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Maximization of information transmission by a spiking-neuron
model predicts changes of synaptic connections that depend on
timing of pre- and postsynaptic spikes and on the postsynaptic
membrane potential. Under the assumption of Poisson firing sta-
tistics, the synaptic update rule exhibits all of the features of the
Bienenstock–Cooper–Munro rule, in particular, regimes of synaptic
potentiation and depression separated by a sliding threshold.
Moreover, the learning rule is also applicable to the more realistic
case of neuron models with refractoriness, and is sensitive to
correlations between input spikes, even in the absence of presyn-
aptic rate modulation. The learning rule is found by maximizing the
mutual information between presynaptic and postsynaptic spike
trains under the constraint that the postsynaptic firing rate stays
close to some target firing rate. An interpretation of the synaptic
update rule in terms of homeostatic synaptic processes and spike-
timing-dependent plasticity is discussed.

computational neuroscience � information theory � learning �
spiking-neuron model � synaptic plasticity

The efficacy of synaptic connections between neurons in the
brain is not fixed, but it varies, depending on the firing

frequency of presynaptic neurons (1, 2), the membrane potential
of the postsynaptic neuron (3), spike timing (4–6), and intra-
cellular parameters such as the calcium concentration; for a
review see ref. 7. During the last decades, a large number of
theoretical concepts and mathematical models have emerged
that have helped to understand the functional consequences of
synaptic modifications, in particular, long-term potentiation
(LTP) and long-term depression (LTD) during development,
learning, and memory; for reviews see (8–10). Apart from the
work of Hebb (11), one of the most influential theoretical
concepts has been the Bienenstock–Cooper–Munro (BCM)
model originally developed to account for cortical organization
and receptive field properties during development (12). The
model predicted (i) regimes of both LTD and LTP, depending
on the state of the postsynaptic neuron, and (ii) a sliding
threshold that separates the two regimes. Both predictions i and
ii have subsequently been confirmed experimentally (2, 13, 14).

In this paper, we construct a bridge between the BCM model
and a seemingly unconnected line of research in theoretical
neuroscience centered around the concept of optimality.

There are indications that several components of neural
systems show close to optimal performance (15–17). Instead of
looking at a specific implementation of synaptic changes, defined
by a rule such as in the BCM model, we therefore ask what would
be the optimal synaptic update rule so as to guarantee that a
spiking neuron transmits as much information as possible?
Information theoretic concepts have been used by several re-
searchers because they allow to compare performance of neural
systems with a fundamental theoretical limit (16, 17), but optimal
synaptic update rules have so far been mostly restricted to a pure
rate description (18–21). In the following, we apply the concept

of information maximization to a spiking-neuron model with
refractoriness. Mutual information is maximized under the
constraint that the postsynaptic firing rate stays as close as
possible to the neuron’s typical target firing rate stabilized by
homeostatic synaptic processes (22). In the special case of
vanishing refractoriness, we find that the optimal update rule has
the two BCM properties, i.e., regimes of potentiation and
depression separated by a sliding threshold. In contrast to the
optimality approach of Intrator and Cooper (23), the sliding
threshold follows automatically from our formulation of the
optimality problem. Moreover, our extension of the BCM rule to
spiking neurons with refractoriness shows that synaptic changes
should naturally depend on spike timing, spike frequency, and
postsynaptic potential (PSP), which is in agreement with exper-
imental results.

Methods and Models
Spiking-Neuron Model. We consider a stochastically spiking-
neuron model with refractoriness. For simulations, and also for
some parts of the theory, it is convenient to formulate the model
in discrete time with step size �t, i.e., tk � k�t. However, for the
ease of interpretation and with respect to a comparison with
biological neurons, it is more practical to turn to continuous time
by taking �t 3 0. The continuous time limit is indicated in the
following formulas by a right arrow (3). The postsynaptic
neuron receives input at N synapses. A presynaptic spike train
at synapse j is described in discrete time as a sequence xj

k (k �
1, . . . , K) of zeros (no spike) and ones (spike). The upper index
k denotes time bin k. Thus, xj

k � 1 indicates that a presynaptic
spike arrived at synapse j at a time tj

( f ) with tk�1 � tj
( f ) � tk. Each

presynaptic spike evokes a PSP of amplitude wj and exponential
time course �(t � tj

