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We study analytically a model of long-term synaptic plasticity where
synaptic changes are triggered by presynaptic spikes, postsynapticspikes,
and the time differences between presynaptic and postsynaptic spikes.
The changes due to correlated input and output spikes are quantified
by means of a learning window. We show that plasticity can lead to an
intrinsic stabilization of the mean firing rate of the postsynaptic neu-
ron. Subtractive normalization of the synaptic weights (summed over
all presynaptic inputs converging on a postsynaptic neuron) follows if,
in addition, the mean input rates and the mean input correlations are
identical at all synapses. If the integral over the learning window is posi-
tive, firing-rate stabilization requires anon-Hebbian component, whereas
such a component is not needed if the integral of the learning window
is negative. A negative integral corresponds to anti-Hebbian learning
in a model with slowly varying firing rates. For spike-based learning, a
strict distinction between Hebbian and anti-Hebbian rules is question-
able since learning is driven by correlations on the timescale of the learn-
ing window. The correlations between presynaptic and postsynaptic fir-
ing are evaluated for a piecewise-linear Poisson model and for a noisy
spiking neuron model with refractoriness. While a negative integral over
the learning window leads to intrinsic rate stabilization, the positive part
of the learning window picks up spatial and temporal correlations in the
input.
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1 Introduction

“Hebbian” learning (Hebb, 1949), that is, synaptic plasticity driven by corre-
lations between pre- and postsynaptic activity, is thought to be an important
mechanism for the tuning of neuronal connections during development and
thereafter, in particular, for the development of receptive fields and com-
putational maps (see, e.g. von der Malsburg, 1973; Sejnowski, 1977; Ko-
honen, 1984; Linsker, 1986; Sejnowski & Tesauro, 1989; MacKay & Miller,
1990; Wimbauer, Gerstner, & van Hemmen, 1994; Shouval & Perrone, 1995;
Miller, 1996a; for a review, see Wiskott & Sejnowski, 1998). It is well known
that simple Hebbian rules may lead to diverging synaptic weights so that
weight normalization turns out to be an important topic (Kohonen, 1984;
Oja, 1982; Miller & MacKay, 1994; Miller, 1996b). In practice, normalization
of the weights w; is imposed by either an explicit rescaling of all weights
after a learning step or a constraint on the summed weights (e.g., Y, w; =,
or Y, w? = ¢ for some constant c), or an explicit decay term proportional to
the weight itself.

In recent simulation studies of spike-based learning (Gerstner, Kempter,
van Hemmen, & Wagner, 1996; Kempter, Gerstner, & van Hemmen, 1999a;
Song, Miller, & Abbott, 2000; Xie & Seung, 2000; Kempter, Leibold, Wag-
net, & van Hemmen, 2001), however, intrinsic normalization properties of
synaptic plasticity have been found. Neither an explicit normalization step
nor a constraint on the summed weights was needed. So we face the ques-
tion: How can we understand these findings? Some preliminary arguments
as to why intrinsic normalization occurs in spike-based learning rules have
been given (Gerstner et al., 1998; Kempter et al., 1999a; Song et al., 2000).
In this article, we study normalization properties in more detail. In particu-
lar, we show that in spike-based plasticity with realistic learning windows,
the procedure of continuously strengthening and weakening the synapses
can automatically lead to a normalization of the total input strength to the
postsynaptic neuron in a competitive self-organized process and, hence, to
a stabilization of the output firing rate.

In order to phrase the problem of normalization in a general framework,
let us start with a rate-based learning rule of the form

d n .
Tw @it = ao +af" 47 () + ™t A (1) 4 a5 AR (1) A ()
+ a8 [N OF + a3 o o, (1.1)

which can be seen as an expansion of local adaptation rules up to second
order in the input rates k}“ (1 <i < N) and the output rate AUt (see Bienen-
stock, Cooper, & Munro, 1982; Linsker, 1986; Sejnowski & Tesauro, 1989).
(A definition of rate will be given below.) The timescale of learning is set by
Tw. The coefficients ay, ailn, ai’“t, as®™r, aizn, and u‘z’ut may, and in general will,
depend on the weights w;. For example, in Oja’s rule (Oja, 1982), we have
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as®" = 1and a‘z’“t(wi) = —wj, while all other coefficients vanish; for linear

neurons, the weight vector converges to a unit vector. Here we study learn-
ing rules of the form of equation 1.1, where the coefficients do not depend
on the weights; we do, however, introduce upper and lower bounds for the
weights (e.g., dw;/dt = 0 if w; > w™ or w; < 0 for an excitatory synapse)
so as to exclude runaway of individual weight values.

As a first issue, we argue that the focus on normalization of the weights,
be it in the linear form Y, w; or in the quadratic form Y, w?, is too narrow.
A broad class of learning rules will naturally stabilize the output rate rather
than the weights. As an example, let us consider a learning rule of the form

d . __ __[jout __3C13in
Tw Ewl(t) = [)L () — A ])“z (1.2)

with constant rates AI", (1 < i < N). Equation 1.2 is a special case of equa-
tion 1.1. For excitatory synapses, A°" increases with w;; more precisely,
0% (wq, ..., wy) is an increasing function of each of the w;. Hence learning
stops if A% approaches ¢ > 0, and the fixed point A°"* = A¢ is stable. In the
special case that all input lines i have an equal rate A" = A" independent
of i, stabilization of the mean output rate implies the normalization of the
sum Y ; w;. Section 3 will make this argument more precise.

A disadvantage of the learning rule in equation 1.2 is that it has a corre-
lation coefficient a5°™" < 0. Thus, in a pure rate description, the learning rule
would be classified as anti-Hebbian rather than Hebbian. As a second issue,
we show in section 4 that for spike-based learning rules, the strict distinction
between Hebbian and anti-Hebbian learning rules becomes questionable. A
learning rule with a realistic time window (Levy & Stewart, 1983; Markram,
Liibke, Frotscher, & Sakmann, 1997; Zhang, Tao, Holt, Harris, & Poo, 1998;
Debanne, Gahwiler, & Thompson, 1998; Bi & Poo, 1998; Feldman, 2000) can
be anti-Hebbian in a time-averaged sense and still pick up positive “Heb-
bian” correlations between input and output spikes (Gerstner, Kempter, et
al., 1996; Kempter et al., 1999a; Kempter, Gerstner, & van Hemmen, 1999b;
Kempter, Gerstner, van Hemmen, & Wagner, 1996). These correlations be-
tween input and output spikes that enter the learning dynamics will be
calculated in this article for a linear Poisson neuron and for a noisy spiking
neuron with refractoriness.

Spike-based rules open the possibility of a direct comparison of model pa-
rameters with experiments (Senn, Tsodyks, & Markram, 1997; Senn, Mark-
ram, & Tsodyks, 2001). A theory of spike-based learning rules has been de-
veloped in Gerstner, Ritz, and van Hemmen (1993), Héfliger, Mahowald,
and Watts (1997), Ruf and Schmitt (1997), Senn et al. (1997, 2001), Eurich,
Pawelzik, Ernst, Cowan, and Milton (1999), Kempter et al. (1999a), Roberts
(1999), Kistler and van Hemmen (2000), and Xie and Seung (2000); for a
review, see, van Hemmen (2000). Spike-based learning rules are closely re-
lated to rules for sequence learning (Herz, Sulzer, Kiihn, & van Hemmen,
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1988, 1989; van Hemmen et al., 1990; Gerstner et al., 1993; Abbott & Blum,
1996; Gerstner & Abbott, 1997), where the idea of asymmetric learning win-
dows is exploited. In section 4 a theory of spike-based learning is outlined
and applied to the problem of weight normalization by rate stabilization.

2 Input Scenario

We consider a single neuron that receives input from N synapses with
weights w; where 1 < i < N is the index of the synapse. At each synapse i,
input spikes arrive stochastically. In the spike-based description of section 4,
we will model the input spike train at synapse i as an inhomogeneous Pois-
son process with rate A"(). In the rate description of section 3, the input
spike train is replaced by the continuous-rate variable Al"(t). Throughout
the article, we focus on two different input scenarios—the static-pattern sce-
nario and the translation-invariant scenario. In both scenarios, input rates
are defined as statistical ensembles that we now describe.

2.1 Static-Pattern Scenario. The static-pattern scenario is the standard
framework for the theory of unsupervised Hebbian learning (Hertz, Krogh,
& Palmer, 1991). The input ensemble contains p patterns defined as vectors
x* € RN where x* = (CARE SN xﬁ,)T with pattern label 1 < p < p. Time
is discretized in intervals A;. In each time interval Ay, a pattern is chosen
randomly from the ensemble of patterns and applied at the input; during
application of pattern j, the input rate at synapse i is A" = x/'. Temporal
averaging over a time T yields the average input rate at each synapse:

t
D = % / dt' (e, 1)
-T

t

For long intervals T >> p Ay, the average input rate is constant, Ain(t) = E,
and we find

in —
AN =

4
> oAl (2.2)
n=1

An overbar will always denote temporal averaging over long intervals T.
The normalized correlation coefficient of the input ensemble is

= |~

1 &L @ — A (& =

static __ —
Cyte=—3.

