent to the
same boundary position of D, one must contain the other,
which leads us to combine them.

DEFINITION 6. Cone(a,61,02) is a P-region if it is not
contained in any mazimal clique-set or mazimal uniform set
of a w.r.t. p, for any point p € S within C,; if this region
is a clique-set or uniform set w.r.t. p, then we call p the
reference point of the P-region.

We note that the maximality condition of a clique-set or
uniform set is preserved in the definition of a P-region: nei-
ther Cone(a, 61 —¢,02) nor Cone(a, 01,62 +¢) is a P-region.
The following lemma can be easily proved.



LEMMA 6. Let P be a P-region for a with reference point p.

If p belongs to C, — C./, then P is a clique-set.

6. STRUCTURAL PROPERTIES

In this section we provide geometric lemmata that capture
the structural properties of the KPML problem and relate
them to the conical regions described in the previous section.

6.1 Bounds onn(c.) and N(c”)

We begin by bounding the number of points that can appear
within various radii of a given point. We use the well-known
packing result given below.

PRrROPOSITION 1. Let C be a circle of radius r and let S
be a set of circles of radius r such that every circle in S
intersects C and no two circles in S intersect each other.
Then we have |S| < 5.

Our bounds can be summarized as follows.
LEMMA 7. For all a € S we have the following:

1. N(CL) <4

2. N(C") <2

3. If N(CY) > 0, then N(C,) < 3.

4. If N(C]) = 2, then N(C,) = N(C.)

Figure 6 informally shows why a labeling circle associated
with a third point g cannot be forced within C or even
within C, when two other points (p and r) are already
present within C/'—these are the second and fourth asser-
tions of the lemma.

Figure 6: Illustration of Parts 2 and 4 of Lemma 7

PROOF.

1. If we had N(C,) > 5, C, would contain at least 6
points, contradicting Proposition 1.

2. Assume N(C7) > 3, with three points denoted s1, s2,
and s3, and set so = a. For each i, 0 < i < 3, let
s; denote the center of the circle labeling s; and let ¢;

denote the angle between rays s;s; and s;118;41 (using

addition modulo 4). By symmetry, we have ¢o = ¢3
and ¢1 = ¢2. By assumption, we have (s}, s11) =
2R*, §(ss,5;) = R*, and 6(so, s;) < 1.4R*. By the law
of cosines, we have

"2 1N\2 1o r\2 °
cos(go) = Ky = o > 111

and

51’ 2+6 I‘ 2_5 1,12 °
cos(¢1) = = a)26(sgs,t21)(:5)(s'2,a()81 2 = ¢1>091

The total angle is 3°0_ ¢i = 2+ (¢o + 1) > 2+ (111° +
91°) = 404°, the desired contradiction.

Parts 3 and 4 are similar and thus omitted. [

COROLLARY 4. Let a,p,q € S be three points with p,q €
%, a,q € Cp, and a,p € C. Then for any point r € S,
distinct from a, p, and q, we have a & C,, p ¢ C, and

q¢C.

Corollary 4 indicates that the points a, p and ¢ can be la-
beled separately from the rest of the points in S.

6.2 Properties ofp-regions

We now study several useful properties of P-regions. We
first note that the region, excluding any D-regions, sur-
rounding a given point a € S can be partitioned into P-
regions. Our aim is to select one allowable position from
each P-region and eliminate all others. Assuming that we
can select an allowable position from each P-region, then
we need to find an upper bound on the number of P-regions
that can exist for any point. A simple upper bound is 4,
since each P-region is adjacent to a D-region. However, in
order to construct a 2SAT instance, we need to select at
most 2 positions for each point.

LEMMA 8. Leta € S denote a point with N(C,) > N(C).
Then the number of P-regions at a is at most 2.

ProOOF. If the number D-regions at a is one, then the
number of P-regions is at most two. Consider then the case
where there are two D-regions, D; and D»; note that they
must be non-intersecting. Since each D; is determined by
a different point of S within CJ, we must have N(C.) > 2.
Let p,q € S such that p lies inside D; and q lies inside Ds.
Since N(C}) is larger than N(CY ), assume w.l.o.g. p ¢ Cy.