( f )) with time constant �m � 10 ms. The
membrane potential at time step tk is denoted as u(tk) and
calculated as the total PSP

u�tk� � ur � �
j�1

N �
n�1

k

wj��tk � tn�xj
n 3 ur � �

j

�
f

wj��t � tj
�f��,

[1]

where ur � �70 mV is the resting potential. The probability �k

of firing in time step k is a function of the membrane potential
u and the refractory state R of the neuron,

�k � 1 � exp��g�u� tk��R� tk�� t� � g�u� tk��R� tk�� t ,

[2]
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where �t is the time step and g is a smooth increasing function
of u. Thus, the larger the membrane potential, the higher the
firing probability. For �t 3 0, we may think of g(u)R(t) as the
instantaneous firing rate, or hazard of firing, given knowledge
about the previous firing history. We focus on nonadapting
neurons where the refractoriness R depends only on the timing
of the last postsynaptic spike, but the model can be easily
generalized to include a dependence on earlier spikes as well.
More specifically, we take for the simulations

R�t� �
�t � t̂ � �abs�

2

� refr
2 � � t � t̂ � �abs�

2 	� t � t̂ � �abs� , [3]

where t̂ denotes the last firing time of the postsynaptic neuron,
�abs � 3 ms is the absolute refractory time, and �refr � 10 ms is
a parameter characterizing the duration of relative refractori-
ness. The Heaviside function 	(x) takes a value of one for
positive arguments and vanishes otherwise. With a function R(t)
such as in Eq. 3 that depends only on the most recent postsyn-
aptic spike, the above neuron model has renewal properties and
can be mapped onto a spike-response model with escape noise
(9). Except for Fig. 2, we take throughout the paper g(u) �
r0 log{1 
 exp[(u � u0)��u]} with u0 � �65 mV, �u � 2 mV,
and r0 � 11 Hz. This set of parameters corresponds to in vivo
conditions with a spontaneous firing rate of �1 Hz. The function
g(u) and the typical firing behavior of the neuron model are
shown in Fig. 1A. For Fig. 2, we consider the case �abs � �refr �
0 and an instantaneous rate g2(u) � {10 ms 
 [1�g(u)]}�1 with
g(u) as above i.e., the neuron model exhibits no refractoriness
and is defined by an inhomogeneous Poisson process with
maximum rate of 100 Hz; compare Fig. 1 A. Integration of all
equations is performed in MATLAB on a standard personal
computer by using a time step �t � 1 ms.

Spike Trains. The output of the postsynaptic neuron at time step
tk is denoted by a variable yk � 1 if a postsynaptic spike occurred
between tk�1 and tk and 0 otherwise. A specific output spike train
up to time bin k is denoted by uppercase letters Yk � {y1, y2, . . . ,
yk}. Because spikes are generated by a random process, we
distinguish the random variable Yk by using boldface characters
from a specific realization Yk. Note that the lowercase variable
yk refers always to a specific time bin, whereas the uppercase
variable Yk refers to a whole spike train. Similar remarks hold for
the input: X is the random variable characterizing the input at all
synapse 1 � j � N; Xk is a specific realization of all input spike
trains up to time tk; Xj

k � {xj
1, xj

2, . . . , xj
k} a specific realization

of an input spike train at synapse j, and xj
k, its value in time bin

k. For given presynaptic spike trains Xk and postsynaptic spike
history Yk�1, the probability of emitting a postsynaptic spike is
described by the following binary distribution:

P�yk�Yk�1, Xk� � ��k�yk
�1 � �k��1�yk� [4]

since yk � {0, 1}. Analogously, we find the marginal probability
of yk given Yk�1

P�yk�Yk�1� � ���k�yk
�1 � ��k��1�yk� [5]

where ��k � ��kXk�Yk�1 and ��X
k�Yk�1 � �X

k � P(Xk �Yk�1).
From probability calculus, we obtain the conditional proba-

bility of the output spike train Yk given the presynaptic spike
trains Xk,

P�Yk�Xk� � �
l�1

k

P�yl�Yl�1, Xl�, [6]

and an analogous formula for the marginal probability distribu-
tion of P(Yk). With Eqs. 4 and 6, we have an expression for the
probabilistic relation between an output spike train and an
ensemble of input spike trains.