Pi= E?

= e (2.3)

An explicit example of the static-pattern scenario is given in the appendix.
Input correlations play a major role in the theory of unsupervised Hebbian
learning (Hertz et al., 1991).
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2.2 Translation-Invariant Scenario. In developmental learning, it is of-
ten natural to assume a translation-invariant scenario (Miller, 1996a). In
this scenario, the mean input rates are the same at all synapses and (again)
constant in time:

Ain(f) = Ain for all i. (2.4)
At each synapse i, the actual rate A" (#) is time dependent and fluctuates on

a timescale Aoy around its mean. In other words, the correlation function,
defined as

AMR(E) AN (E ~5)
Ci]'(S) =

= 0 :Cﬁ(—s), (25)
A

is supposed to vanish for |s| 3> Acor. Here AAN(H) := AIN(H) — A is the
deviation from the mean.

The essential hypothesis is that the correlation function is translation
invariant, thatis, C; = Cj;_j. Let us suppose, for example, that the ensemble
of stimuli consists of objects or patterns of some typical size spanning / input
pixels so that the correlation function has a spatial width of order I. If the
objects are moved randomly with equal probability in an arbitrary direction
across the stimulus array, then the temporal part of the correlation function
will be symmetric in that Cj;_j (s) = Cji_j|(—s).

Using the static-pattern scenario or the translation-invariant scenario,
we are able to simplify the analysis of Hebbian learning rules considerably
(rate-based learning in section 3 and spike-based learning in section 4).

3 Plasticity in Rate Description

In this section, we start with some preliminary considerations formulated
on the level of rates and then analyze the rate description proper. Our aim is
to show that the learning dynamics defined in equation 1.1 can yield a stable
fixed point of the output rate. In order to keep the discussion as simple as
possible, we focus mainly on a linearized rate neuron model and use the
input scenarios of section 2. The learning rule is that of equation 1.1 with
al' = a$"* = 0. All synapses are assumed to be of the same type so that the
coefficients ai", a9"!, and a5°™ do not depend on the synapse index i.

As is usual in the theory of Hebbian learning, we assume that the slow
timescale 7, of learning and the fast timescale of fluctuations in the input
and neuronal output can be separated by the averaging time T. For instance,
we assume 7, > T 3> p A; in the static-pattern scenario or 7, > T > Acorr
in the translation-invariant scenario. A large 7, implies that weight changes
within a time interval of duration T are small compared to typical values
of weights. The right-hand side of equation 1.1 is then “self-averaging”
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(Kempter et al., 1999a) with respect to both randomness and time; that
is, synaptic changes are driven by statistically and temporally averaged
quantities,

d T —
Tw @it = a0 +ay A+ ag™t aout(t)

+ @S0 A - AOUE(F) 4 SO AAIN(E) AXOUE(H). (3.1)

“Hebbian” learning of a synapse should be driven by the correlations of
pre- and postsynaptic neuron, that is, the last term on the right-hand side
of equation 3.1 (cf. Sejnowski, 1977; Sejnowski & Tesauro, 1989; Hertz et al.,
1991). This term is of second order in AAI", and it might therefore seem that

it is small compared to the term proportional to Ain - A°Ut—but is it really?
Let us speculate for the moment that in an ideal neuron, the mean output

rate A°ut is attracted toward an operating point,

ag + M Ain
G s WA (3.2)

)Lout _
atl)ut + agorr )\in

FP —

where A" is the typical mean input rate that is identical at all synapses. Then
the dominant term on the right-hand side of equation 3.1 would indeed be
the covariance term o« AAM AL°Ut because all other terms on the right-hand
side of equation 3.1 cancel each other. The idea of a fixed point of the rate

aout = 1988 will be made more precise in the following two sections.

3.1 Piecewise-Linear Neuron Model. As a first example, we study the
piecewise-linear neuron model with rate function

1Y .
AUt (t) = |:k0 +ny > wit) x;“(t)] : (3.3)
i=1

+

Here, 1 is a constant, and yy > 0 is the slope of the activation function. The
normalization by 1/N ensures that the mean output rate stays the same if
the number N of synaptic inputs (with identical input rate Al") is increased.
In case A9 < 0, we must ensure explicitly that A°" is nonnegative. To do so,
we have introduced the notation [.]+ with [x]; = xforx > 0and [x]+ = 0 for
x < 0. In the following, we will always assume that the argument inside the
square brackets is positive, drop the brackets, and treat the model as strictly
linear. Only at the end of the calculation do we check for consistency—for
A°"t > 0. At the end of learning, we also check for lower and upper bounds,
0 < w; < w™ for all i. (For a discussion of the influence of lower and upper
bounds for individual weights on the stabilization of the output rate, see
section 5.3.)
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Since learning is assumed to be slow (t, > Acorr), the weights w; do
not change on the fast timescale of input fluctuations. Hence the correlation
term AAIM A)oUt in equation 3.1 can be evaluated for constant w;. Using
equation 3.3, the definition AA®U(t) := A%t (t) — A°Ut(#), and the definition
of the input correlations C; as given by equation 2.5, we obtain

AR AR = 3y Y wi(t) A" Cy(0). (3.4)
=1

We now want to derive the conditions under which the mean output rate
A°ut approaches a fixed point A25". Let us define, whatever j, the “average

correlation,”

X (M2 Cy0)
===
2in (m?
that is, we require that the average correlation be independent of the index
j- This condition may look artificial, but it is, in fact, a rather natural as-

sumption. In particular, for the translation-invariant scenario, equation 3.5
always holds. We use equations 3.3 through 3.5 in equation 3.1, multiply by

C: (3.5)

wN -1 Anand sum over i. Rearranging the result, we obtain
d out out out
T PO = AR - A0 (D) (3.6)

with fixed point

N N N
M= — 2 |:ﬂ0 DoAY (I — Cag g Z(x%“f} .67
w i=1 i=1 i=1

and time constant
N N N 77!
Ti=—Tp — |:a§’“t Zk}n + (14 C)as Z(A}n)z . (3.8)
7 im1 im1

The fixed point Ap' is asymptotically stable if and only if 7 > 0. For the
translation-invariant scenario, the mean input rates are the same at all
synapses so that the fixed point 3.7 reduces to

ag + ailnki“ — Cag® hoAin

)\'out — _
a§Ut + aSeTAIn (1 + C)

P (3.9)

This is the generalization of equation 3.2 to the case of nonvanishing corre-
lations.
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We require AZH' > 0 so as to ensure that we are in the linear regime of
our piecewise-linear neuron model. For excitatory synapses, we require in
addition that the weights w; are positive. Hence, a realizable fixed point
should have a rate Aggt > max{0, Ag}. On the other hand, the weight values

being bounded by w™?*, the fixed point must be smaller than 1o+ yp w™* Ain
since otherwise it cannot be reached. The learning dynamics would stop
once all weights have reached their upper bound. Finally, the stability of
the fixed point requires v > 0. The above requirements define conditions
on the parameters ag, aif‘, a‘lmt, a3®", and Ao that we now explore in two

examples. We note that a fixed point of the output rate implies a fixed point
of the average weight w := )L}“ wi/ 3 )\]i.n (cf. equation 3.3).

Example 1 (no linear terms). Instandard correlation-based learning, there
are usually no linear terms. Let us therefore set qp = ai" = a{"* = 0. We
assume that the average correlation is nonnegative, C > 0. Since we have
o > 0, the term inside the square brackets of equation 3.8 must be negative

in order to guarantee asymptotic stability of the fixed point. Since E >0
for all i, a stable fixed point A% can therefore be achieved only if 43" < 0,

so that we end up with anti-Hebbian learning. The fixed point is

=0 e (3.10)
As it should occur for positive rates, we must require A9 > 0. In addition,
because Aggt < Ap, some of the weights w; must be negative at the fixed
point, which contradicts the assumption of excitatory synapses (see equa-
tion 3.3). We note that for C — 0, the output rate approaches zero; that is,
the neuron becomes silent. In summary, without linear terms, a rate model
of correlation-based learning cannot show rate stabilization unless some
weights are negative and a3°"" < 0 (anti-Hebbian learning).

