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Cognitive Navigation Based on Nonuniform Gabor
Space Sampling, Unsupervised Growing Networks,

and Reinforcement Learning
Angelo Arleo, Fabrizio Smeraldi, and Wulfram Gerstner

Abstract—We study spatial learning and navigation for au-
tonomous agents. A state space representation is constructed by
unsupervised Hebbian learning during exploration. As a result
of learning, a representation of the continuous two-dimensional
(2-D) manifold in the high-dimensional input space is found. The
representation consists of a population of localized overlapping
place fields covering the 2-D space densely and uniformly. This
space coding is comparable to the representation provided by
hippocampal place cells in rats. Place fields are learned by
extracting spatio-temporal properties of the environment from
sensory inputs. The visual scene is modeled using the responses of
modified Gabor filters placed at the nodes of a sparse Log-polar
graph. Visual sensory aliasing is eliminated by taking into account
self-motion signals via path integration. This solves the hidden
state problem and provides a suitable representation for applying
reinforcement learning in continuous space for action selection.
A temporal-difference prediction scheme is used to learn sensori-
motor mappings to perform goal-oriented navigation. Population
vector coding is employed to interpret ensemble neural activity.
The model is validated on a mobile Khepera miniature robot.

Index Terms—Gabor decomposition, Hebbian learning, hip-
pocampal place cells, log-polar sampling, population vector
coding, reinforcement learning, robot navigation, spatial memory,
unsupervised learning.

I. INTRODUCTION

TO solve complex spatial tasks, both animals and robots
must interact with their environments to construct space

representations which support goal-oriented behaviors. Neuro-
physiological findings suggest that spatial learning in rodents is
supported by place- and direction-sensitive cells. Hippocampal
place (HP) cells in rats provide a spatial representation in al-
locentric (world centered) coordinates [1]. HP cells discharge
action potentials only when the animal is in a specific region
of the environment, which defines the place field of the cell.
Complementing this, head direction (HD) cells encode the rat’s
allocentric heading in the azimuthal plane [2]. A HD cell fires
maximally only when the rat’s head is oriented to a specific di-
rection, regardless of the orientation of the head relative to the
body, of the rat’s location, or of the animal’s ongoing behavior.
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This paper addresses two main questions.

i) How can robots establish appropriate place representa-
tions based on locally available sensory information?
We propose a neural architecture in which multimodal
sensory signals are used to achieve space coding. We
stress the importance of combining allothetic (e.g., vi-
sual) and idiothetic (e.g., self-motion) signals to learn
stable representations (Fig. 1). Place fields based on vi-
sion are determined by a combination of environmental
cues whose mutual relationships code for the current
agent’s location. However, when dependent on visual
data alone, the representation encoded by place cells
does not fulfill the Markov hypothesis (in the framework
of Markov Decision Processes, the first-order Markov
hypothesis assumes that the future state of the system
only depends on its present state, and not on its past his-
tory) [3]. Indeed, distinct areas of the environment may
provide equivalent visual patterns (perceptual aliasing)
and lead to singularities in the vision-based representa-
tion. We employ idiothetic signals (i.e., path integration)
along with vision in order to remove such singularities
and solve the hidden-state problem. Conversely, visual
cues are used to prevent the path integrator (i.e., the
odometer) from cumulative error over time. This closed
sensory loop results in stable space coding. During the
agent-environment interaction, correlations between vi-
sually driven cells and path-integration are discovered
by means of unsupervised Hebbian learning. Thus, al-
lothetic and idiothetic space codings converge to create
a robust multimodal space representation consisting of
a large number of localized overlapping place fields.
The rationale behind such a redundant space code is
two-fold; first, to cover the space uniformly to generate
a continuous coarse coding representation (similar to a
dense family of overlapping basis functions); and second,
to use the place cell population activity, rather than the
single cell activity, for self-localization. We apply pop-
ulation vector coding [4] to map the ensemble place
cell activity into spatial locations.

ii) How can place cells serve as a basis for goal-oriented
navigation? To accomplish its functional role in spatial
behavior, the model must incorporate the information
about relationships between the environment, its ob-
stacles and specific target locations. Place units drive
a downstream population of locomotor action units
(Fig. 1). Action learning relies on the reward-dependent
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Fig. 1. Overview of the system. The visual pathway of the model (left)
includes a set of Gabor filters for image processing, a set of view cells (V C)
to encode views, and a network of vision-based place cells (V iPC). The
idiothetic pathway (right) includes the path integrator and a set of units
(PiPC) providing space coding based on self-motion stimuli. V iPC and
PiPC converge onto the hippocampal place cell layer (HPC) where the
final space representation is formed. The HPC network drives action units to
support goal-directed behavior and navigation is achieved by mapping place
cell activity into actions based on reinforcement learning.

modification of the connections from place to action
units. This results in an ensemble pattern of activity of
the action units that provides a goal-oriented navigation
map. It is shown that the spatial learning system provides
an incrementally learned representation suitable for ap-
plying reinforcement learning in continuous state spaces
[5]. A direct implementation of reinforcement learning
on real visual streams would be impossible given the
high dimensionality of the visual input space. A place
field representation extracts the low-dimensional view
manifold on which efficient reinforcement learning is
possible. The overlapping place fields provide a “natural”
set of basis functions in the sense we do not have to
choose parameters like width and location of the basis
functions (rather, they are established automatically by
unsupervised learning). In particular, basis functions in
different regions of the environment may, in general,
have different widths. This family of basis functions is
used to learn a parameterized form of the action-value
function to be optimized by reinforcement learning.
Learning an action-value function over a continuous
state space endows the system with spatial generalization
capabilities.