Mutual Information Optimization. Transmission of information
between an ensemble of presynaptic spike trains XK of total
duration K�t and the output train YK of the postsynaptic neuron
can be quantified by the mutual information (24)

I�YK; XK� � �
YK,XK

P�YK, XK� log
P�YK�XK�

P�YK�
. [7]

While it is easier to transmit information if the postsynaptic
neuron increases its firing rate, firing at high rates is costly from
the point of view of energy consumption and also difficult to
implement by the cells biophysical machinery. We therefore
optimize information transmission under the condition that the
firing statistics P(YK) of the postsynaptic neuron stays as close as
possible to a target distribution P̃(YK). With a parameter � (set
to � � 1 for the simulations), the quantity we maximize is
therefore

Fig. 1. Neuron model. (A Left) Output rate 	post of the model neuron (solid
line, spiking neuron model used in Figs. 3–5; green dashed line, Poisson model
used in Fig. 2) as a function of presynaptic spike arrival rate at n � 100 synapses.
All synapses have the same efficacy wj � 0.5, and are stimulated by indepen-
dent Poisson trains at the same rate 	. (Center) Interspike interval distribution
PISI of the spiking neuron model during firing at 10 (blue line), 20 (green line),
or 30 Hz (red line). Firing is impossible during the absolute refractory time of
�abs � 3 ms. (Right) The function g(u) used to generated action potentials (see
Methods and Models for details). (B) From the first row to the fourth row (with
the first row being at the top): The measure Cj that is sensitive to correlations
between the state of the postsynaptic neuron and presynaptic spike arrival at
synapse j, the PSPs caused by spike arrival at the same synapse j, the membrane
potential u, and the postsynaptic factor Bpost of Eq. 14 as a function of time.
During postsynaptic action potentials, the postsynaptic factor Bpost has
marked peaks. Their amplitude and sign depend on the membrane potential
at the moment of action potential firing. The coincidence measure Cj exhibits
significant changes only during the duration of PSPs at synapse j.
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L � I�YK; XK� � �D�P�YK��P̃�YK�� , [8]

where D(P(YK)��P̃(YK)) � �YKP(YK)log(P(YK)�P̃(YK)) denotes
the Kullback–Leibler divergence (24). The target distribution is
that of a neuron with constant instantaneous rate g̃ (set to g̃ �
30 Hz throughout the paper except for Fig. 2) modulated by the
refractory variable R(t), i.e., that of a renewal process.

The main idea of our approach is as follows. We assume that
synaptic efficacies wj can change within some bounds 0 � wj �
wmax so as to maximize information transmission under the
constraint of a fixed target firing rate. To derive the optimal rule
of synaptic update, we calculate the gradient of Eq. 8. Applying
the chain rule of information theory (24) to both the mutual
information I and the Kullback–Leibler divergence D, we can
write L � �k�1

K �Lk where

�Lk � �log
P�yk�Yk�1, Xk�

P�yk�Yk�1�
� � log

P�yk�Yk�1�

P̃�yk�Yk�1� Yk,Xk

,

[9]

with ��Xk,Yk � �Xk,Yk � P(Xk, Yk). Assuming slow changes of
synaptic weights, we apply a gradient ascent algorithm to max-
imize the objective function and change the synaptic efficacy wj
at each time step by �wj

k � 
(��Lk��wj) with an appropriate
learning rate 
. Evaluation of the gradient (see Supporting Text,
which is published as supporting information on the PNAS web
site) yields

�wj
k � 
�Cj

k�Fk � �Gk�Xk,Yk, [10]

with three functions Cj, F, and G, described in the following.
First, with �� denoting the derivative of � with respect to u, the
quantity

Cj
k � �

l�k�ka

k �
n�1

l

��tl � tn�xj
n ��l

�l �yl �
1 � yl

1 � �l �l� [11]

is a measure that counts coincidences between postsynaptic
spikes (yl � 1) and the time course of PSPs generated by
presynaptic spikes (xj

n � 1) at synapse j, normalized to an
expected value �Cj

kYk�XK � 0. The time span ka of the coincidence
window is given by the width of the autocorrelation of the spike

train of the postsynaptic neuron (see Supporting Text and Fig. 6
which are published as supporting information on the PNAS web
site). The term