Example 2 (Hebbian learning). Instandard Hebbian learning, the correla-
tion term should have positive sign. We therefore set a5°" > 0. As before, we
assume C > 0. From t > 0 in equation 3.8, we then obtain the condition that
" be sufficiently negative in order to make the fixed point stable. In par-
ticular, we must have aﬁ’“t < 0. Hence, firing-rate stabilization in rate-based

Hebbian learning requires a linear “non-Hebbian” term a"* < 0.

3.2 Nonlinear Neuron Model. So far we have focused on a piecewise-
linear rate model. Can we generalize the above arguments to a nonlinear
neuron model? To keep the arguments transparent, we restrict our anal-
ysis to the translation-invariant scenario and assume identical mean in-

put rates, A" = Ain for all i. As a specific example, we consider a neuron
model with a sigmoidal activation (or gain) function A°“* = g(u) where
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)

xm ax_|

Output Rate X°"!

Figure1: Sigmoidalactivation function g. We plot the output rate A°* (solid line)
as a function of the neuron’s input # := N~! )", w; AI". The spontaneous output
rate at u = 0 is A(0), and the maximum output rate is A™**. The dashed line is a
linearization of g around a mean input # > 0. We note that here Ao(w) < 0; cf.
equation 3.11 and examples 1 and 4.

u(t) = N"UYN w;(t) AiN(t) and the derivative g’ (1) is positive for all u. For
vanishing input, u = 0, we assume a spontaneous output rate A°"* = 1(0) >
0. For u — —o0, the rate vanishes. For u — oo, the function g approaches
the maximum output rate 2°" = 2™ (see Figure 1).

Let us setw = N1 ZJ» wj. For a given mean weight w, we obtain a mean

input i = w A", If the fluctuations AA(f) := AI"(t) — AI" are small, we can
linearize g(u) around the mean input %, that is, g(u) = g() + g’ (W) (u — u)
(cf. Figure 1). The linearization leads us back to equation 3.3,

1
A = o (@) + no(@) 5 > wial, (3.11)
i=1

with do(w) = g() — ¢’ () u and yo(w) = ' ().

The discussion of output rate stabilization proceeds as in the linear case.
Does a fixed point exist? The condition di°ut/dt = 0 yields a fixed point
that is given by equation 3.9 with Ag replaced by Aq(w). Thus, equation 3.9
becomes an implicit equation for Agp'. A sigmoidal neuron can reach the
fixed point if the latter lies in the range 0 < A95" < A™@. The local stability
analysis does not change. As before, a fixed point of 1°"t implies a fixed point
of the mean weight w. The statement follows directly from equation 3.11
since daout/df = &' (u) AnN -1 > ; dw;/dt and g’ > 0. That is, stabilization of
the output rate implies a stabilization of the weights.
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Let us summarize this section. The value of the fixed point A25! is identical
for both linear and the linearized rate model and given by equation 3.9. It
is stable if T in equation 3.8 is positive. If we kept higher-order terms in the
expansion of equation 3.11, the fixed point may shift slightly, but as long as
the nonlinear corrections are small, the fixed point remains stable (due to
the continuity of the differential equation, 1.1). This highlights the fact that
the learning rule, equation 3.1, with an appropriate choice of parameters
achieves a stabilization of the output rate rather than a true normalization
of the synaptic weights.

4 Plasticity Driven by Spikes

In this section, we generalize the concept of intrinsic rate stabilization to
spike-time-dependent plasticity. We start by reviewing a learning rule where
synaptic modifications are driven by the relative timing of pre- and post-
synaptic spikes and defined by means of a learning window (Gerstner,
Kempter, et al., 1996, Kempter et al., 1996); extensive experimental evi-
dence supports this idea (Levy & Stewart, 1983; Bell, Han, Sugawara, &
Grant, 1997; Markram et al., 1997; Zhang et al., 1998; Debanne et al., 1998;
Bi & Poo, 1998, 1999; Egger, Feldmeyer, & Sakmann, 1999; Abbott & Munro,
1999; Feldman, 2000). The comparison of the spike-based learning rule de-
veloped below with a rate-based learning rule discussed above allows us to
give the coefficients a", 0", and a5°™ in equation 3.1 a more precise mean-
ing. In particular, we show that a}°™ corresponds to the integral over the
learning window. Anti-Hebbian learning in the above rate model (see ex-
ample 1) can thus be identified with a negative integral over the learning
window (Gerstner, Kempter, et al. 1996; Gerstner, Kempter, van Hemmen,
& Wagner, 1997; Kempter et al., 1999a, 1999b).

4.1 Learning Rule. We are going to generalize equation 1.1 to spike-
based learning. Changes in synaptic weights w; are triggered by input
spikes, output spikes, and the time differences between input and output
spikes. To simplify the notation, we write the sequence {t}, {7, ...} of spike
arrival times at synapse i in the form of a “spike train” SI(t) := Y, §(t—t")
consisting of § functions (real spikes of course have a finite width, but what
counts here is the events “spike”). Similarly, the sequence of output spikes is
denoted by Sout(f) = >, 8(t—t"). These notations allow us to formulate the
spike-based learning rule as (Kempter, et al., 1999a; Kistler & van Hemmen,
2000; van Hemmen, 2000),

t
‘L'w%ZUi(t) =ap+ uilnS}n(t) + aSUtSOut(f) 4 S}n(t) / AWt — £)SOU (¥

—0Q

t
+ Sout(f) / dt' W(—t +t') S(t). (4.1)
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As in equation 1.1, the coefficients ao, ailn, a‘l’“t, and the learning window W

in general depend on the current weight value w;. They may also depend
on other local variables, such as the membrane potential or the calcium
concentration. For the sake of clarity of presentation, we drop these depen-
dencies and assume constant coefficients. We can, however, assume upper
and lower bounds for the synaptic efficacies w;; that is, weight changes are
zero if w; > w™™ or w; < 0 (see also the discussion in section 5.3). Again
for the sake of clarity, in the remainder of this section we presume that all
weights are within the bounds.

How can we interpret the terms on the right in equation 4.1? The co-
efficient ag is a simple decay or growth term that we will drop. S and
S°ut are sums of § functions. We recall that integration of a differential
equation dx/dt = f(x,t) + aé(t) with arbitrary f yields a discontinuity
at zero: x(04+) — x(0-) = a. Thus, an input spike arriving at synapse 7 at
time ¢ changes w; at that time by a constant amount 7! 4" and a variable
amount r;l fioo dt W(t — t') S ('), which depends on the sequence of
output spikes occurring at times earlier than ¢. Similarly, an output spike at
time f results in a weight change 7, 1 [a?ut + /[ f LAt W — 1) Sn(t].

Our formulation of learning assumes discontinuous and instantaneous
weight changes at the times of the occurrence of spikes, which may not seem
very realistic. The formulation can be generalized to continuous and delayed
weight changes that are triggered by pre- and postsynaptic spikes. Provided
the gradual weight change terminates after a time that is small compared to
the timescale of learning, all results derived below would basically be the
same.

Throughout what follows, we assume that discontinuous weight changes
are small compared to typical values of synaptic weights, meaning that
learning is by small increments, which can be achieved for large 7. If 7
is large, we can separate the timescale of learning from that of the neu-
ronal dynamics, and the right-hand side of equation 4.1 is “self-averaging”
(Kempter et al., 1999a; van Hemmen, 2000). The evolution of the weight
vector (see equation 4.1) is then

d . -
Tw @i = a7 (S () +al™ (S (8

+ / dsW(s) (Sin(t) Sout(t — s)). 4.2)

Our notation with angular brackets plus horizontal bar is intended to em-
phasize that we average over both the spike statistics given the rates (angu-
lar brackets) and the ensemble of rates (horizontal bar). An example will be
given in section 4.4. Because weights change slowly and the statistical input
ensemble is assumed to have stationary correlations, the two integrals in
equation 4.1 have been replaced by a single integral in equation 4.2.
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The formulation of the learning rule in equation 4.2 allows a direct link to
rate-based learning as introduced in equations 1.1 and 3.1. Indeed, averaged

spike trains (Si")(f) and (S°ut)(¢) are identical to the mean firing rates Ai"(f)
and A°ut(t), respectively, as defined in sections 2 and 3. In order to inter-

pret the correlation terms, we have to be more careful. The terms (Sin Sout)
describe the correlation between input and output on the level of spikes.
In section 4.3, we will give a detailed treatment of the correlation term. In
the next section, we simplify the correlation term under the assumption of
slowly changing firing rates.