A. Related Work

This paper does not address the issue of establishing a rep-
resentation of the allocentrically referred direction of the robot.
We have proposed a computational model for HD cells (which
has been validated on the same robotic platform used in this
paper) in [6], [7]. In the present study, the robot uses the output

of that HD system to maintain an estimate of its abso-
lute direction at time . In contrast to our previous work [8],
the visual input in the current study is no longer provided by
a linear sensory array but by a two-dimensional (2-D) CCD
camera with 768 576 pixels. The Gabor-based decomposition
technique as well as the retinotopic image sampling employed
here to process visual information (Section II-C.1) have been
partially introduced in the earlier work [9]. Nevertheless, the
present paper provides a more comprehensive and detailed de-
scription of those techniques and reports unpublished experi-
mental results concerning different levels of the whole spatial
learning system.

The issue of building internal models of the world suitable
for autonomous navigation has been largely investigated in
robotics. Map-learning research has produced two principal
paradigms, namely metric [10] and topological [11]. In the
former, the geometrical features of the world are encoded
accurately. An example of metric approach consists of repre-
senting space by means of a 2-D evenly spaced grid called the
occupancy grid [10]. Each grid cell estimates the occupancy
probability for the corresponding location of the environment.
Topological maps are more compact representations in which
spatial relations between relevant locations in the environment
are modeled by means of a topological graph [11]. Only
neighborhood relations are encoded while metric information
is lost.

Metric representations are prone to errors concerning sensory
metric information (e.g., estimates of distance to obstacles).
Also, reproducing the geometric structure of the environment
explicitly may be expensive in terms of memory and time. For
instance, an occupancy grid that models a complex environ-
ment accurately must have a high resolution which requires
heavy computation. Since topological maps are qualitative
representations, they are less vulnerable to errors in metric
signals and tend to optimize memory and time resources. How-
ever, since pure topological graphs rely upon a sensory pattern
recognition process, perceptual aliasing phenomena may impair
self localization. As metric and topological paradigms exhibit
complementary strengths and weaknesses, several models have
been proposed to integrate both representations into a hybrid
map-learning system [12]–[14].

Another approach to space coding takes inspiration from
biological solutions, which offers the attractive prospect of
developing autonomous systems that directly emulate animals’
navigation abilities. Burgess et al. [15] put forth a hippocampal
model in which metric information (e.g., distance to identi-
fied visual cues) is explicitly used as input to the system. By
contrast, the present model interprets visual properties by a
population of neurons sensitive to specific visual patterns (how-
ever, no explicit object recognition takes place). Mallot et al.
[16] build a topological representation of the environment con-
sisting of a sparse view graph. Our representation is redundant
and uses a large number of overlapping place fields. Trullier
and Meyer [17] model the environment by a hetero-associative
network encoding temporal sequences of local views. In our
approach, temporal aspects are implicitly encoded by the id-
iothetic representation based on inertial signals. Our approach
also contrasts with the model by Gaussier et al. [18] in which
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hippocampal cells do not code for places but for transitions
between states. An important difference between our approach
and the previous four models is that we combine allothetic
(visual) information and idiothetic (path integration) signals
at the level of the hippocampal representation. By contrast,
the above approaches build space representations mainly on
the basis of visual cues. Balakrishnan et al. [19] also take
into account self-motion inputs for space coding. However,
they use a Kalman filter technique to combine vision and
path integration, whereas we employ unsupervised Hebbian
learning to correlate multimodal inputs.

II. METHODS

A. The Experimental Setup

The model is validated by means of a mobile Khepera minia-
ture robot.1 The Khepera has a cylindrical shape with a diam-
eter of 55 mm, and, in the configuration used for the experi-
ments, is about 90 mm tall. Two dc motors drive two wheels
independently providing the robot with nonholonomic motion
capabilities. The robot’s sensory capabilities consist of: i) Eight
infrared sensors detecting obstacles within a distance of about
40 mm; six of the infrared sensors span the frontal 180 of
the robot, whereas the remaining two sensors cover approxi-
mately 100 of the posterior side; ii) a 2-D vision system whose
view field covers about 90 in the horizontal plane and 60 in
the vertical plane. Its image resolution is 768 576 pixels; and
iii) an odometer to compute both linear and angular displace-
ments based on wheel turns (i.e., dead-reckoning). Signals pro-
vided by the infrared sensors and the visual system form the
allothetic inputs to the robot, whereas the self-movement sig-
nals provided by the odometer constitute the idiothetic inputs.

In this work, we develop a high-level controller determining
the robot’s behavior based on its own experience. In addition, a
hard-coded reactive module allows the robot to avoid obstacles.
Whenever the proximity sensors detect an obstacle, the low-
level module takes control and prevents collisions. Both high-
and low-level controllers discretize the robot’s locomotion in
unit-length steps oriented to the current robot’s allocen-
tric direction . As described in Section II-C.1, at each visited
location the robot takes four snapshots , with

, to form a quasi-panoramic view. Then, it updates its motion
direction by an angle , and moves
forward by . We define a macro time step as the
time necessary to the robot to acquire a quasi-panoramic view,
modify its orientation, and locomote one step further. With the
robotic setup (e.g., translational and angular velocity profiles)
used in this work a macro time step lasts 8 s.

The experimental environment consists of a 800 800 mm
open-field arena. Low barriers (20 mm) prevent the robot from
running outside the arena. Obstacles are placed within the envi-
ronment depending on the experimental protocol. The arena is
placed within a standard laboratory background and the robot’s
behavior is monitored by means of a video camera above the
arena for performance assessment.

1The Khepera is a commercial platform produced and distributed by K-Team
S.A. (http://www.k-team.com/).

B. Single Neuron Model

The elementary components of the system are computational
units with continuous-valued responses . The output

is the mean firing rate of (i.e., the average number of spikes
emitted by within a time window ) and is given by

(1)

where is the unit’s membrane potential at time , is the
transfer function determining the response of , and is random
noise uniformly drawn from . We employ both nonlinear
and linear transfer functions [(8) and (11), respectively]. The
system dynamics is determined by the following

(2)

where is the membrane time constant and
denotes the synaptic input to unit from other neurons at time
. We take

(3)

where is the set of firing rates of units , is the
weight of the projection from to , and is the probability
for the synaptic transmission from to to occur at time . The
function determines the contribution of each afferent unit to
the input received by at time . Excitatory inputs tend to
depolarize the cell and the firing rate is proportional to
the amount of depolarization (1). Equation (2) is integrated by
employing a time step

(4)

C. Spatial Learning: Building a State-Space Representation

This section focuses on the first issue addressed by this work,
that is it describes how a place field representation can be estab-
lished based on locally available sensory inputs.