Fk � log
P�yk�Yk�1, Xk�

P�yk�Yk�1�
� yklog

�k

�� k � �1 � yk� log
1 � �k

1 � �� k

[12]

compares the instantaneous firing probability �k at time step k
with the average probability, ��k and, analogously, the term Gk �
log(P(yk�Yk�1)�P̃(yk�Yk�1)) compares the average probability
with the target value �̃k � g̃R(tk)�t. We note that both F and G
are functions of the postsynaptic variables only. We therefore
introduce a postsynaptic factor Bpost by the definition Bpost(tk) �
[Fk � �Gk]��t and take the limit �t3 0. Under the assumption
of small learning rate 
 (i.e., 
 � 10�4 in our simulations), the
expectations �X,Y in Eq. 10 can be approximated by averaging
over a single long trial that allows us to define an on-line rule
(dwj(t)�dt) � 
Cj(t)Bpost(t � �) with a postsynaptic factor

Bpost� t� � �� t � t̂ � �� log� g�u� t��
g� � t� 	 g̃

g� � t�

��

�R� t��g�u� t�� � �1 � ��g� � t� � � g̃� , [13]

where t̂ is the firing time of the last postsynaptic spike. The delay
� in the Dirac-� function reflects the order of updates in a single
time step of the numerical implementation, i.e., we first update
the membrane potential, then the last firing time t̂, then the
factors Cj and B, and finally the synaptic efficacy wj; for the
mathematical theory, we take �3 0. The rate g�(t) � �g(u(t))X�Y
denotes an expectation over the input distribution given the
recent firing history of the postsynaptic neuron. For a numerical
implementation, it is convenient to estimate the expected rate
g(t) by a running average with exponential time window (a time
constant of 10 s). Similarly, we replace the rectangular coinci-
dence count window in Eq. 11 by an exponential one (with a time
constant of 1 s; see Supporting Text).

Results
We analyzed information transmission for a model neuron that
receives input from 100 presynaptic neurons. A presynaptic spike
that arrives at time tj

( f ) at synapse j evokes an excitatory PSP of
time course �(t � tj

( f )). The amplitude wj of the postsynaptic
response is taken as a measure of synaptic efficacy and subject
to synaptic dynamics. Firing of the postsynaptic neuron is more
likely if the total PSP u(t) � ur 
 �j �f wj�(t � tj

( f )) is large;
however, because of refractoriness firing is suppressed after a
postsynaptic action potential at time t̂ by a factor R, which
depends on the time since the last postsynaptic spike; see
methods for details.

Maximizing the mutual information between several presyn-
aptic spike trains and the output of the postsynaptic neuron can
be achieved by a synaptic update rule that depends on the
presynaptic spike arrival time tj

( f ), the postsynaptic membrane
potential u, and the last postsynaptic firing time t̂. More precisely,
the synaptic update rule can be written as

dwj

dt
� 
Cj�t�Bpost� t � �� [14]

where Cj is a measure sensitive to correlations between pre- and
postsynaptic activity, and B post is a variable that characterizes the
state of the postsynaptic neuron (see Methods and Models). 
 is
a small learning parameter. We note that in standard formula-
tions of Hebbian learning, changes of synaptic efficacies are
driven by correlations between pre- and postsynaptic neurons,

Fig. 2. Relation to BCM rule. (A) The function (	post) of the BCM learning
rule Eq. 16 derived from our model under assumption of Poisson firing
statistics of the postsynaptic neuron. A value of (	post) � 0 for a given
postsynaptic rate 	post means that synapses are potentiated when stimulated
presynaptically. The transition from depression to potentiation occurs at a
value � that depends on the average firing rate 	� post of the postsynaptic
neuron (blue 	� post � 10 Hz; green 	� post � 20 Hz; red 	� post � 30Hz). B. The
threshold � as a function of 	� post for different choices of the parameter �, i.e.,
� � 0.5 (purple); � � 1 (black); � � 2 (orange).
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similar to the function Cj(t). The above update rule, however,
augments these correlations by a further postsynaptic factor
Bpost.

This postsynaptic factor Bpost depends on the firing time of the
postsynaptic neuron, the refractory state of the neuron, its
membrane potential u by means of the instantaneous firing
intensity g(u), and on its past firing history by means of g�(t). The
postsynaptic factor can be decomposed into two terms: the first
term compares the instantaneous firing intensity g(u) with its
running average g�(t) and the second term compares the running
average with a target rate g̃. Thus, the first term of Bpost measures
momentary significance of the postsynaptic state, whereas its
second term accounts for homeostatic processes; see Methods
and Models for details.