4.2 Correlations in Rate-Based Learning. In this section, we relate the
correlation term a5°™ in equation 3.1 to the integral over the learning win-
dow W in equation 4.2. In order to make the transition from equation 4.2
to equation 3.1, two approximations are necessary (Kempter et al., 1999a,
1999b). First, we have to neglect correlations between input and output
spikes apart from the correlations contained in the rates. Thatis, we make the
approximation (Sin(f) SOut(t — s)) ~ Ain(t) A°ut(t — s), the horizontal overbar
denoting an average over the learning time. Second, we assume that these
rates change slowly as compared to the width of the learning window W
(cf. Figure 2a). Consequently we set A"t (t — s) ~ A°U(t) — s [d/dt 2°U (#)] in
the integrand of equation 4.2. With the above two assumptions, we obtain

[o¢]
rw% w;it) = alM A 4 a9 AOUE(F) + AIR(£) AOUE() / ds W(s)

—00

— Ain(p) %Mmt(t) / dss W(s). 4.3)

The last term on the right in equation 4.3 has been termed “differential-
Hebbian” (Xie & Seung, 2000). Equation 4.3 is equivalent to equation 3.1, if
we neglect the differential-Hebbian term and set a3*™" = f ds W(s) and ag =
0. We note, however, that An(f) A0ut(f) = Aln . pout(r) 4 ALIN(F) Arout(t) still
contains the correlations between the fluctuations in the input and output
rates (but we had to assume that these correlations are slow compared to
the width of the learning window). The condition of slowly changing rates
will be dropped in the next section.

We saw in example 1 that with rate-based learning, intrinsic normal-
ization of the output rate is achievable once a5°"" < 0. We now argue that
a5 < 0, which has been coined “anti-Hebbian” in the framework of rate-
based learning, can still be “Hebbian” in terms of spike-based learning. The
intuitive reason is that the learning window W(s) as sketched in Figure 2a
has two parts, a positive and a negative one. Even if the integral over the
learning window is negative, the size of weight changes in the positive part
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Figure 2: (a) Learning window W (arbitrary units) as a function of the delay
s = 1" —t" between presynaptic spike arrival time f}" and postsynaptic firing time
t" (schematic). If W(s) is positive (negative) for some s, the synaptic efficacy w; is
increased (decreased). The increase of w; is most efficient if a presynaptic spike
arrives a few milliseconds before the postsynaptic neuron starts firing. For |s| —
oo, we have W(s) — 0. The bar denotes the width of the learning window. The
qualitative time course of the learning window is supported by experimental
results (Levy & Stewart, 1983; Markram et al., 1997; Zhang et al., 1998; Debanne
et al., 1998; Bi & Poo, 1998; Feldman, 2000; see also the reviews by Brown &
Chattarji, 1994; Linden, 1999; Paulsen & Sejnowski, 2000; and Bi & Poo, 2001).
The learning window can be described theoretically by a phenomenological
model with microscopic variables (Senn et al., 1997, 2001; Gerstner, Kempter,
van Hemmen, & Wagner, 1998). (b) Spike-spike correlations (schematic). The
correlation function Corr;(s, w) /F (full line) defined in equation 4.10 is the sum
of two terms: (1) the causal contribution of an input spike at synapse i at time s
to the output firing rate at time s = 0 is given by the time-reverted EPSP, that is,
Yo N1 w; e(—s) (dotted line); (2) the correlations between the mean firing rates
An(f) A0ut(t —s) / Ain are indicated by the dashed line. For independent inputs
with stationary mean, the rate contribution would be constant and equal to A°*.
In the figure, we have sketched the situation where the rates themselves vary
with time.

can be large enough to pick up correlations. In other words, the two approx-
imations necessary to make the transition from equation 4.2 to equation 4.3
are, in general, not justified. An example is given in the the appendix. In
order to make our argument more precise, we have to return to spike-based
learning.

4.3 Spike-Spike Correlations. In the previous section, we replaced

(Sin(t) Sout(t — s)) by the temporal correlation between slowly changing
rates. This replacement leads to an oversimplification of the situation be-
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cause it does not take into account the correlations on the level of spikes or
fast changes of the rates. Here we present the correlation term in its general
form.

Just as in section 3, we require learning to be a slow process so that
Ty 3> PA; OF Ty, 3> Acorr (see section 2 for a definition of pA; and Acerr). The
correlation term can then be evaluated for constant weights w;, 1 <i < N.
For input Si" with some given statistical properties that do not change on
the slow timescale of learning, the correlations between S}n (t) and S°Ut(t —s)
depend on only the time difference s and the current weight vector w(t),

Corri[s, w(t)] := (Sin(t) Sout(t — s)). (4.4)

The horizontal bar refers, as before, to the temporal average introduced
through the separation of timescales (cf. equation 2.1). Substituting equa-
tion 4.4 into equation 4.2, we obtain the dynamics of weight changes,

o0
d o .
rwawi(t) = a* A 4 Ut jout(p) 4 / ds W(s) Corr[s, w(t)]. (4.5)

—0Q

Equation 4.5 is completely analogous to equation 3.1 except that the corre-
lations between rates have been replaced by those between spikes. We may
summarize equation 4.5 by saying that learning is driven by correlations on
the timescale of the learning window.

4.4 Poisson Neuron. To proceed with the analysis of equation 4.5, we
need to determine the correlations Corr; between input spikes at synapse i
and output spikes. The correlations depend strongly on the neuron model
under consideration. As a generalization to the linear rate-based neuron
model in section 3.1, we study an inhomogeneous Poisson model that gen-
erates spikes at a rate k;’i}jt(t). For a membrane potential u(t) < ©, the model
neuron is quiescent. For u > ¥, the rate A" (t) is proportional to u — . We
call this model the piecewise-linear Poisson neuron or, for short, the Poisson
neuron.

4.4.1 Definition. The input to the neuron consists of N Poissonian spike
trains with time-dependent intensities (5}“) ) = A}“(t), 1 < i < N (for the
mathematics of an inhomogeneous Poisson process, we refer to appendix A
of Kempter, Gerstner, van Hemmen, & Wagner, 1998). As in the rate model
of section 3, the normalized correlation function for the rate fluctuations at
synapse i and j is defined by equation 2.5. The input scenarios are the same
as in section 2—static-pattern scenario or translation-invariant scenario.

A spike arriving at tif at synapse i evokes a postsynaptic potential (PSP)
with time course w; e (f — t{[ ), which we assume to be excitatory (EPSP). We
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impose the condition fooo dse(s) = 1 and require causality, that is, €(s) = 0
fors < 0. The amplitude of the EPSP is given by the synaptic efficacy w; > 0.
The membrane potential u of the neuron is the linear superposition of all
contributions,

1 N
u(t)y = 5 wilt) Y et —t)
i=1 f
1 N +00 .
= NZwi(t) / dse(s) S (t — s). (4.6)
i=1 e

Since € is causal, only spike times t,f < t count. The sums run over all spike
arrival times t{( of all synapses. S}“(t) = Zf S(t — tif ) is the spike train at
synapse i.

In the Poisson neuron, output spikes are generated stochastically with a
time-dependent rate A4’ that depends linearly on the membrane potential
whenever u is above the threshold & = —Xo/ 0,

AGEB =[ro+wu®dly = [+ 3 Zm(t) Ze(t -th| . @y

+

Here yp > 0and A are constants. As before, the notation with square brack-
ets [.]; ensures that A2})' be nonnegative. The brackets will be dropped in
the following. The subscript S™ of A% indicates that the output rate de-
pends on the specific realization of the input spike trains. We note that the
spike-generation process is independent of previous output spikes. In par-
ticular, the Poisson neuron model does not show refractoriness. We drop

this restriction and include refractoriness in section 4.6.

4.4.2 Expectation Values. In order to evaluate equations 4.4 and 4.5, we
first have to calculate the expectation values (.) (i.e., perform averages over
the spike statistics of both input and output given the rates) and then average
over time. By definition of the rate of an inhomogeneous Poisson process,
the expected input is (SI") = Al". Taking advantage of equations 4.6 and 4.7,
we find that the expected output rate (S°U) = (Agﬁt) = A% which is the
rate contribution of all synapses to an output spike at time t, is given by

(S°Uy (1) = A% (f) = Ao + = Zw,(t) / dse(s) An(t —s), (4.8)

where the final term is a convolution of € with the input rate.
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Next we consider correlations between input and output, (S (t) SOt (t —
s))—the expectation of finding an input spike at synapse i at time t and
an output spike at t — s. Since this expectation is defined as a joint proba-
bility density, it equals the probability density A" (t) for an input spike at
time  times the conditional probability density (S®(t — s))is of observ-
ing an output spike at time t — s given the input spike at synapse i at ¢;
that is, (S(#) SOU(t — s5)) = AIR(E) (SO (t — 9)) i) Within the framework of
the linear Poisson neuron, the term (S°“(t — s)); 1 equals the sum of the
expected output rate A°!(t — s) in equation 4.8, and the specific contribu-
tion yy N~1w; €(—s) of a single input spike at synapse i (cf. equation 4.7). To
summarize, we get (Kempter et al., 1999a),

(SR S (E = 9) = A1) [ K wil®) e(—s) +2 ¢t = 9)]. (49)

Due to causality of ¢, the first term on the right, inside the square brackets
of equation 4.9, must vanish for s > 0.