1) Allothetic Space Coding: For vision-based space coding,
relevant information must be extracted from noisy visual inputs.
Moving up the anatomical visual pathway (from the retina to the
lateral geniculate nucleus and then toward higher visual cortical
areas), neurons become responsive to stimuli of increasing com-
plexity, from orientation-sensitive cells (simple cells) to neurons
responding to more complicated patterns, such as faces [20].
The model extracts low-level visual features by computing a
vector of Gabor filter responses at the nodes of a sparse Log-
polar (retinotopic) graph. Then, more complex spatio-temporal
relationships between visual cues are encoded by the activity of
units that respond to combinations of specific visual patterns.
The problem consists of detecting an appropriate low-dimen-
sional representation of the continuous high-dimensional input
space, and learning the mapping from the visual sensory space to
points within this representation. Since the robot moves within
a 2-D space with a camera pointing in the motion direction, the
high-dimensional visual space is not uniformly filled. Rather,
all input data points lie on a low-dimensional surface embedded
in a Euclidean space whose dimensionality is given by the total
number of camera pixels. This low-dimensional description of
the visual space is referred to as the view manifold [21].
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Fig. 2. (a) Real part of the complex sinusoidal wave (within a 2-D Gaussian envelope) representing a Gabor filter in the image domain. (b) Level curves of a set
of modified Gabor filters in the frequency plane. A cross-sectional plot of the normalized magnitude of the filters along the ! axis (c) evidences the steep cutoff
on the low-frequency side, which reduces the overlap between filters. Two standard Gabor filters (dashed lines) are shown for comparison.

The allothetic space representation is the result of a three-step
processing (left side of Fig. 1): i) a set of Gabor filters detects vi-
sual features which then map real images onto the filter-activity
space; ii) a population of view cells , one synapse down-
stream from the filter layer, encodes the current visual input
by neural activity; and iii) unsupervised Hebbian learning con-
structs vision-based space coding and a population of place units
( , vision driven place cells) is built one synapse down-
stream from the layer.

a) Modified gabor filters and retinotopic image sampling
for visual feature extraction: Gabor filters are frequency and
orientation selective filters that provide a suitable mathematical
model for the so-called simple cells in the visual cortex [22]. A
set of standard Gabor filters can be constructed by scaling and
rotating the Gabor function , represented by a 2-D Gaussian
modulated by a complex sinusoidal wave [Fig. 2(a)]. The
Fourier domain representation of a Gabor filter consists
of a Gaussian centered at the polar frequency coordinates

, with . Thu,s and
represent the frequency and orientation values at which the
filter is tuned, that is those that will elicit the strongest response.
A set of filters tuned to the same absolute frequency but
with varying preferential orientations is normally referred to as
a frequency channel.

Gabor filters are optimal in that their Gaussian envelope in
both the frequency and the image domains maximizes the joint
spatial (locality) and frequency selectivity. However, using only
a small number of logarithmically spaced frequency channels
may result in the low-frequency region of the Fourier plane
being oversampled, while the high frequency regions are poorly
covered. This is due to the fact that the Gaussian spectra weight
the high and low frequencies in their support symmetrically,
whereas the spacing between filters increases with frequency.
To compensate for this, we use a set of modified Gabor filters
defined as Gaussians in the Log-polar frequency plane [23]. Let

be the logarithmic frequency axis; we set

(5)

where is a normalization factor. The Log-polar frequency
coordinates have the property that scaling and rotation
in the image domain correspond to translations along and ,
respectively. Thus, a set of modified Gabor filters is constructed

as a rectangular lattice of identical Gaussians in the Log-polar
frequency plane, which simplifies the design of the filter bank.
Modified filters reproduce the familiar “daisy” structure of
Gabor filters in the standard frequency coordinates
[Fig. 2(b)]. However, the overlap toward lower frequencies is
significantly reduced [Fig. 2(c)].

We employ a set of 24 modified Gabor filters
obtained by taking

eight distinct orientations and 3 angular frequencies .
Orientations are evenly distributed over the range , i.e.,

. The angular frequencies have been determined
by estimating three filter wavelengths suitable for our
application, and then using the relation . The values

, , and pixels have been chosen.
Fig. 2(b) shows the entire set of modified Gabor filters in the
standard Fourier domain.

Working images are obtained from raw visual data
through histogram equalization, resolution reduction (from
768 576 to 422 316 pixels), and gray-value remapping
into . A sparse retinotopic graph obtained by Log-polar
mapping is used to sample the Gabor decomposition of the
images [24]. A high resolution of points characterizes a local-
ized region of the view field (fovea), whereas peripheral areas
are characterized by a low-resolution vision. The retinotopic
graph is then centered on the image, and the magnitude of the
response of each Gabor filter is computed at the location
of the nodes of the graph (Fig. 3). At each retinal point
we place the 24 modified Gabor filters . This yields a
population of overlapping Gaussian receptive fields that tend
to cover the entire image continuously. The density of the
coverage is higher at the center of the image and decreases
toward the peripheral regions. For each point , the magnitude
of the response of all filters is computed by

(6)

where varies over the area occupied by the filter in the spa-
tial image domain, is the image sampled at point ,
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and and indicate, respectively, the real and imaginary
components. We assume that the response vectors provide
a sufficient characterization of the visual clues. This biologi-
cally inspired image representation has been previously used
for real-time head tracking [25] and face authentication [26],
showing high discrimination power.

b) Encoding visual inputs by neural activity: The retino-
topic system may be abstracted as a three-dimensional filter-
activity space: The angular frequency and the orientation
of each filter provide the first two dimensions, while the spa-
tial distribution of points on the image provides the third one.
We take the responses of filters as inputs to a pop-
ulation of view cells one synapse downstream from the
filter layer. That is, we model each image by mapping its
representation in the filter-activity space into activity.