The variable Cj measures correlations between the postsyn-
aptic neuron and its presynaptic input at synapse j

dCj�t�
dt

� �
Cj� t � ��

�C

� �
f

�� t � t j
�f��S� t���� t � t̂ � �� � g�u� t��R� t�� ,

[15]

with time constant �C � 1s. Here g(u(t))R(t) is the instantaneous
firing rate modulated by the refractory function R(t), and S(t) �
g�(u(t))�g(u(t)) is the sensitivity (the prime denoting the derivate
with respect to u) of the neuron to a change of its membrane
potential. The term with the Dirac �-function �(t � t̂ � �) induces
a positive jump of Cj immediately (with short delay �) after each
postsynaptic spike. Between postsynaptic spikes, Cj evolves
continuously. Significant changes of Cj are conditioned on the
presence of a PSP �(t � tj

( f )) caused by spike arrival at synapse
j. In the absence of presynaptic input, the correlation estimate
decays with time constant �C back to 0.

Both the correlation term Cj and the postsynaptic factor Bpost

can be estimated online (Fig. 1) and use only information that
could, directly or indirectly, be available at the site of the
synapse: information about postsynaptic spike firing could be
conveyed by backpropagating action potentials; timing of pre-
synaptic spike arrival is transmitted by neurotransmitter recep-
tors; and the total PSP can be estimated, although not perfectly,
from the local potential at the synapse. The direction of change
of a synapse is determined by a subtle interplay between the
correlation term Cj and the postsynaptic factor Bpost, which can
both be positive or negative.

To elucidate the balance between potentiation and depression
of synapses, we first considered a simplified neuron model
without refractoriness and firing rate 	post � g2(u). In this special
case, the synaptic update rule Eq. 10 can be rewritten in the
simpler form

d
dt

wj � 
	j�	post, �� , [16]

where vj is the instantaneous firing rate of the presynaptic neuron
as estimated from the amplitude of the PSP. vj � a �f �(t � tj

( f ))
generated at synapse j [If the potential is measured in millivolts
and time in milliseconds, then the proportionality constant a has
units 1�(mV ms)]. (	post, �) � f(	post)log(	post��) is a function
that depends on the instantaneous postsynaptic firing rate
	post � g2(u) and a parameter �. The function f is proportional
to the derivative of g2, i.e., f(	post) � g�2�a evaluated at u �
g2

�1(	post). The parameter � denotes the transition from a regime
of potentiation to that of depression. It depends on the recent
firing history of the neuron and is given by

��t� � 	�post� t�	 	� post� t�
g̃ 
 �

, [17]

where g̃ � 20 Hz denotes a target value of the postsynaptic rate
implemented by homeostatic processes (22) and 	� post(t) is a
running average of the postsynaptic rate. The function  in Eq.
16 shown in Fig. 2 is characteristic for the BCM learning rule
(12). Our approach by information maximization predicts a
specific form of this function that can be plotted either as a
function of the postsynaptic firing rate 	post or as a function of
the total PSP u � g2

�1(	post), in close agreement with experiments
(2, 13). Moreover, because information maximization was per-
formed under the constraint of a fixed target firing rate, our
approach yields automatically a sliding threshold of the form
postulated in ref. 12, but on different grounds. Thus for neurons
without refractoriness, i.e., a pure rate model, our update rule
for synaptic plasticity reduces exactly to the BCM rule.

An application of rate models to stimulation paradigms that
vary on a time scale of tens of milliseconds or less has often been
questioned because an interpretation of rate is seen as prob-
lematic. Our synaptic update rule is based on a spiking-neuron
model that includes refractoriness and that captures properties
of much more detailed neuron models well (25). The learning
rule for spiking neurons has a couple of remarkable properties
that we explore now.

First, we consider a pattern discrimination task in a rate
coding paradigm. Patterns are defined by the firing rate 	pre of
25 presynaptic neurons (	pre � 2, 13, 25, and 40 Hz for patterns,
1–4, respectively) modeled as independent Poisson spike trains.
The remaining 75 synapses received uncorrelated Poisson input
at a constant rate of 20 Hz. Each second, a pattern was chosen
stochastically and applied during 1 sec. Those synapses that
received pattern-dependent input developed strong efficacies
close to the maximal value wmax � 1, whereas most of the other
75 synapses developed weaker ones; compare Fig. 3. However,