4.4.3 Temporal Average. In order to evaluate the correlation term, equa-
tion 4.4, we need to take the temporal average of equation 4.9, that is,

Cmdawth?%wﬁyeg+anww—g. (4.10)

For excitatory synapses, the first term gives for s < 0 a positive contribution
to the correlation function, as it should be (see Figure 2b). We recall that
s < 0 means that a presynaptic spike precedes postsynaptic firing. The
second term on the right in equation 4.10 describes the correlations between
the input and output rates. These rates and correlations between them can,
in principle, vary on an arbitrary fast timescale (for modeling papers, see
Gerstner, Kempter, et al., 1996; Xie & Seung, 2000). We assume, however, for

reasons of transparency that the mean input rates A" (f) = A" are constant
for all i (see also the input scenarios in section 2). The mean output rate
Aout(t) and the weights w;(t) may vary on the slow timescale of learning.

4.4.4 Learning Equation. Substituting equations 2.5, 4.8, and 4.10 into
4.5, we find

oo
d — - N
T i) = af AP + aQut jout () 4 Ain . Jout(f) / ds W(s) + % >

j=1

—0Q

0
X wi(t) Q,-]-E-EHU@ / dsW@)e(=s)|,  (4.11)
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where
Qi = / ds W(s)/ds’e(s’) Cii(s +5"). (4.12)
—00 0

The important factor in equation 4.12 is the input correlation function C;; (as
it appears in equation 2.5) (low-pass) filtered by learning window W and
the postsynaptic potential €. For all input ensembles with Cji(t) = Cji(—7)
(viz. temporal symmetry), we have Q; = Qj;. Hence, the matrix (Q;;) can be
diagonalized and has real eigenvalues. In particular, this remark applies to
the static-pattern scenario and the translation-invariant scenario introduced
in section 2. It does not apply, for example, to sequence learning; cf. (Herz
et al.,, 1988, 1989; van Hemmen et al., 1990; Gerstner et al., 1993; Abbott &
Blum, 1996; Gerstner & Abbott, 1997).

To get some preliminary insight into the nature of solutions to equa-
tion 4.11, let us suppose that all inputs have the same mean Ai* = Ai". As we
will see, for a broad parameter range, the mean output rate will be attracted
toward a fixed point so that the first three terms on the right-hand side of
equation 4.11 almost cancel each other. The dynamics of pattern formation
in the weights w; is then dominated by the largest positive eigenvalue of the
matrix [Qj + & (Aim)—1 [ ds W(s) e(—s)]. The eigenvectors of this matrix are
identical to those of the matrix (Q;)). The eigenvalues of (Q;;) can be positive
even though a5°™ = [ ds W(s) is negative. A simple example is given in the
appendix.

To summarize this section, we have solved the dynamics of spike-time-
dependent plasticity defined by equation 4.2 for the Poisson neuron, a
(piecewise) linear spiking neuron model. In particular, we have succeeded
in evaluating the spike-spike correlations between presynaptic input and
postsynaptic firing.

4.5 Stabilization in Spike-Based Learning. We are aiming at a stabi-
lization of the output rate in analogy to equations 3.7 and 3.8. To arrive at

a differential equation for 2°t¢, we multiply equation 4.11 by A" yo/N and
sum over i. Similarly to equation 3.5, we assume that

Q=1 é () o @13)

is independent of the index j. To keep the arguments simple, we assume in
addition that all inputs have the same mean A" = i, For the translation-
invariant scenario, both assumptions can be verified. With these simplifi-
cations, we arrive at a differential equation for the mean output rate W,
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which is identical to equation 3.6, that is, r%)\o‘“ = Aggt — xout with fixed
point

2
AZE = Tl Yo [a‘{‘ (k‘“) - Q+8) Ao] (4.14)

and time constant

-1

o0
J— —\2
v =20 | goutyin 4 (xin) / dsW(s)+Q+8]| (4.15)
Yo
—00
where
__ 0
)\lll’l
p=" | dsWee-s) (4.16)
—0oQ

is the contribution that is due to the spike-spike correlations between pre-
and postsynaptic neuron. A comparison with equations 3.7 and 3.8 shows
that we may set 49 = 0 and a5°" = f ds W(s). The average correlation is to

be replaced by

- Qs (4.17)
(A2 [ ds W(s)
All previous arguments regarding intrinsic normalization apply. The only
difference is the new definition of the factor C in equation 4.17 as compared
to equation 3.5. This difference is, however, important. First, the sign of
J ds W(s) enters the definition of C in equation 4.17. Furthermore, an addi-
tional term B appears. Itis due to the extra spike-spike correlations between
presynaptic input and postsynaptic firing. Note that g is of order N~1. Thus,
it is small compared to the first term in equation 4.17 whenever the number
of nonzero synapses is large (Kempter et al., 1999a). If we neglect the second
term (B = 0) and if we set €(s) = 8(s) and W(s) = a5 §(s), equation 4.17
is identical to equation 3.5. On the other hand, B is of order Al" in the input

rates, whereas Q is of order (Ain)2. Thus, 8 becomes important whenever
the mean input rates are low. As shown in the appendix, 8 is, for a realistic
set of parameters, of the same order of magnitude as Q.

Let us now study the intrinsic normalization properties for two combi-
nations of parameters.

Example 3 (positive integral). We consider the case fj;o dsW(s) > 0 and
assume that correlations in the input on the timescale of the learning win-
dow are positive so that Q > 0. Furthermore, for excitatory synapses, it is
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natural to assume f > 0. In order to guarantee the stability of the fixed
point, we must require t > 0, which yields the condition

aQut < —jin / dsW(s) — w <0. (4.18)
)\m

Hence, if a9"" is sufficiently negative, output rate stabilization is possible

even if the integral over the learning window has a positive sign. In other
words, for a positive integral over the learning window, a non-Hebbian
“linear” term is necessary.

Example 4 (no linear terms). Instandard Hebbian learning, all linear terms
vanish. Let us therefore set a" = a‘l’ut = 0. As in example 3, we assume
Q + B > 0. To guarantee the stability of the fixed point, we must now

require

/ dswis) < - 28 (4.19)

(Ain)z

Thus, a stable fixed point of the output rate is possible if the integral over
the learning window is sufficiently negative. The fixed point is

Q+5
0 A )
Q+ B+ (AM2 [ds W(s)

AL = 2 (4.20)

Note that the denominator is negative because of equation 4.19. For a fixed
point to exist, we need A%‘lit > 0; hence, 29 < 0 (cf. Figure 1). We emphasize
that in contrast to example 1, all weights at the fixed point can be positive,
as should be the case for excitatory synapses.

To summarize the two examples, a stabilization of the output rate is
possible for positive integral with a non-Hebbian term a{"* < 0 or for a

negative integral and vanishing non-Hebbian terms.

4.6 Spiking Model with Refractoriness. In this section, we generalize
the results to a more realistic model of a neuron: the spike response model
(SRM) (Gerstner & van Hemmen, 1992; Gerstner, van Hemmen, & Cowan,
1996; Gerstner, 2000). Two aspects change with respect to the Poisson neu-
ron. First, we include arbitrary refractoriness into the description of the
neuron in equation 4.6. In contrast to a Poisson process, events in disjoint
intervals are not independent. Second, we replace the linear firing intensity
in equation 4.7 by a nonlinear one (and linearize only later on).
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Let us start with the neuronal membrane potential. As before, each input
spike evokes an excitatory postsynaptic potential described by a response
kernel e(s) with fooo dse(s) = 1. After each output spike, the neuron un-
dergoes a phase of refractoriness, which is described by a further response
kernel 5. The total membrane potential is

. .1 Y
ut|h=nt -+ l;:wi(t) ;e(t —t), 4.21)

where f is the last output spike of the postsynaptic neuron. As an example,
let us consider the refractory kernel

n(s) = —no exp <—Ti> O(s), (4.22)

n

where —1(0) = 59 > 0 and t,, > 0 are parameters and ©(s) is the Heaviside
function, that is, ®(s) = 0 for s < 0 and ®(s) = 1 for s > 0. With this defi-
nition of 1, the SRM is related to the standard integrate-and-fire model. A
difference is that in the integrate-and-fire model, the voltage is reset after
each firing to a fixed value, whereas in equations 4.21 and 4.22, the mem-
brane potential is reset at time = £ by an amount —ng — n(t — t'), which
depends on the time ¢’ of the previous spike.