Let be an index over all filters forming the
retinotopic grid. Given an image , a view cell is re-
cruited to receive inputs from all filters. Synaptic connec-
tions from filters to unit are initialized according to

, where is the response of filter given by (6).
Weights provide a long-term memory for the filter activity
associated to image . If, at a later point, the robot sees an image

, the activity of unit is computed as a function of
the similarity of the current image to the image stored in
weights . The synaptic input to unit is given by

(7)

where are the Gabor filter responses to image . The firing
rate of cell is determined by means of a Gaussian transfer
function

(8)

where the membrane potential is computed according to
(2), and is random noise. Equation (8) defines a ra-
dial basis function in the filter space measuring the similarity
between and the image encoded by . The width deter-
mines the discrimination capacity of the system for visual scene
recognition.

c) Unsupervised growing network scheme for building al-
lothetic place fields: View cell activity depends on the agent’s
gaze direction and does not code for spatial locations . We
apply unsupervised Hebbian learning to achieve allocentric spa-
tial coding one synapse downstream from the layer. Each

cell receives inputs from a set of view cells whose ac-
tivities code for visual features of the environment. Thus, the
activity of a unit depends on the combination of
multiple visual cues, which makes unit location sensitive (i.e.,
a place cell).

At each new location (a measure of familiarity for spatial lo-
cations will be defined in Section II-C.4), all simultaneously ac-
tive units are connected to a newly recruited cell. Let

and denote and units, respectively. A connection
is created such that

(9)

Fig. 3. The retinotopic grid, used to sample the Gabor decomposition, overlaid
on the visual scene. The retina consists of N = 31 points (white crosses)
arranged onN = 5 concentric circles. The innermost circle has radius zero and
coincides with the center of the image. The radii of the remainingN �1 circles
increase exponentially. On each circle, the retinal points are evenly distributed.
A vector of Gabor responses is computed at each retinal point. The supports of
a few filters are displayed in black.

where is the step (Heaviside) function (i.e., if
, otherwise), is the activity threshold

above which a view cell is considered to be active, and
means that each new connection is initialized by a random
weight . The firing rate , with , of
a place unit is a weighted average of the activity of
its afferent signals . The synaptic drive is

(10)

where varies over all that have been connected to cell
according to (9), is the synaptic transmission proba-
bility, and is uniformly drawn from . Then

(11)

where is computed according to (2), and is
random noise.

Once connections are established, their synaptic strength
is changed by Hebbian learning

(12)

The rationales behind (12) are to increase the weight when-
ever pre- and postsynaptic units are simultaneously active, and
decrease whenever the presynaptic unit is active while
the postsynaptic cell is not. Note that (12) keeps the
weight .

The learning scheme defined by (9)–(12), is referred to as
“unsupervised growing network learning” [27]. When the robot
first enters a novel environment, the population is empty
(since there is no prior spatial knowledge). The ensemble
grows incrementally as a result of the robot interacting with the
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environment (Section II-C.4). At each visited location , the
robot takes four views , , , , with , and
creates four cells (one for each view ) which are bound to-
gether to form a quasi-panoramic description of the place. This
results in nondirectional place cell activity.

2) Idiothetic Space Coding: Path Integration: Internal
movement-related signals are used to drive a population
of place units, (path integration driven place cells),
providing idiothetic space coding (right side of Fig. 1). The
ensemble activity encodes
the robot’s current position within an allocentric frame
of reference centered at the starting location .
units have preconfigured metric interrelations: (i) One cell

codes for the origin of an abstract frame of
reference underlying the representation. When the
robot enters a novel environment, is associated with the
entry position belonging to the physical space . (ii)
Each cell , , has one preferred firing location

relative to the origin. Preferred positions are evenly
distributed over the 2-D abstract space . Note that, since
the abstract space is mapped onto the physical space
depending on the entry position , a novel environment
may be encoded by two distinct firing patterns if two
explorations start at . In other words,
cells have preconfigured metric relations within the abstract
allocentric space , but not relative to a physical absolute
framework . As discussed in Section III, Hebbian learning is
employed to combine idiothetic and allothetic representations
by correlating the activity patterns of cells with the
local views encoded by the population. This allows the
system to establish a mapping such that cells
can maintain similar firing patterns across subsequent entries
in a familiar environment.

As the robot moves, cell activity changes according
to self-motion information (i.e., translational and rotational sig-
nals) which are integrated over time by the path integrator. The
firing rate of a cell at time is algorithmically
taken as a Gaussian

(13)

where is the robot’s current position (relative to the
starting point ) estimated by dead-reckoning, is the
preferred location (center of the receptive field) of cell , and

defines the width of the field.
3) Combining Allothetic and Idiothetic Representa-

tions: Allothetic and idiothetic representations converge onto
the layer of the model. and project to

by means of synapses that are established based upon
a correlational learning rule. According to our unsupervised
growing network scheme (Section II-C-I), the system recruits a
new subset of place units for each new location visited
by the robot. Let and be a postsynaptic unit and
a presynaptic cell in or , respectively. New
connections are formed from all simultaneously active
and cells to the new cells [according to (9)].

Then, Hebbian learning is used to establish the weight of
those connections

(14)

The firing rate of a cell is simply a weighted
average of its and inputs ((10), (11)).

To interpret the ensemble place cell activity as a spatial lo-
cation we apply population vector decoding [4]. Let be the
center of the place field of cell . The population vector is
the center of mass of the ensemble pattern of activity at time :

(15)

The encoded position is near, but not necessarily identical,
to the robot’s actual location . The approximation

is good for large neural populations covering the environ-
ment densely and uniformly [28].

