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Abstract

While classical experiments on spike-timing dependenttigis ana-
lyzed synaptic changes as a function of the timingaifs of pre- and
postsynaptic spikes, more recent experiments also poitieteffect of
spiketriplets. Here we develop a mathematical framework that allows
us to characterize timing based learning rules. Moreoveridgntify a
candidate learning rule with five variables (and 5 free pa&tans) that
captures a variety of experimental data, including the ddeece of po-
tentiation and depression upon pre- and postsynaptic fireguencies.
The relation to the Bienenstock-Cooper-Munro rule as wellcasome
timing-based rules is discussed.

1 Introduction

Most experimental studies of Spike-Timing Dependent Rliagt{ STDP) have focused on
the timing of spike pairs [1, 2, 3] and so do many theoreticadels. The spike-pair
based models can be divided into two classes: either al§ dispikes contribute in a
homogeneous fashion [4, 5, 6, 7, 8, 9, 10] (called ‘all-tbtateraction in the following)
or only pairs of ‘neighboring’ spikes [11, 12, 13] (callecearest-spike’ interaction in the
following); cf. [14, 15]. Apart from these phenomenolodin®dels, there are also models
that are somewhat closer to the biophysics of synaptic aafid, 17, 18, 19].

Recent experiments have furthered our understanding afdimffects in plasticity and
added at least two different aspects: firstly, it has beewsthbat the mechanism of po-
tentiation in STDP is different from that of depression [20d secondly, it became clear
that not only the timing of pairs, but also of triplets of spgkcontributes to the outcome of
plasticity experiments [21, 22].

In this paper, we introduce a learning rule that takes thesaspects partially into account
in a simple way. Depression is triggered pgirs of spikes withpost-before-pre timing,
whereas potentiation is triggered tipl ets of spikes consisting of 1 pre- and 2 postsynaptic
spikes. Moreover, in our model the pair-based depressidades an explicit dependence
upon the mean postsynaptic firing rate. We show that suchriaihggrule accounts for two
important stimulation paradigms:

P1 (Relative Spike Timing) Both the pre- and postsynaptic spike trains consist of a burst
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of N spikes at regular intervals T', but the two spike trains are shifted by a time At =
tpost _ ¢pre,

The total weight change is a function of the relative timiAg (this gives the standard
STDP function), but also a function of the firing frequency= 1/T during the burst; cf.
Fig. 1A (data from L5 pyramidal neurons in visual cortex).

P2 (Poisson Firing) The pre- and postsynaptic spike trains are generated by two indepen-
dent Poisson processes with rates p,, and p,, respectively.

Protocol P2 has less experimental support but it helps tabksh a relation to the
Bienenstock-Cooper-Munro (BCM) model [23]. To see thaatieh, it is useful to plot
the weight change as a function of the postsynaptic firing, fieg., Aw o« ¢(p,) (cf. Fig
1B). Note that the function has only been measured indirectly in experiments [24, 25].

We emphasize that in the BCM model,

Aw = psd(py, py) )
the functiong depends not only on the current firing ratg but also on thenean firing rate

py averaged over the recent past which has the effect thatrishibid between depression
and potentiation is not fixed but dynamic. More preciselis threshold? depends non-

linearly on the mean firing rate,:
0=ap, p>1 )

with parametersy andp. Previous models of STDP have already discussed the melatio
of STDP to the BCM rule [16, 12, 17, 26], but none of these setamze completely
satisfactory as discussed in Section 4. We will also compareesults to the rule of [21]
which was together with the work of [16] amongst the firstlgipules to be proposed.
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Figure 1:A. Weight change in an experiment on cortical synapses using paitgoot (P1) (solid
line: At = 10 ms, dot-dashed linA¢ = —10 ms) as a function of the frequengy Figure redrawn
from [11]. B. Weight change in protocol P2 according to the BCM ruleffet 20, 30, 40 Hz.

2 A Framework for STDP

Several learning rules in the modeling literature can besifi@d according to the two
criteria introduced above: (i) all-to-all interaction veearest spike interaction; (ii) pair-
based vs. triplet based rules. Point (ii) can be elaboraiettidr in the context of an
expansion (pairs, triplets, quadruplets, ... of spikea) #e introduce now.