In analogy to equation 4.7, the probability of spike firing depends on the
momentary value of the membrane potential. More precisely, the stochastic
intensity of spike firing is a (nonlinear) function of u(t | f),

AUt | By = flut | B, (4.23)

with f(#) — 0foru — —oo.Forexample, we may take f (1) = Ao explyo (u—
) /Ao] with parameters Ao, yo, ¥ > 0. For yy — o0, spike firing becomes a
threshold process and occurs whenever u reaches the threshold  from
below. For ¢ = 0 and |ypu/Ag] < 1, we are led back to the linear model
of equation 4.7. A systematic study of escape functions f can be found in
Plesser and Gerstner (2000).

We now turn to the calculation of the correlation function Corr; as de-
fined in equation 4.4. More precisely, we are interested in finding the gen-
eralization of equation 4.10 (for Poisson neurons) to spiking neurons with
refractoriness. Due to the dependence of the membrane potential in equa-
tion 4.21 upon the last firing time £, the first term on the right-hand side of
equation 4.10 will become more complicated. Intuitively, we have to aver-
age over the firing times f of the postsynaptic neuron. The correct averaging
can be found from the theory of population dynamics studied in Gerstner
(2000). To keep the formulas as simple as possible, we consider constant
input rates Ai(t) = A" for all i. If many input spikes arrive on average
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within the postsynaptic integration time set by the kernel ¢, the membrane
potential fluctuations are small, and we can linearize the dynamics about
the mean trajectory of the membrane potential:

. J—
At b =it b +xn > wi. (4.24)
i=1

To linear order in the membrane potential fluctuations, the correlations are
(Gerstner, 2000),

Corr;i(s, W) = AN Pj(—s) + Ain jout, (4.25)
where

w;

W d 00

. — jout —

Pi(s) = A N ds/dxﬂ(x)e(s X)
0

S
+ / df flu(s | H]S(s | £) Pi(). (4.26)
0
The survivor function S is defined as
S
Ss|H=exp{-— / dt’ flut | H1¢, (4.27)
;

the mean output rate is

0 -1
rout(t) = [ / dt St | O)} , (4.28)
0

and the “filter” L is
rod
Lo = / d& = fluce 10156 | 0). (4.29)

In equations 4.26 through 4.29, the membrane potential u is given by the
mean trajectory i in equation 4.24.

Equations 4.25 and 4.26 are our main result. All considerations regarding
normalization as discussed in the preceding subsection are valid with the

function Corr; defined in equations 4.25 and 4.26 and an output rate A°ut
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defined in equation 4.28. In passing, we note that equation 4.28 defines the

gain function of the corresponding rate model, A4t = g[AIN N~1 Y w;].

Let us now discuss equation 4.26 in more detail. The first term on its
right-hand side describes the immediate influence of the EPSP ¢ on the fir-
ing probability of the postsynaptic neuron. The second term describes the
reverberation of the primary effect that occurs one interspike interval later.
If the interspike interval distribution is broad, the second term on the right is
small and may be neglected (Gerstner, 2000). In order to understand the re-
lation of equations 4.25 and 4.26 to equation 4.10, let us study two examples.

Example 5 (no refractoriness). We want to show that in the limit of no
refractoriness, the spiking neuron model becomes identical with a Poisson
model. If we neglect refractoriness (7 = 0), the mean membrane potential
in equation 4.24 is it = AN N~'Y".w;. The output rate is A4t = f(ii) (cf.
equation 4.23), and we have S(s | 0) = exp[—A°uts] (see equation 4.27). In
equation4.29, we set yy = df/du evaluated atii and find P;(s) = €(s) w; yo/N.
Hence, equation 4.25 reduces to equation 4.10, as it should be.

Example 6 (high- and low-noise limit). If we take an exponential escape
rate f(u) = Ao explyo (1 — U)/Ao], the high-noise limit is found for |yy (1 —
9)/dol < 1and the low-noise limit for |yp (4 —9)/Ag| > 1. In the high-noise
limit, it can be shown that the filter L is relatively broad. More precisely, it
starts with an initial value £(0) > 0 and decays slowly, L(x) — 0for x — oo
(Gerstner, 2000). Since decay is small, we set %E(x) ~ 0 for x > 0. This
yields Pi(s) = w; N~1 20U £(0) e(s) + I df flu(s | H1S(s | £) Pi(f). Thus, the
correlation function Corr; contains a term proportional to €(—s) as in the
linear model. In the low-noise limit (yy — ©0), we retrieve the threshold
process, and the filter £ approaches a §-function—L(x) = d §(x) with some
constant d > 0 (Gerstner, 2000). In this case, the correlation function Corr;
contains a term proportional to the derivative of the EPSP: de(s)/ds.

To summarize this section, we have shown that it is possible to calculate
the correlation function Corr; (s, w) for a spiking neuron model with refrac-
toriness. Once we have obtained the correlation function, we can use it in
the learning dynamics, equation 4.5. We have seen that the correlation func-
tion depends on the noise level. This theoretical result is in agreement with
experimental measurements on motoneurons (Fetz & Gustafsson, 1983; Po-
liakov, Powers, Sawczuk, & Binder, 1996). It was found that for high noise
levels, the correlation function contained a peak with a time course roughly
proportional to the postsynaptic potential. For low noise, however, the time
course of the peak was similar to the derivative of the postsynaptic poten-
tial. Thus, the (piecewise-linear) Poisson neuron introduced in section 4.4 is
a valid model in the high-noise limit.
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5 Discussion

In this article we have compared learning rules at the level of spikes with
those at the level of rates. The learning rules can be applied to both linear
and nonlinear neuron models. We discuss our results in the context of the
existing experimental and theoretical literature.

5.1 Experimental Results. Rate normalization has been found in ex-
periments performed by Turrigiano, Leslie, Desai, Rutherford, and Nel-
son (1998). They blocked GABA-mediated inhibition in a cortical culture,
which initially raised activity. After about two days, the firing rate returned
close to the control value, and at the same time, all synaptic strengths
decreased. Conversely, a pharmacologically induced firing-rate reduction
leads to synaptic strengthening. Again, the output rate was normalized.
Turrigiano et al. (1998) suggest that rate normalization is achieved by mul-
tiplying all weights by the same factor. In our ansatz, however, weights
are normalized subtractively, that is, by addition or subtraction of a fixed
amount from all weights. The discrepancy between the experiment and our
model can be resolved by assuming—beyond upper and lower bounds for
individual weights—that the learning coefficients themselves depend on
the weights too. The extended ansatz exceeds, however, the scope of this
article. For additional mechanisms contributing to the activity-dependent
stabilization of firing rates we refer to Desai, Rutherford, and Turrigiano
(1999), Turrigiano and Nelson (2000), and Turrigiano (1999).

In our model, several scenarios for intrinsic rate normalization are pos-
sible, depending on the choice of parameters for the Hebbian and non-
Hebbian terms. Let us discuss each of them in turn.

5.1.1 Sign of Correlation Term. Rate normalization in our model is most
easily achieved if the integral of the learning window W is negative, even
though this is not necessary (see examples 1 and 4). On the basis of neu-
rophysiological data known at present (Markram et al., 1997; Zhang et al.,
1998; Debanne et al., 1998; Bi & Poo, 1998; Feldman, 2000), the sign of the
integral over the learning window cannot be decided (see also the reviews
by Linden, 1999; Bi & Poo, 2001). We have shown that a negative integral
corresponds, in terms of rate coding, to a negative coefficient 25" and hence
to an anti-Hebbian rule. Nevertheless, the learning rule can pick up positive
correlations if the input contains temporal correlations C;; on the timescale
of the learning window. An example is given in the appendix.

5.1.2 Role of Non-Hebbian Terms. We saw in examples 1 and 4 that the

linear terms in the learning rule are not necessary for rate normalization.

Nevertheless, we saw from example 2 or 3 that a negative coefficient a"

helps. A value a§"* < 0 means that in the absence of presynaptic activation,

postsynaptic spiking alone induces heterosynaptic long-term depression.
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This has been seen, for example, in hippocampal slices (Pockett, Brookes, &
Bindman, 1990; Christofi, Nowicky, Bolsover, & Bindman, 1993; see also the
reviews of Artola & Singer, 1993; Brown & Chattarji, 1994; Linden, 1999).
For cortical slices, both a{" > 0and a{"* < 0 have been reported (Volgushev,
Voronin, Chistiakova, & Singer, 1994).

On the other hand, a positive effect of presynaptic spikes on the synapses
in the absence of postsynaptic spiking (41" > 0) helps to keep the fixed point
in the range of positive rates A3 > 0 (see equation 3.7). Some experi-
ments indeed suggest that presynaptic activity alone results in homosynap-
tic long-term potentiation (4 > 0) (Bliss & Collingridge, 1993; Urban &
Barrionuevo, 1996; Bell et al., 1997; see also Brown & Chattarji, 1994).