4) Maintaining Allothetic and Idiothetic Signals Consis-
tently Over Time: Exploratory Behavior: Within a novel
environment, three issues are relevant to the robot’s exploratory
behavior: (i) a measure of “familiarity” for spatial locations
must be defined; (ii) the environment must be explored
uniformly; (iii) allothetic and idiothetic
representations must be maintained coherent over time to yield
stable place coding.

d) Estimating place familiarity: Place units are recruited
incrementally as the robot explores new locations. The famil-
iarity of a location is measured in terms of the response
of the current hippocampal place cell population . New
place units are recruited only if the following relation is false

(16)

where is the Heaviside function, is the activity of unit
at time , and and are fixed thresholds. Thus,
at time , the space representation is updated only if the number
of place units active at location does not exceed a threshold

. Equation (16), which is a mere algorithmic implementation
of novelty detection in the state space, enables the system to
control the redundancy level of the spatial model.

e) Uniform coverage of the environment: The robot
adopts a simple active-exploration strategy that helps to cover
the environment uniformly. Given the current location , it
updates its direction of motion based on place cell activity.
According to (16), a relatively large number of currently active
units indicates that is a familiar location of the environ-
ment. Then, a small directional change implies that
the robot moves nearly straight and induces a high probability
of leaving that area. Conversely, a large variability of the
robot’s direction is associated to low activity,
which results in a thorough exploration of that region. We
randomly draw and from and ,
respectively.

f) Coherence between allothetic and idiothetic maps:
path integration calibration: The robot starts exploring an
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unfamiliar environment by relying upon path integration only.
The entry location becomes the reference point (home)
relative to which the idiothetic representation is built.
The continuous integration of translations and rotations

over time generates a homing vector
providing the robot with the distance and direction
relative to the starting point , at time . As exploration
proceeds, local views encoded by activity are integrated
into the spatial framework provided by the path integrator (as
discussed in Section II-C.3). However, the idiothetic-based
dynamics, which consists of integrating translational and
rotational signals over time, induce systematic as well as
nonsystematic errors that quickly disrupt the position repre-
sentation [29]. Thus, to maintain the allothetic and idiothetic
representations consistent over time, path integration needs to
be occasionally calibrated. When available, stable allothetic
cues (e.g., visual fixes) may be used to accomplish such a
calibration process.

The robot adopts an exploration strategy that emulates the ex-
ploratory behavior of animals [29], [30]. At the very beginning,
exploration consists of short return trips (e.g., narrow loops)
centered at the home location and directed toward the prin-
cipal radial directions (e.g., north, east, and so on). This allows
the robot to explore the home region exhaustively. Afterwards,
the robot switches to an open-field exploration strategy. It starts
moving in a random direction recruiting a new subset of place
units at each new location (16). After a while, the path integrator
has to be recalibrated. We do not propose a specific uncertainty
model for the dead-reckoning system. We simply assume that
the path integration error grows monotonically as some func-
tion of time . Whenever overcomes a fixed threshold

, the robot stops creating place units and starts following
its homing vector to return home . Thus, during
homing, spatial learning does not occur. As soon as the robot
arrives and recognizes a previously visited location (not nec-
essarily ), it utilizes the learned allothetic representation

to realign the path integrator.
Let be the center of mass of the ensemble

activity computed by population vector coding at time (15).
Let denote the variance of the ensemble activity
around . We take a fixed variance threshold to evaluate
the reliability of the coding and we assume that only
if the signal is suitable for recalibrating
odometry. We define a weight coefficient as

otherwise
(17)

and we use it to compute the calibrated robot position

(18)

where is the population vector corresponding to
ensemble firing ((15)). Once the vision-based calibration of the
path integrator is done, the open-field exploratory behavior is re-
sumed. This technique (consisting of looped exploratory excur-
sions) allows the robot to propagate exploration over the entire
environment by keeping the dead-reckoning error bounded. This
also means that the allothetic and idiothetic
representations are maintained mutually consistent over time.

Note that during homing behavior, the robot might reach the
starting location without having realigned its path integra-
tion, i.e., without having found a location where activity
is suitable for calibration. In this case the robot would resort to
a spiral searching behavior centered around the home location

and, after having found a calibration point, the open-field
exploring behavior would be resumed.

D. Goal-Oriented Navigation: Reward-Based Action Learning

The spatial learning system described in Section II-C enables
the agent to localize itself within the environment based on
available sensory information. To support goal-oriented navi-
gation [1] the model must also incorporate the knowledge about
relationships between the environment, its obstacles and reward
locations. We take a population of loco-
motor action units one synapse downstream from our place units

. Each cell provides an allocentric directional motor
command (e.g., go north). Then, the navigation problem is: How
can we establish a mapping function from the
place cell activity space to a continuous action space
to achieve goal-directed behavior? We employ reinforcement
learning [31] to acquire based on the robot’s experience. The
robot interacts with the environment and reward-related stimuli
elicit the synaptic changes of the projections to adapt
the action-selection policy to the task. After training, the en-
semble activity of units provides a navigation map to
support goal-oriented behavior and obstacle avoidance.