2.1 \Volterra Expansion (‘all-to-all’)

For the sake of simplicity, we assume that weight changesracthe moment of presy-
naptic spike arrival or at the moment of postsynaptic firiige direction and amplitude



of the weight change depends on the configuration of spikdeipresynaptic spike train
X(t) = >, 6(t — tF) and the postsynaptic spike traif(t) = >, 6(t — t&). With some
arbitrary functional#'[ X, Y] andG[X, Y], we write (see also [8])

W(t) = X(OF[X,Y] + Y (#)G[X,Y] 3)

Clearly, there can be other neuronal variables that infleehe synaptic dynamics. For
example, the weight change can depend on the current weédine v [8, 15, 10], the
Ca* concentration [17, 19], the depolarization [25, 27, 28 thean postsynaptic firing
rate p, (t) [23],.... Here, we will consider only the dependence upanhtstory of the
pre- and postsynaptic firing times and the mean postsynfiitig rate 5,,. Note that even
if p, depends via a low-pass filtepp, = —p, + Y (t) on the past spike trailr of the
postsynaptic neuron, the description of the problem withtout to be simpler if the mean
firing rate is considered as a separate variable. Therdftres write the instantaneous
weight change as

w(t) = X F([X, Y], py(1)) + Y () G([X, Y], py (1)) (4)

The goal is now to determine the simplest function@land G that would be consistent
with the experimental protocolB1 and P2 introduced above. Since the functionals are
unknown, we perform a Volterra expansionfofandG in the hope that a small number of
low-order terms are sufficient to explain a large body of expental data. The Volterra
expansion [29] of the function&l can be written &s

G([X,Y]) GY + /OO G3Y(s)X (t — s)ds + /00 G (s)Y (t — s)ds

+ / / G (s, 8)X(t —s)X(t — s')ds'ds
o Jo

+ / / G (s,s)X(t —s)Y(t — s')ds'ds
o Jo

+ / / G (s,s"YY(t —s)Y(t — s')ds'ds + ... (5)
0 0
Similarly, the expansion of yields

F(X,Y]) = F} +/ F¥%(s)X (t — s)ds +/ F3Y(s)Y(t—s)ds+... (6)
0 0

Note that the upper index in functions represents the typaefaction. For examplé;;*Y
(in bold face above) refers to a triplet interaction comnisgsbf 1 pre- and 2 postsynaptic
spikes. Note that th&/;”¥ term could correspond to @re-post-post sequence as well as
a post-pre-post sequence. Similarly the terd, picks up the changes caused by arrival
of a presynaptic spike after postsynaptic spike firing. S#vearning rules with all-to-all
interaction can be classified in this framework, e.g. [5,,@,®, 10].

2.2 Our Model

Not all term in the expansion need to be non-zero. In facth@results section we will
show that a learning rule witG"Y (s, s’) > 0 for all s, s’ > 0 andFy,"(s) < 0for s > 0
and all other terms set to zero is sufficient to explain thaltesrom protocols P1 and P2.
Thus, in our learning rule an isolated pair of spikes in canfigion post-before-pre will
lead to depression. An isolated spike paie-before-post, on the other hand, would not be
sufficient to trigger potentiation, whereas a trighed-post-post or post-pre-post will do so
(see Fig. 2).

!For the sake of clarity we have omitted the dependencg,on



Figure 2:A. Triplet interaction for LTFB. Pair interaction for LTD.

To be specific, we consider

/

FyY(s) = fA_(ﬁy)e_% and G3%Y(s,s") = Ape e . (7)

Such an exponential model can be implemented by a meclaojziate involving three
variables (the dot denotes a temporal derivative)

a = —i; ift:t]; then a —a+1
T+

. b . k

b = ——; ift=t, then b—0b+1 8)
T_

¢ = ——; ift=t" then c—c+1
Ty

The weight update is then
W(t) = —A_(5,) X ()b(t) + ALY (t)a(t)c(t). ©)

2.3 Nearest Spike Expansion (truncated model)

Following ideas of [11, 12, 13], the expansion can also beictsd to neighboring spikes
only. Let us denote by, (¢) the firing time of the last postsynaptic spike before titne
Similarly, f.(¢') denotes the timing of the last presynaptic spike precetlinyVith this
notation the Volterra expansion of the preceding sectiorbearepeated in a form that only
nearest spikes play a role. A classification of the models12113] is hence possible.