5.1.3 Zero-Order Term. Aswehave seen from equation 3.7, spontaneous
weight growth ag > 0 helps keep the fixed point of the rate in the positive
range. Turrigiano et al. (1998) chronically blocked cortical culture activity
and found an increase of synaptic weights, supporting ag > 0.

5.2 Spike-Time-Dependent Learning Window. In Figure 2a we indi-
cated a learning window with two parts: a positive part (potentiation) and
a negative one (depression). Such a learning window is in accordance with
experimental results (Markram etal., 1997; Zhang et al., 1998; Debanne et al.,
1998; Bi & Poo, 1998; Feldman, 2000). We may ask, however, whether there
are theoretical reasons for this time dependence of the learning window?
For excitatory synapses, a presynaptic input spike that precedes postsynap-
tic firing may be the cause of the postsynaptic activity or, at least, “takes
part in firing it” (Hebb, 1949). Thus, a literal understanding of the Hebb
rule suggests that for excitatory synapses, the learning window W(s) is pos-
itive for s < 0, if s is the difference between the times of occurrence of
an input and an output spike. (Recall that s < 0 means that a presynaptic
spike precedes postsynaptic spiking; see also Figure 2b.) In fact, a positive
learning phase (potentiation) for s < 0 has been found to be an impor-
tant ingredient in models of sequence learning (Herz et al., 1988, 1989; van
Hemmen et al., 1990; Gerstner et al., 1993; Abbott & Blum, 1996; Gerstner
& Abbott, 1997). If the positive phase is followed by a negative phase (de-
pression) for s > 0 as in Figure 2a, the learning rule acts as a temporal
contrast filter enhancing the detection of temporal structure in the input
(Gerstner, Kempter, et al., 1996; Kempter et al., 1996, 1999a; Song et al.,
2000; Xie & Seung, 2000). A two-phase learning rule with both potentia-
tion and depression was, to a certain degree, a theoretical prediction. The
advantages of such a learning rule have been realized in models (Gerst-
ner, Kempter, et al., 1996; Kempter et al., 1996) even before experimental
results on the millisecond timescale have become available (Markram et
al., 1997; Zhang et al., 1998; Debanne et al., 1998; Bi & Poo, 1998; Feldman,
2000).
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5.3 Structural Stability of Output Rates. We have seen that synaptic
plasticity with an appropriate combination of parameters pushes the output
rate A°ut toward a fixed point. To explicitly show the existence and stability
of the fixed point, we had to require that the factor C defined by equation 3.5
is independent of the synapse index j. The standard example that we have
used throughout the article is an input scenario that has the same mean rate

at each synapse (A" = Ain for all /) and is translation invariant Cjj = Cji_j).
In this case, rate normalization is equivalent to a stable fixed point of the
mean weight N~! > i w; (see section 3.2).

We may wonder what happens if equation 3.5 is not exactly true but
holds only approximately. To answer this question, let us write the linear
model of equation 4.11 in vector notation dw/dt = kje; + Mw with some
matrix M and the unit vector e; = N"V2 (1,1, ..., DT. A stable fixed point
of the mean weight implies that w = e; is an eigenvector of M with neg-
ative eigenvalue. If such a negative eigenvalue AM < 0 exists under the
condition 3.5, then, due to (local) continuity of solutions of the differen-
tial equation 4.11 in dependence on parameters, the eigenvalue will stay
negative in some regime where equation 3.5 holds only approximately. The
eigenvector corresponding to this negative eigenvalue will be close to but
not identical with e;. In other words, the output rate remains stable, but the
weight vector w is no longer exactly normalized.

The normalization properties of our learning rule are thus akin to, but
notidentical with, subtractive normalization (Miller & MacKay, 1994; Miller,
1996b). From our point of view, the basic property of such a rule is a sta-
bilization of the output rate. The (approximate) normalization of the mean
weight N™! 3", w; = ¢ with some constant ¢ is a consequence. The normal-
ization is exact if C in equation 3.5 is independent of the synapse index j,
and mean input rates A" are the same at all synapses.

Finally, the learning rule 1.1 with constant coefficients is typically unsta-
ble because weights receiving strongest enhancement grow without bounds
at the expense of synapses receiving less or no enhancement. Unlimited
growth can be avoided by explicitly introducing upper and lower bounds
for individual weights. As a consequence, most of the weights saturate at
these bounds. Saturated weights no longer participate in the learning dy-
namics, and the stabilization arguments of sections 3 and 4 can be applied to
the set of remaining weights. For certain models, it can be shown explicitly
that the fixed point of the output rate remains unchanged compared to the
case without bounds (Kempter et al., 1999a). We simply have to check that
the fixed point lies within the parameter range allowed by the bounds on
the weights.

5.4 Principal Components and Covariance. Whereasthe outputrate con-
verges to a fixed point so that the mean weight adapts to a constant value
N~13". w; = ¢, some synapses may grow and others decay. It is this synapse-
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specific change that leads to learning in its proper sense (in contrast to
mere adaptation). Spike-based learning is dominated by the eigenvector
of Qi) with the largest eigenvalue (Kempter et al., 1999a, 1999b). Thus,
learning “detects” the principal component of the matrix (Q;) defined in
equation 4.12.

A few remarks are in order. First, we emphasize that for spike-time-
dependent learning, a clear-cut distinction between Hebbian and anti-Heb-
bian rules is difficult. Since (Qy) is sensitive to the covariance of the input
on the timescale of the learning window, the same rule can be considered as
anti-Hebbian for one type of stimulus and as Hebbian for another one (see
the appendix).

Second, in contrast to Oja’s rule (Oja, 1982), it is not necessary to require

that the mean input A" vanishes at each synapse. Intrinsic rate normaliza-
tion implies that the mean input level does not play a role. After an initial
adaptation phase, neuronal plasticity has automatically “subtracted” the
mean input and becomes sensitive to the covariance of the input (see also
the discussion around equations 3.2 and 3.9). Thus, after convergence to
the fixed point, the learning rate becomes equivalent to Sejnowski’s covari-
ance rule (Sejnowski, 1977; Sejnowski & Tesauro, 1989; Stanton & Sejnowski,
1989).

5.5 Subthreshold Regime and Coincidence Detection. We have previ-
ously exploited the normalization properties of learning rules with negative
integral of the learning window in a study of the barn owl auditory system
(Gerstner, Kempter, et al., 1996, 1997). Learning led to a structured delay
distribution with submillisecond time resolution, albeit the width of the
learning window was in the millisecond range. Intrinsic normalization of
the output rate was used to keep the postsynaptic neuron in the subthresh-
old regime where the neuron functions as a coincidence detector (Kempter
etal., 1998). Song et al. (2000) used the same mechanism to keep the neuron
in the subthreshold regime where the neuron may show large output fluc-
tuations. In this regime, rate stabilization induces stabilization of the value
of the coefficient of variation (CV) over a broad input regime.

Due to stabilization of output rates, we speculate that a coherent picture
of neural signal transmission may emerge, where each neuron in a chain of
several processing layers is equally active once averaged over the complete

stimulus ensemble. In that case, a set of normalized input rates A in one
“layer” is transformed, on average, into a set of equal rates in the next layer.
Ideally the target value of the rates to which the plasticity rule converges
would be in the regime where the neuron is most sensitive: the subthreshold
regime. This is the regime where signal transmission is maximal (Kempter
et al., 1998). The plasticity rule could thus be an important ingredient to
optimize the neuronal transmission properties (Brenner, Agam, Bialek, &
de Ruyter van Steveninck, 1998; Kempter et al., 1998; Stemmler & Koch,
1999; Song et al., 2000).
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Appendix

We illustrate the static-pattern scenario for the case of a learning window
with negative integral. At each time step of length A;, we present a pattern
vector x* chosen stochastically from some database {x*;1 < u < p}. The
input rates are

A =t for pAr<t< (u+1) A (A.1)

The “static” correlation between patterns is defined to be

P (el =2 (@ — A

2

1
- —— ; (A2)
[ A

static __

where Ain := p~1 izl xi" now denotes the average over all input patterns.