For the reinforcement learning paradigm, temporal dif-
ference (TD) learning was selected since it relies on sound
mathematical foundations and represents a well understood
approach [31]. In particular, we utilize Q-learning [32], a
TD-based learning technique. Given a target , a discrete action
set , , is recruited. Each
unit receives inputs from all place
units . Each state is encoded by the ensemble
place unit activity , where
is the number of place units. The state-action value function

is of the form

(19)

Learning consists of updating the adjustable parameter vector
to approximate the optimal function . The state-

value prediction error is

(20)

where is the immediate reward, and is a con-
stant discounting factor. The temporal difference estimates
the error between expected and actual reward when at, time ,
the agent takes action at state location and reaches new
state at time . Training allows the system to minimize
this error signal. The weight vector changes according to

(21)

where is a constant learning rate, and is the
eligibility trace vector [31].
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Action learning consists of a sequence of training paths
starting at random positions . Every time the robot reaches
the target , a new training path begins at a new random
location. During training, the robot behaves in order to either
consolidate goal-directed paths (exploitation) or find novel
routes (exploration). This exploitation-exploration tradeoff
is determined by an -greedy action selection policy, with

[31]. At each time , the agent might either
behave greedily (exploitation) with probability by se-
lecting the best action with respect to the Q-value function,

, or resort to random action selection
(exploration) with probability equal to . The update of the
eligibility trace depends on whether the robot selects an
exploratory or an exploiting action. Specifically, vector
changes according to

if exploiting
if exploring

(22)

where is a trace-decay parameter, and .
After learning, population vector decoding is applied to map

the discrete action space into a continuous action space
by averaging the ensemble action cell activity. Given a location

at time , the robot’s action is a direction

in the environment defined by

(23)

where , , , and

are the four principal directions defined by actions

. Equation (23) results in smooth trajectories.
The above action learning scheme also applies to multitarget

navigation tasks. Let be a set of distinct target
types. Whenever the agent encounters a rewarding location ,
it recruits a new set of action cells . Let be the state-
action value function when looking for the optimal policy asso-
ciated with target , denote the synaptic projections from
place cells to cell , and be the set of
reward signals. The Q-learning algorithm defined by (20)–(22)
can be applied to optimize the set of functions for

.
The experimental results have been obtained by taking a

learning rate , a discount factor , and a decay
factor . The reward-signal function is

if target state
if collision state
otherwise

(24)

During training, target is fixed and the robot receives a posi-
tive reward whenever it enters a square region (goal region)
centered at and about twice the area occupied by the robot.

Fig. 4. Convergence of the exploration process averaged over n = 10 trials.
The curve represents the mean percentage of the area explored by the robot
over time. The continuous vertical line indicates when, in average, the robot
considered the environment as sufficiently explored. The dashed vertical lines
give the standard deviation.

A dynamically changing -probability is employed to in-
crease the probability of exploring novel routes as the time to
reach the target increases. The parameter is defined by

(25)

where , , , and where
are macro time steps (defined in Section II-A). We

consider a time window of 100 macro time steps. At time
, and exploitation is enhanced, whereas at

a probability yields exploratory behavior.
If after steps the target has not been reached, exploration is
further enhanced by maintaining for more
steps. Then, exploitation is resumed by reinitializing the time
window which resets to 0.101. This process is iterated over
time. Note that every time the target is reached the time window
is also reinitialized. These are known heuristics to ensure a suf-
ficient amount of exploration.

III. EXPERIMENTAL RESULTS

For sake of clarity, the overall spatial task is considered as
two-fold: First, to establish a spatial representation of an un-
familiar environment through exploration (Section III-A), and
second to learn the appropriate sensorimotor mapping to per-
form goal-oriented navigation (Section III-B). The rationale be-
hind this distinction relates to the so-called latent learning (i.e.,
animals establish a spatial representation even in the absence of
explicit rewards [33]). It is shown that having a target-indepen-
dent space representation (i.e., the place fields) enables
the robot to learn target-oriented navigation very quickly.

A. Learning a Place Field Representation

This task consists of placing the robot at a random starting
location in a novel environment and let it build a map in-
crementally and on-line through exploration. The exploratory
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Fig. 5. Two samples of V iPC place fields. Each square box represents the arena. For each position ~s, the mean response r of a cell i 2 V iPC when the robot
was visiting ~s is shown. White regions indicate high r activity whereas black regions denote low firing rates. (a) Example of single-peak VIPC receptive field.
(b) Example of double-peak place field.

behavior depends on an internal familiarity measure which trig-
gers the robot’s curiosity and initiates an updating of the map
whenever a novel location is detected (Section II-C.4).

1) Convergence of the Exploration Process: Spatial
learning is potentially unlimited in time because environ-
mental changes would trigger the robot’s exploratory behavior
indefinitely. However, for monitoring purposes, we endow
the robot with a simple mechanism to self-evaluate the map
building process. The robot memorizes the macro time step at
which the last updating of the space representation occurred.
Then, it considers the environment as sufficiently explored
if the unsupervised growing scheme has not recruited new
place cells for more than an empirically selected number of
macro time steps . Fig. 4 shows the percentage of
the environmental area explored by the robot over time. The
diagram also illustrates when the robot considered the arena as
sufficiently explored. The results were averaged over
spatial learning sessions. At the beginning of each session the
robot was placed at a random entry position with no prior
knowledge of the environment. In average, the robot interrupted
the map building process after about 1560 macro time steps,
which corresponds to an exploration of approximately 84% of
the total state space. Note that, asymptotically, the exploration
process does not converge to a 100% coverage. This is because
the low-level reactive controller prevents collisions by always
keeping the robot at a certain distance from walls.

2) Allothetic (Vision-Based) Place Fields: At each location
the robot takes four views and encodes them neurally by means
of four view cells . Then, the unsupervised learning
scheme combines the gaze-dependent activity of the four
view cells to drive a downstream population of cells.
Due to the combination of multiple local views (forming a
quasi-panoramic picture), cells become location selec-
tive, i.e., their activity can be used by the system to discriminate
locations based on vision information only.

Single Cell Recordings. Fig. 5 shows two place fields
obtained by recording units when the robot was moving
freely in the environment following learning. Fig. 5(a) shows a
unit that is maximally active if the robot is in a localized region

Fig. 6. Accuracy of the V iPC representation over the 2-D environmental
space. The diagram has been obtained by discretizing the environment by
a 18� 18 matrix, and then rastering uniformly over the grid. For each grid
cell center visited by the robot, the z-axis is the position reconstruction error
(averaged over 10 trials) when applying population vector coding to the V iPC

ensemble activity. The mean position error is about 60 mm.

of the environment (place field center) and whose firing rate
decreases (with a Gaussian-like law) as the robots leaves that
area. More than 90% of the recorded cells showed this type of
location-correlated firing. However, due to visual aliasing, some
cells can have multiple subfields, i.e., they cannot differentiate
spatial locations effectively. For instance, the cell of Fig. 5(b)
has a double-peak receptive field, that is it encodes ambiguous
visual inputs and indicates distinct spatial locations providing
similar visual stimulation.