Fig. 3. Pattern discrimination. The first 25 synapses 1 � j � 25 are stimulated
by Poisson input with a rate 	pre � 2, 13, 25, and 40 Hz that changes each
second. The remaining 75 synapses receive Poisson input at a constant rate of
20 Hz. (A Upper) Evolution of all synaptic weights as a function of time (red;
strong synapses, wj � 1; blue: depressed synapses, wj � 0). All synapses are
initialized at the same value wj � 0.1. (Lower) The evolution of the average
efficacy of the 25 synapses that receive pattern-dependent input (red line) and
that of the 75 other synapses (blue). Typical examples of individual traces
(synapse 1: black and synapses 30: green) are given by the dashed lines. (B
Upper) Evolution of the average mutual information I per bin (blue line and
left scale) and of the average Kullback–Leibler distance D per bin as a function
of time. Averages are calculated over segments of 1 min. (Lower) Output rate
(spike count during 1 sec) as a function of pattern index before (blue bars) and
after (red bars) learning.
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some of the weakly driven synapses also spontaneously increased
their efficacy. This was necessary for the neuron to achieve a
mean postsynaptic firing rate close to the target firing rate.
Despite the fact that the mean firing rate approaches on a time
scale of tens of seconds the target rate, the spike count in each
1-sec segment is strongly modulated by the input pattern and can
be used to distinguish the patterns (Fig. 3B) with a misclassifi-
cation error of �20%. (See Supporting Text and Fig. 7, which is
published as supporting information on the PNAS web site.)

In a second set of simulation experiments, we again studied
rate coding, but considered two groups of input defined by
periodic modulation of the presynaptic firing rates. More pre-
cisely, 40 neurons received input spike trains generated by an
inhomogeneous Poisson process with common rate modulation
v(t) � v0 
 A sin (2� t�T) with amplitude A � 10 Hz and period
T � 100 ms. Another group of 40 neurons received modulated
input of the same amplitude and period, however, with a phase
shift �. The remaining 20 synapses received Poisson input at a
fixed rate v0 � 20 Hz. All 100 inputs projected onto nine
postsynaptic neurons. Synaptic weights were initialized randomly
(between 0.10 and 0.12) and evolved according to the update
rule Eq. 14. Of the nine postsynaptic neurons, four developed
strong connections to the first group of correlated inputs,
whereas five developed strong connections to the second group

of correlated inputs (Fig. 4A). The rate of the output neurons
reflects the modulation of their respective inputs (Fig. 4B). To
summarize, the synaptic update rule derived from the principle
of information maximization drives neurons to spontaneously
detect and specialize for groups of coherent inputs. Just as in the
standard BCM rule, several output neurons (with different
specialization) are needed to account for the different features
of the input.

Whereas the two preceding paradigms focused on rate mod-
ulation, we now show that, even if all presynaptic neurons fire at
the same mean rate, the presence of weak spike-spike correla-
tions in the input is sufficient to bias the synaptic selection
mechanism; compare Fig. 5. All synapses received spike input at
the same rate of 20 Hz, but the spike trains of 50 synapses showed
weak correlations (c � 0.1), whereas the remaining 50 synapses
received uncorrelated input. Most of the 50 synapses that
received a weakly correlated input increased their weights under
application of the synaptic update rule (Fig. 5). If at a later stage
the group of correlated inputs changes, the newly included
synapses will be strengthened as well, whereas those that are no
longer correlated decay. Moreover, the final distribution of
synaptic efficacies persists, even if the input is switched to
random spike arrival. Thus the synaptic update rule is sensitive
to spike–spike correlations on a millisecond scale, which would
be difficult to account for in a pure rate model. A biophysical
signature of spike–spike correlations are systematic and large
fluctuations of the membrane potential. If several postsynaptic
neurons receive the same input, their outputs are again corre-
lated and generate large fluctuations in the membrane potential

Fig. 4. Rate modulation. (A) Distribution of synaptic efficacies of nine
postsynaptic neurons after 60 min of stimulation with identical inputs for all
neurons. Synapses 1 � j � 40 (red symbols) received Poisson input with
common rate modulation; the input at synapses 41 � j � 80 (blue symbols) was
also rate-modulated but phase-shifted; and the input at the remaining 20
synapses was uncorrelated (green symbols). Four postsynaptic neurons (num-
bers 1, 3, 5, and 8) develop a spontaneous specialization for the first group of
modulated input (red symbols close to the maximum efficacy of one) and five
(numbers 2, 4, 6, 7, and 9) specialized for the second group. (B) Modulation of
the output rate of the nine postsynaptic neurons before (Left) and after
(Right) learning. Red�blue bars, neurons responding to the first�second group
of input; Red�blue lines, modulation of the input of groups 1 and 2.