Consider adding points p and ¢ in that order to the neighbor-
hood of a. After adding p, we have two P-regions, each adja-
cent to one border position of Dy; call them Cone(a, 61, 62)
and Cone(a,03,04) (assume that 6; and 04 are adjacent to
D). By Lemma 6, these two P-regions are maximal clique-
sets; furthermore, by Corollary 2, we have Angle(61,603) <
132.6° and Angle(f2,64) < 132.6°. Adding ¢ creates the D-
region D3, which has angle at least 132.8°. This implies that
D5 must include at least one of the following three pairs of
positions: (i) (61, 03), (ii) (82, 04), or (iii) (02, 63). In the first
two cases, at least one of the two existing P-regions vanishes,
thus preserving our conclusion. When D, intersects both 62



and 63, the P-regions w.r.t. p simply shrink and thus remain
maximal clique-sets w.r.t. p. Any P-region caused directly
by the addition of g is a subset of either Cone(a, 61, 62) or
Cone(a,83,64)—so that no new P-region gets created. By
the same reasoning, adding a third or even a fourth point of
S within C; simply causes further shrinking of the P-regions
without increasing their number. [

COROLLARY 5. If the number of D-regions is 2 and we
have N(C.) > N(C), then each P-region is a mazimal
clique-set w.r.t. p € (C, — CV).

7. POSITION SELECTION ALGORITHM

We need to select at each point two positions that guar-
antee to produce a feasible solution; we call such positions
feasible. By Lemma 1, the feasibility of positions at a need
be considered only with the points that lie inside C,. We
briefly describe our idea. Consider a point a € S and let
Cone(a,61,62) be its P-region with a reference point p € S.
(Assume p lies in the D-region adjacent to 61 and vertical be-
low a.) Let 6,1 be a pending position at p with least absolute
angle such that C(p, 0,1, R*/p) intersects C(a, 61, R*/p). If
we have p € (C, — C), then, by Lemma 6, we have
Cone(a,61,62) as a clique-set w.r.t. p. It can be observed
that no optimal solution can simultaneously contain labels
C(p,6p1,R*) and C(a,0, R*), for any 6 € Cone(a,01,02), as
they intersect each other. Now suppose we have p € CL.
Then by Lemma 6, we have Cone(a,81,02) as a uniform
set w.r.t p; let fp2 be a position, of largest absolute an-
gle, at p such that C(p, 6p2, R*/p) intersects C(a, 02, R*/p).
Clearly, C(p, 0,2, R /p) also intersects C(a, 8, R*/p), for ev-
ery 6 € Cone(a,61,02). Thus it is sufficient to consider 6,
and ignore the remaining positions inside Cone(a, 01, 62). In
both these cases, the position 8, is feasible w.r.t. p. How-
ever, it may be possible that 65 is infeasible w.r.t. some other
point say q € C,. This situation may arise when a has more
than two P-regions, and g lies in a D-region that is different
from the D-region associated with p. We show that, irre-
spective of the positions of points p and ¢ in CJ, we can
always find two feasible positions for a. We distinguish be-
tween two subsets of points: (i) those with N(C.) > N(CZ)
and (ii) those with N(C) = N(C.).

Assume N(C;) > N(C.). By Lemma 8, the number of
P-regions at a is at most 2; let Cone(a,61,62) denote Py
and Cone(a,03,04) denote P>, the two P-regions at a, and
assume that 6; and 64 are adjacent to a D-region of a. (If the
number of D-regions at a is 2, then all four ;s are adjacent to
a D-region of a.) Without loss of generality, let us assume
0; € X,, for 1 < i < 4. Finally, we let U; C P; be the
uniform set with maximum angle, i.e., among all maximal
uniform sets which lie inside of P;, U; has the largest angle.
By Lemma 7, two cases may arise: (i) N(C.) = 0 and
(ii) N(CY) = 1. If N(CJ) = 1, we set p € C2/ and denote
its associated D-region by Cone(a, 04, 61). Furthermore, we
assume that p is vertically below a. Thus P; and P> lie on
the right and left of ap respectively.

LEMMA 9. Assume N(C.,) > N(C.). Then there ewists
a selection criterion to select two feasible positions 6,6, €
Xa-

Proor. We have either N(C.) =0 or N(C{) =1, so we
consider these two cases in turn.

Let N(C{) = 0. By Lemma 8, each P; must be a clique-
set w.r.t. each point in C,. (This is also true when a has
only one D-region, since, by assumption, there are no safe
positions.) Thus we can select 6, € X, N (P1 — P») and
0, € Xo N (P2 — P1). (If either X, N (P — P) or X, N
(P, — P1) is empty, we select just one pending position 6,
from a nonempty set X, N P;.) It is easily verified that the
positions 8, and ., are feasible.

Let N(C;) = 1. Let g and r be the points of S that lie
inside (Cy — C). If a has 2 D-regions, we set §, = f2 and
8! = 03, positions that are easily verified to be feasible. If
a has a single D-region, call it Cone(a, 04, 01), the points p,
q and r must all lie inside that region. We then have two
possibilities: (i) p is reference point of at most one P;; and
(ii) p is reference point of both P; and P».