We focus immediately on the truncated version of our model

w(t) = X(O)FY(t = fy (1), py (1) + Y ()G5" (t — fa(t),t — fy(1)) (10)
The mechanistic model that generates the truncated vestiba model is similar to Eq. (8)
except that under the appropriate update condition, thahlargoes to one, i.e. — 1,6 —
1 andc — 1. The weight update is identical to that of the all-to-all rebdeq. (9).

3 Results

One advantage of our formulation is that we can derive eitfitianulas for the total weight
changes induced by protocols P1 and P2.

3.1 All-to-all Interaction

If we use protocol P1 with a total @¥ pre- and postsynaptic spikes at frequepshifted
by a timeAt, then the total weight chang®w is for our model with all-to-all interaction

Aw = A, Nf Ni(zv — max(k, &)) exp (—’“/”W> exp (-k) Ae(—At)

k=0 k'=1 T+ TypP
N-1

~ AL(py) <N—k>exp(
k

_kfp— At At) A (At) (1)

I
=)



where); (At) = 1— 0,00 (At) with © the Heaviside step function. The results are plotted
in Fig. 3 top-left forvV = 60 spikes.
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Figure 3: Triplet learning rule. Summary of all results of protodel (left) and P2 (right) for an
all-to-all (top) and nearest-spike (bottom) interaction scheme. For thedkfmn, the upper thick
lines correspond to positive timing\¢ > 0) while the lower thin lines to negative timing. Dashed
line: At = +2 ms, solid line: At = £10 ms and dot-dashed linA¢t = +30 ms. The error bars
indicate the experimental data points of Fig. 1A. Right column: dashedsline 8 Hz, solid line
py = 10 Hz and dot-dashed ling, = 12 Hz. Top: 7, = 200 ms, bottom:ry, = 40 ms.

The mean firing ratg,, reflects the firing activity during the recent past (beforethe start

of the experiment) and is assumed as fixed during the expetiribe exact value does not
matter. Overall, the frequency dependence of chadgess very similar to that observed

in experiments. I1fX andY are independent Poisson process, the protocol P2 giveala tot
weight change that can be calculated using standard ardsifi#n

<w> =-A_ (ﬁy)pzpny + A+pa:pg2/7-+7—y (12)

As before, the mean firing rafg, reflects the firing activity during the recent past and is
assumed as fixed during the experiment. In order to implemsliding threshold as in the
BCM rule, we taked _(p,) = 5_p; /p§ where we sepy = 10 Hz. This yields a frequency
dependent thresholtlp, ) = 3_7_p2 /(A4 71 7,p5). As can be seen in Fig. 3 top-right our
model exhibits all essential features of a BCM rule.

3.2 Nearest Spike Interaction

We now apply protocols P1 and P2 to our truncated rule, istricted to thenearest-spike
interaction; cf. Eq. (10) where the expressiorfg¥ andG3YY are taken from Eq. (7). The
weight change\w for the protocolP1 can be calculated explicitly and is plotted in Fig. 3
bottom-left. For protocoP?2 (see Fig. 3 bottom-right) we find

Py + o Pz + Oy Py + Oy

whereo,, = ngl. If we assume that, < «,, Eq. (13) is a BCM learning rule.



In summary, both versions of our learning rule (all-to-allrearest-spike) yield a fre-
guency dependence that is consistent with experimentaltsasder protocol P1 and with
the BCM rule tested under protocol P2. We note that our legrnile contains only two
terms, i.e., a triplet term (1 pre and 2 post) for potentiamd apost-pre pair term for
depression. The dynamics is formulated using five variallgs c, p,, w) and five param-
eters ¢, 7—,7y, A4, 0-). 74+ = 16.8 ms andr_ = 33.7 ms are taken from [14].A,
and_ are chosen such that the weight changesXor= +10 ms andp = 20 Hz fit the
experimental data [11].

4 Discussion - Comparison with Other Rules

While we started out developing a general framework, we fedus the end on a simple
model with only five parameters - why, then, this model andsoohe other combination
of terms? To answer this question we apply our approach taple®f other models, i.e.,
pair-based models (all-to-all or nearest spike), tripl@sed models, and others.