Accuracy of the Allothetic Spatial Representation. Population
vector decoding (15) is employed to interpret the ensemble ac-
tivity as spatial locations.
Examining the population rather than single cell activity allows
the system to compensate for inaccuracies in the cell ac-
tivity [e.g., Fig. 5(b)].

The ensemble activity packet moves over the 2-D
space tracking the robot’s movements. The accuracy of the
representation is not uniformly distributed over the arena
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Fig. 7. (a) Correlation between the (normalized) vision-based position reconstruction error and the normalized dispersion � of V iPC ensemble activity around
the center of mass ~p . (b) Uncalibrated (light-gray curve) and calibrated (black curve) mean path integration error.

surface. The mapping from the visual input space to the 2-D
view-manifold reflects the reliability of local visual stimuli,
such that locations characterized by ambiguous local views will
be poorly encoded by activity. To measure the accuracy
of the representation as a function of the robot’s position
the mean quadratic tracking error is employed

(26)

where is the robot’s actual position (provided by

the the camera above the arena) and is the esti-

mate provided by the ensemble activity. Fig. 6 shows a
result obtained by averaging over trials. Some regions
of the arena are characterized by a rather precise representation,
whereas others are poorly represented by the firing pat-
tern. The average error over the arena is about 60 mm.

3) Path Integration Calibration: The robot integrates trans-
lational and rotational self-movements in order to maintain an
environment-independent representation of its posi-
tion relative to the starting point (Section II-C-II). How-
ever, this dead-reckoning process is prone to cumulative errors
over time and needs to be reset occasionally. The vision-based

coding is employed to calibrate the path integrator. As
discussed in Section II-C-IV, a criterion to evaluate the relia-
bility of the coding on-line has been defined to select
those locations in the environment that are suitable for the vi-
sion-based calibration of the path integrator. As a first approxi-
mation, one way to penalize representations of the type found in
Fig. 5(b) consists of measuring the dispersion of the
population activity around the center of mass . According
to this technique, the robot assesses the ensemble ac-
tivity by simply employing a threshold to detect improper

representations, i.e., those characterized by a dispersion
(17), (18). Fig. 7(a) indicates the correlation between

the vision-based position reconstruction error (26) and the dis-
persion of the population activity around . About

4600 data points are represented. The correlation coefficient is
0.67.

To test the vision-based calibration process, an odometry
error function is computed during exploration according
to (26). At each step , it measures the difference between the

robot’s actual position and the estimate

provided by the ensemble activity. We run two

series of experiments consisting of exploration trials
each. At the beginning of each trial the robot enters the arena
at the same starting position , and with the same initial
arbitrary heading . In the first series we do not employ
vision to calibrate odometry (i.e., darkness conditions). The
light-gray curve of Fig. 7(b) shows the mean uncalibrated error

. The idiothetic representation is affected by a
cumulative shift over time. In the second series of trials we do
apply (17), (18) to realign the path integrator occasionally. The
black curve of Fig. 7(b) shows the mean calibrated error
when performing the vision-based calibration. The odometry
error remains bounded over time and has an average value of
about 45 mm.

4) Combining Vision and Path Integration: The allothetic
and idiothetic maps are combined to drive

the population where the allocentric space representa-
tion used by the robot to solve spatial tasks is encoded. Similar
to units, cells are recruited incrementally as the
robot explores a novel environment.

Single HPC Cell Recordings. Fig. 8 shows two place fields
recorded from the layer of the system. Place fields are less
noisy than those recorded from and 97% of the recorded

units do not exhibit multiple subfields.
Multiple HPC Cell Recordings. Fig. 9(a) shows an example

of population activity after spatial learning. In this ex-
ample the robot recruited approximately 1500 units. As
already mentioned, the purpose is to cover the environment by a
large population of overlapping basis functions that can be used
for the self-localization task. Redundancy helps in terms of sta-
bility and robustness of the place code. Note that place units
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Fig. 8. Two samples of HPC place fields. Each diagram shows the mean firing rate r of a cell i 2 HPC as a function of the position of the robot ~s within the
square arena.

Fig. 9. (a) 3-D representation of the HPC population activity after learning. (b) HPC ensemble activity recorded in the dark (i.e., only the input from the path
integrator was present). The robot was approximately at the center of the arena.

are not topographically arranged within the layer of the
model. That is, two cells and coding for two adjacent lo-
cations and , respectively, are not necessarily neighboring
neurons in the network. In the image, units are
tied to their place field center only for monitoring purposes. Let

be the ensemble ac-
tivity at time . We employ population vector decoding (15) to
reconstruct the agent’s current position based on .

In the absence of visual information (i.e., in the dark),
firing can be sustained by the input provided by the path inte-
gration signal. Fig. 9(b) represents the population activity
recorded in the dark when the robot was approximately at the
center of the arena.

B. Goal-Oriented Behavior

For the goal-oriented navigation task, specific target locations
(and the corresponding goal regions , Section II-D) are de-

fined and the robot has to learn appropriate action selection poli-
cies to reach them from any position .

Single Target Experiment. Fig. 10(a) shows the navigation
map learned by the robot when the goal region was in
proximity of the upper-left corner of the arena. The map was
obtained after five training trials. Each training trial starts at a
pseudorandom location and ends either when the robot reaches
the target or after a timeout of 200 macro time steps. Here,
a pseudorandom location means a position randomly drawn
from the subset of all possible locations having
the same distance from the goal , i.e., ,

. At the beginning of each trial the robot estimates its
starting location based upon its spatial code . Fig. 10(b)
shows the mean search latency, i.e., the number of macro time
steps needed by the robot to find the target, as a function of
training trials.