Fig. 5. Spike–spike correlations. The n � 100 synapses have been separated
into four groups of 25 neurons each (group A, 1 � j � 25; group B, 26 � j � 50;
group C, 51 � j � 75; group D, 76 � j � 100). All synapses were stimulated at
the same rate of 20 Hz. However, during the first 15 min of simulated time,
neurons in groups C and D were uncorrelated, whereas the spike trains of the
remaining 50 neurons (groups A and B) had correlations of amplitude c � 0.1,
i.e., 10% of the spike arrival times were identical between each pair of
synapses. After 15 min, correlations changed so that group A became corre-
lated with C, whereas B and D were uncorrelated. After 45 min of simulated
time, correlations stopped, but stimulation continued at the same rate. (A
Upper) Evolution of all 100 weights (red, potentiated; blue, depressed).
(Lower) Average mutual information per bin as a function of time. In the
absence of correlations (t � 45 min), mutual information is lower than before,
but the distribution of synaptic weights remains stable. (B) Nine postsynaptic
neurons 1 � i � 9 with membrane potential ui(t) are stimulated as discussed
in A and project to a readout unit with potential h(t) � �i � 1

9 �m�(t � ti
m)

where the sum runs over all output spikes m of all nine neurons. Mean
membrane potentials are u� and h� , respectively. The fluctuations �u � � (ui(t) �
u� )20.5 of the PSPs (blue line, top graph) and those of the readout potentials
(�h � �(h(t) � h� )20.5, green line) are correlated (Lower) with the mutual
information and can serve as neuronal signal.
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of a readout neuron further down the processing chain (Fig. 5B).
Thus, information that is potentially encoded in millisecond
correlations in the input can be detected, enhanced, transmitted,
and read out by other neurons.

Discussion
The synaptic update rule discussed in this paper relies on the
maximization of the mutual information between an ensemble of
presynaptic spike trains and the output of the postsynaptic
neuron. As in all optimization approaches, optimization has to
be performed under some constraint. Because information
scales with the postsynaptic firing rate, but high firing rates
cannot be sustained by the biophysical machinery of the cell over
long times, we imposed that, on average, the postsynaptic firing
rate should stay close to a desired firing rate. This idea is
consistent with the widespread finding of homeostatic processes
that tend to push a neuron always back into its preferred firing
state (22). The implementation of this idea in our formalism gave
naturally rise to a control mechanism that corresponds exactly to
the sliding threshold in the original BCM model (12). While
derivations of the BCM model from optimality concepts (23, 19)
or statistical approaches (26) are not new, our approach gives
another perspective on the concept of a sliding threshold.

Our derivation extends the BCM model, which was originally
designed for rate models of neuronal activity to the case of
spiking-neuron models with refractoriness. Spiking-neuron
models of the integrate-and-fire type, such as the one presented
here, can be used to account for a broad spectrum of neuronal
firing behavior, including the role of spike–spike correlations,
interspike interval distributions, coefficient of variations, and
even timing of single spikes; for a review, see ref. 9. The essential

ingredients of the spiking neuron model considered here were (i)
PSPs generated by presynaptic spike arrival, (ii) a heuristic
spiking probability that depends on the total PSP, and (iii) a
phenomenological account of absolute or relative refractoriness.
The synaptic update rule depends on all three of these quantities.
While we do not imply that synaptic potentiation and depression
of real neurons are implemented the way it is suggested by our
update rule, the rule shows nevertheless some interesting
features.

First, in contrast to pure Hebbian correlation driven learning,
the update rule uses a correlation term modulated by an
additional postsynaptic factor. Thus, presynaptic stimulation is
combined with a highly nonlinear function of the postsynaptic
state to determine the direction and amplitude of synaptic
changes. The essence of the BCM rule (presynaptic gating
combined with nonlinear postsynaptic term) is hence translated
into a spike-based formulation.

Second, the spike-based formulation of a synaptic update rule
should allow a connection to spike-timing-dependent plasticity
(5, 6) and allow its interpretation in terms of optimal information
transmission (27–29). Given the highly nonlinear involvement of
postsynaptic spike times and PSP in the optimal synaptic update
rule, a simple interpretation in terms of pairs or pre- and
postsynaptic spikes as in many standard models of synaptic
plasticity (30, 31) can only capture a small portion of synaptic
plasticity phenomena. The optimal learning rule suggests that
nonlinear phenomena (32–35) are potentially highly relevant.
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