4.1 STDP Models Based on Spike Pairs

Pair-based models with all-to-all interaction [4, 5, 6, 79810] yield under Poisson stim-
ulation (protocol P2) a total weight change that is lineapiiasynaptic and postsynaptic
frequencies. Thus, as a function of postsynaptic frequerelways find a straight line

with a slope that depends on the integral of the STDP fundBorr]. Thus pair-based

models with all-to-all interaction need to be excluded ewiof BCM features of plasticity

[25, 24].
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Figure 4:Pair learning rule in a nearest spike interaction scheme (top) and FesPankrule (bot-
tom). For the left column, the higher thick lines correspond to positive tirixg > 0) while the
lower thin lines to negative timing. Dashed lin&¢ = 42 ms, solid line: At = +10 ms and
dot-dashed line\t = £30 ms. Right column: dashed-ling, = 8 Hz, solid linep, = 10 Hz and
dot-dashed ling, = 12 Hz. The parameters of the F-D model are taken from [21]. The dbpee
uponp, has been added to the original F-D rule( — ﬂ,ﬁi/pﬁ).

A pair-based model with nearest-spike interaction, howesan give a non-linear depen-
dence upon the postsynaptic frequency under protocol H2 fixiéd threshold between



depression and potentation [12]. We can go beyond the se#Ul1 2] by adding a suitable
dependence of the paramet&r uponp, which yields a sliding threshold; cf. Fig. 4 top
right.

But even a pair rule restricted to nearest-spike interadgsionable to account for the results
of protocol P1. An important feature of the experimentaufesswith protocol P1 is that
potentiation only occurs above a minimal firing frequencyhe postsynaptic neuron (cf.
Fig. 1A) whereas pair-based rulalsvays exhibit potentiation with pre-before-post timing
even in the limit of low frequencies; cf. Fig. 4 top left. Thatuitive reason is that at
low frequency the total weight change is proportional to riikenber ofpre-post pairings
and this argument can be directly transformed into a mathieatg@roof (details omitted).
Thus, pair-based rules of potentiation (all-to-all or msaspike) cannot account for results
of protocol P1 and must be excluded.

4.2 Comparison with Triplet-Based Learning Rules

The model of Senn et al. [16] can well account of the resultieuprotocol P1. A classi-
fication of this rule within our framework reveals that thedafe algorithm generates pair
terms of the fornpre-post andpost-pre, as well as triplet terms of the forpre-post-post
andpost-pre-pre. As explained in the previous paragraph, a pair tprmpost generated
potentiation even at very low frequencies which is not stigli In order to avoid this effect
in their model, Senn et al. included additional thresholdeswhich increased the number
of parameters in their model to 9 [16] while the number of ablés is 5 as in our model.
Moreover, the mapping of the model of Senn et al. to the BCM iwihot ideal, since the
sliding threshold is different for each individual synajké).

An explicit triplet rule has been proposed by Froemke and [2ah In our framework,
the rule can be classified as a combination of triplet termgdtentiation and depression.
Following the same line or argument as in the preceding @estwe can calculate the
total weight change for protocols P1 and P2. The result isvaha Fig. 4 bottom. We
can clearly see that the pairing experimétityields a behavior opposite to the one found
experimentally and the BCM behavior is not at all reproduecgorotocol P2.

4.3 Summary

We consider our model as a minimal model to account for resdifbrotocol P1 and P2, but,
of course, several factors are not captured by the modet, Biur model has no dependence
upon the current weight value, but, in principle, this cobklincluded along the lines
of [10]. Second, the model has no explicit dependence upemtbmbrane potential or
calcium concentration, but the postsynaptic neuron eptaysvia its firing activity. Third,
and most importantly, there are other experimental paraslitpat have to be taken care of.

In a recent series of experiments Bi and colleagues [22] bgstematically studied the
effect of symmetric spike tripletspfe-post-pre or post-pre-post) and spike quadruplets
(e.g.,pre-post-post-pre) in hippocampal cultures. While the model presented in thjzep
is intended to model the synaptic dynamic for L5 pyramidalroes in the visual cortex
[11], it is possible to consider a similar model for the hippmpus containing two extra
terms (a pair term for potentiation and and triplet term fepission).
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