Suppose p is a reference point of at most one P;; let it be P».
Thus P, is a maximal uniform set w.r.t. p and we have U, =
P;,. Let the reference point of P; be q. By Lemma 5, we U
must be a clique-set w.r.t. both g and r. (By Lemma 5, Us is
a clique-set w.r.t. r if and only if r has a pending position 6,
such that C(r, 8., R* /p) intersects C(a, 01, R*/p). If no such
position 8, exists, then every position inside P; is feasible
w.r.t. r; thus we can still treat U as a clique-set w.r.t. r.)
We can ignore r, as positions which are feasible w.r.t. p and
g must also be feasible w.r.t. r. It can be verified that setting
01 € X, N (U — Uz) and 67 € X, N (Us — Uy) allows us to
obtain required feasible positions.

Suppose p is a reference point of both P, and P», i.e., we
have P; = U;. In this case, using packing argument, it can
be verified that ¢ or r must lie outside C. and d(q,7) >
0.4R*. Since r lies outside C%, we have d(p,r) > 0.4R* and
d(a,r) > 0.8R*. This implies that P-regions at p and ¢ are
clique-sets w.r.t. . It can be verified that we can perform a
local search to two feasible positions for each of the points
a, p, and q separately from the rest of the points. [

Lemma 9 implies that, regardless of the selection of positions
at p, q and r, a feasible solution exists that places a circle
of size R*/p at a, provided we have N(C.) — N(CZ) > 0.

Now consider the case where (C;, —C7) does not contain any
input point. Then C? contains at most two points; consider
that it contains exactly two points (the other two cases can
be treated similarly with obvious simplifications). Let p and
q be these two points. This situation may cause a to have
more than two P-regions; with out loss of generality, let
us assume that a has four P-regions. By assumption, we
have (p,q) > 0.4R*—otherwise, by Corollary 4, we could
label a, p, and r separately. Furthermore, for any r € S,
distinct from a, p, and ¢, we have r ¢ C,. Therefore, the
points p and ¢ fall under Lemma 9, so that positions can
be selected for p and ¢ that guarantee two feasible positions
for a. Given feasible positions for points p and ¢, we can
run a local search in polynomial time to select two feasible
positions for a w.r.t. p and gq.

Now our selection algorithm is clear. We assume that the P;



for all the points are given—they can be computed in poly-
nomial time. The selection algorithm first selects positions
for each point a € S obeying N(C.) > N(C.) as discussed
in Lemma 9; it then selects two positions for each of the
remaining points using local search; let H denote these po-
sitions.

PROCEDURE SELECT

Input S = (S1,S52), a partition of S where with a €
S1 <= N(C'y) > N(CY), and, for each point a € S
the corresponding sets P;’s.

Output H of positions.

S] « S1 and H + ¢.
While(|S!| > 0)

e Leta € 5].
e Select §/, and 6]/ as in Lemma 9.
e H«+ HU{® 0" Si « S; —{a};

a’’alt"
While(|S5| > 0)

e Let a € S} and p,q € CJ.

e Select 8/ and 6!, each feasible w.r.t. p and ¢
(must exist by Lemma 9).

o« H+ HU{0,,0/}.  S,+ S,—{a};

LEMMA 10. H contains a feasible set of positions.

8. MAIN ALGORITHM

Let A denote the size of each circle. Initially, A is very small.
We start with two P-regions for each point. At each step, we
increment A and update the P-regions. We then call Pro-
CEDURE SELECT and construct 2SAT instance. We stop for
largest § for which the 2SAT is not satisfiable. The solution
can be obtained from the satisfiable instance of 25AT which
corresponds to the maximum value of §.

LEMMA 11. The algorithm has a performance guarantee
of p=3.6.

Note that for each point a, the points of S that lie in C,,
must be determined. Since we have N(C,) < 5, these points
can be computed in O(nlogn) time with the algorithm of
Dickerson et al. [4], after which the algorithm takes only
linear time to compute P- and D-regions for all the points;
solving each 25AT instance takes only linear time; and the
while loop iterates O(log R*) times.

THEOREM 1. In O(nlogn + nlog(R™)) time every point
can be labeled with circles of size 5R* [18.

This theorem assumes that K in the KPML problem is a
fixed constant. It also does not deal with potential time sav-
ings resulting from the maintenance of P-regions from itera-
tion to iteration, something easily done since P-regions must
decrease monotonically as the working label size increases.
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