The vector field representation of Fig. 10(a) was obtained by
rastering uniformly over the whole environment: the ensemble
responses of the action cells were recorded at 324 locations dis-
tributed over a 18 18 grid of points. Many of the sampled
locations were not visited by the robot during goal learning,
that is the robot was able to associate appropriate goal-directed
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Fig. 10. (a) Navigation map learned after 5 training trials. The target location ~g is nearby the upper-left corner. Each arrow indicates the local action encoded by
the action cell ensemble activity after learning. (b) Mean search latency, averaged over n = 20 experiments, as a function of training trials. The search latencies
decrease rather rapidly and reach the asymptotic value (corresponding to appropriate goal-directed behavior) after approximately 10 trials. (c) Mean amount of
generalization as a function of training trials.

Fig. 11. Navigation task in the presence of two targets~g and ~g located at the bottom-left and bottom-right corners, respectively, and one obstacle (black object).
(a) Navigation map learned after 30 trials when looking for ~g . (b) Partial navigation map for ~g learned by the robot when focusing on ~g . (c) Final map acquired
by the robot when focusing on ~g .

actions to spatial states that had not been experienced during
training. The amount of generalization is defined as the per-
centage of sampled positions that were not visited by the robot
during learning. A sampled position (belonging to the
18 18 grid) is considered as visited during training if the robot
was at a position such that robot’s ra-
dius. The amount of generalization was quantitatively measured
as a function of the number of training trials. Fig. 10(c) shows
the results averaged over experiments. The diagram
shows that for navigation maps acquired after 5 training trials
only [as the one of Fig. 10(a)] the mean amount of generaliza-
tion is about 45%. Then, as expected, the longer the training the
lesser the generalization.

Multiple Target Experiment. In this experiment two distinct
types of rewards and are considered. The corresponding
goal regions and are the bottom-left and bottom-right
corners of the arena, respectively. First, the robot is trained to
navigate toward . Thus, its primary task is to approximate the

functions to optimize the action-selection policy for
. Fig. 11(a) illustrates the navigation map learned by the robot

after about 30 trials. When searching for , the robot has a high
probability of passing through region and receiving the pos-
itive reward signal . Even if is not the current target,
the robot can exploit this information to adjust weights
and start approximating . Thus, when optimizing the
policy for , the robot can partially learn a navigation policy
to reach . Fig. 11(b) shows the knowledge about target
acquired by the robot while learning a navigation map for .
When the robot starts focusing on (to optimize ),
it does not start from zero knowledge. This results in a shorter
training time for learning the optimal policy for . Fig. 11(c)
represents the navigational map acquired by the robot after ten
training trials when searching for .

IV. DISCUSSION

This paper presents a neural architecture to endow a robot
with space coding and goal-oriented navigation capabilities.
The spatial code is established during exploration via two
processing streams, an allothetic vision-based representation
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built by unsupervised Hebbian learning, and an idiothetic
representation obtained by integrating internal self-motion
signals over time (path integration). Correlational learning
is applied to combine these two types of information based
on the agent-environment interaction. This induces a mutual
benefit in the sense that path integration disambiguates visual
singularities and, conversely, visual cues are used for resetting
the path integrator. The spatial learning system develops
incrementally based upon an unsupervised growing network
scheme. This allows the robot to recruit new place cells every
time it explores novel regions of the environment. Of course,
adding neurons and synaptic connections incrementally is
not biologically plausible. Rather, this is a mere algorithmic
solution to optimize the use of memory and time resources
allocated to the system.

The place field representation provides a basis
for guiding goal-directed behavior. cells project to a
population of locomotor action cells whose ensemble activity
guides navigation. Thus, solving the action learning task means
establishing a mapping function from the continuous space of
physical locations (encoded by activity) to the activity
space of action cells. Temporal-difference (TD) learning is
employed to establish this mapping. Algorithms like TD
learning are easy to implement for low-dimensional discrete
problems. In real world applications, input data are rather
high-dimensional and continuous. The most important practical
issue for applications of reinforcement learning in these cases
is probably the construction of a suitable representation of
the input space. The network provides a coarse coding
representation suitable for applying reinforcement learning in
continuous space. The model also solves the problem of par-
tially hidden states [3], that is the current state is always fully
known to the system. Standard reinforcement techniques imply
a long training time when applied directly on high-dimensional
input spaces. We show that, by means of an appropriate state
space representation, the robot can learn goal-oriented behavior
after few training trials (e.g., 5 as shown in Fig. 10(a)). This is
similar to the learning time of rats in the Morris water-maze
[34].

The model captures some properties of hippocampal place
(HP) cells, neurons that seem to play a functional role in flexible
spatial behavior of rats [1]. In experimental neuroscience, the
issue of explicitly relating observations at the neuronal level
(i.e., electrophysiological properties of HP cells) to those at
the behavioral level (i.e., the animal’s capability of solving
spatial navigation tasks) remains an arduous task. The lack
of experimental transparency at the intermediate levels (e.g.,
system level) is one of the factors that make it difficult to clearly
identify the function of HP cells. It is one of the advantages
of modeling that potential connections between findings on
the neuronal level and on the behavioral level can be explored
systematically. Furthermore, the fact that neuromimetic robots
are simpler and more experimentally transparent than biological
organisms makes them a useful tool to check new hypotheses
concerning the underlying mechanisms of spatial behavior
in animals. Synthesizing bio-inspired architectures may help
to connect different levels explicitly (e.g., cellular, systemic,
behavioral) and bridge the gap between the electrophysiological

properties of HP cells and their functional roles in spatial
behavior. Conversely, a bio-inspired approach to model spatial
cognition offers the prospect of developing robots that can
emulate the navigation capabilities of animals and this may
lead to an immediate applicational payoff in designing more
powerful and adaptive robots.
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