We assume that there is no intrinsic order in the sequence of presentation of
patterns. The “time-dependent” correlation in the input is then (see Figure 3)

Cye) = {C;;faﬁc (1—1sl/Ap) for — Ay <s <A
0 else.
Letus consider a postsynaptic potential €(s) = §(s — Ay), that is, the form
of the potential is approximated by a delayed localized pulse, a (Dirac) delta
function. As a learning window we take (see Figure 3)

_ 1/A; for —2A;<s<0
W(S)‘{—um for 0<s<3A

W(s)

-2 0 2A -2 M 0 2A

Figure 3: (a) Example of a learning window W and (b) a correlation function
Cj. Both are plotted as a function of the time difference s.
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with [ ds W(s) = —1 =: a5°"". Hence, the learning rule could be classified as
“anti-Hebbian.” On the other hand,

Qi = / ds W(s) / ds’ e(s) Cyi(s +s') = (A3)

gives the static correlations. Since C;; = Cj;, also Q;j = Q;; holds, and the
matrix (Qy) is Hermitian. Furthermore, 3, ijtaﬂc > 0and [dsW(s) (1 —
Is + A¢l/Ap) > 0, so that Zij Qiicicj > 0 for all vectors ¢ = (¢;) # 0. Hence,
(Qj) is a positive-definite matrix whose eigenvalues are positive (> 0). The
dynamics of learning is dominated by the eigenvector of (C;taﬁc) with the
largest eigenvalue just as in standard Hebbian learning (Hertz et al., 1991).
We note that in contrast to standard Hebbian learning, we need not impose
AR = 0; the spike-time-dependent learning rule automatically subtracts the
mean. _

Let us now assume that both )»}n and Q := ()F)2 N1 >_; Qij are indepen-
dent of j (see also section 4.5). We want to compare the value of Q with that
of = N-1ain [°  dsW(s) e(—s) in equation 4.17. We find

=0

— 1Y ,
= Nain A, [N > c;fam} ) (A.4)
i=1

Let us substitute some numbers so as to estimate the order of magnitude of
this fraction. The learning window has a duration (width) of, say, the order
of Ay = 10 ms. The mean rate, averaged over the whole stimulus ensemble,
is about A" =10 Hz. A typical number of synapses is N = 1000. Let us
assume that each input channel is correlated with 10% of the others with
a value of ijtaﬁc = 0.1 and uncorrelated with the remaining 90%. Thus,

N1y, C;taﬁc = 0.01. This yields Q/8 = 1. Hence, 8 has the same order of

magnitude as Q. For a lower value of the mean rate, Q/8 will decrease; for
a larger number of synapses, it will increase.

Acknowledgments
We thank Werner Kistler for a critical reading of a first version of the
manuscript for this article. R. K. has been supported by the Deutsche For-
schungsgemeinschaft (FG Horobjekte and Ke 788/1-1).

References

Abbott, L. F.,, & Blum, K. I. (1996). Functional significance of long-term potenti-
ation for sequence learning and prediction. Cereb. Cortex, 6, 406-416.



Intrinsic Stabilization of Output Rates 2737

Abbott, L. F,, & Munro, P. (1999). Neural information processing systems (NIPS).
Workshop on spike timing and synaptic plasticity, Breckenridge, CO. Avail-
able on-line at: http:/ /www.pitt.edu/~pwm/LTP_LTD_99/.

Artola, A., & Singer, W. (1993). Long-term depression of excitatory synaptic
transmission and its relationship to long-term potentiation. Trends Neurosci.,
16, 480-487.

Bell, C. C, Han, V. Z,, Sugawara, Y., & Grant, K. (1997). Synaptic plasticity in
a cerebellum-like structure depends on temporal order. Nature, 387, 278
281.

Bi, G.-q., & Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type. J. Neurosci., 18, 10464-10472.

Bi, G.-q., & Poo, M.-m. (1999). Distributed synaptic modification in neural net-
works induced by patterned stimulation. Nature, 401, 792-796.

Bi, G.-q., & Poo, M.-m. (2001). Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annu. Rev. Neurosci., 24, 139-166.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the develop-
ment of neuron selectivity: Orientation specificity and binocular interaction
in visual cortex. |. Neurosci., 2, 32-48.

Bliss, T. V. P, & Collingridge, G. L. (1993). A synaptic model of memory: Long-
term potentiation in the hippocampus. Nature, 361, 31-39.

Brenner, N., Agam, O., Bialek, W., & de Ruyter van Steveninck, R. R. (1998).
Universal statistical behavior of neuronal spike trains. Phys. Rev. Lett., 81(18),
4000-4003.

Brown, T. H., & Chattarji, S. (1994). Hebbian synaptic plasticity: Evolution of
the contemporary concept. In E. Domany, J. L. van Hemmen, & K. Schulten
(Eds.), Models of neural networks II (pp. 287-314). New York: Springer-Verlag.

Christofi, G., Nowicky, A. V., Bolsover, S. R., & Bindman, L. J. (1993). The postsy-
naptic induction of nonassociative long-term depression of excitatory synap-
tic transmission in rat hippocampal slices. |. Neurophysiol., 69, 219-229.

Debanne, D., Gihwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic
plasticity between pairs of individual CA3 pyramidal cells in rat hippocam-
pal slice cultures. |. Physiol., 507, 237-247.

Desai, N.S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic
excitability of cortical pyramidal neurons. Nat. Neurosci., 2, 515-520.

Egger, V., Feldmeyer, D., & Sakmann, B. (1999). Coincidence detection and
changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex.
Nat. Neurosci., 2, 1098-1105.

Eurich, C. W.,, Pawelzik, K., Ernst, U., Cowan, J. D., & Milton, J. G. (1999). Dy-
namics of self-organized delay adaption. Phys. Rev. Lett., 82, 1594-1597.

Feldman, D. E. (2000). Timing-based LTP and LTD at vertical inputs to layer
II/1II pyramidal cells in rat barrel cortex. Neuron, 27, 45-56.

Fetz, E. E., & Gustafsson, B. (1983). Relation between shapes of postsynaptic
potentials and changes in the firing probability of cat motoneurons. J. Physiol.,
341, 387-410.

Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients,
asynchronous states and locking. Neural Computation, 12, 43-89.



2738 R. Kempter, W. Gerstner, and J. L. van Hemmen

Gerstner, W., & Abbott, L. F. (1997). Learning navigational maps through po-
tentiation and modulation of hippocampal place cells. J. Comput. Neurosci.,
4,79-94.

Gerstner, W., & van Hemmen, J. L. (1992). Associative memory in a network of
“spiking” neurons. Network, 3, 139-164.

Gerstner, W., van Hemmen, J. L., & Cowan, J. D. (1996). What matters in neuronal
locking. Neural Comput., 8, 1689-1712.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal
learning rule for sub-millisecond temporal coding. Nature, 383, 76-78.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1997). A develop-
mental learning rule for coincidence tuning in the barn owl auditory system.
In J. Bower (Ed.), Computational neuroscience: Trends in research 1997 (pp. 665—
669). New York: Plenum Press.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1998). Hebbian
learning of pulse timing in the barn owl auditory system. In W. Maass, &
C. M. Bishop (Eds.), Pulsed neural networks (pp. 353-377). Cambridge, MA:
MIT Press.

Gerstner, W., Ritz, R., & van Hemmen, J. L. (1993). Why spikes? Hebbian learning
and retrieval of time-resolved excitation patterns. Biol. Cybern., 69, 503-515.

Hifliger, P, Mahowald, M., & Watts, L. (1997). A spike based learning neuron in
analog VLSI. InM. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neu-
ral information processing systems, 9 (pp. 692-698). Cambridge, MA: MIT Press.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural
computation. Redwood City, CA: Addison-Wesley.

Herz, A. V.M., Sulzer, B., Kiihn, R., & van Hemmen, J. L. (1988). The Hebb rule:
Representation of static and dynamic objects in neural nets. Europhys. Lett.,
7, 663—-669.

Herz, A. V.M., Sulzer, B.,Kiithn, R., & van Hemmen, J. L. (1989). Hebbian learning
reconsidered: Representation of static and dynamic objects in associative
neural nets. Biol. Cybern., 60, 457-467.

Kempter, R., Gerstner, W., & van Hemmen, ]. L. (1999a). Hebbian learning and
spiking neurons. Phys. Rev. E, 59, 4498-4514.

Kempter, R., Gerstner, W., & van Hemmen, J. L. (1999b). Spike-based compared
to rate-based Hebbian learning. In M. S. Kearns, S. A. Solla, & D. A. Cohn
(Eds.), Advances in neural information processing systems, 11 (pp. 125-131). Cam-
bridge, MA: MIT Press.

Kempter, R., Gerstner, W., van Hemmen, J. L., & Wagner, H. (1996). Temporal
coding in the sub-millisecond range: Model of barn owl auditory pathway.
In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural
information processing systems, 8 (pp. 124-130). Cambridge, MA: MIT Press.

Kempter, R., Gerstner, W., van Hemmen, J. L., & Wagner, H. (1998). Extracting
oscillations: Neuronal coincidence detection with noisy periodic spike input.
Neural Comput., 10, 1987-2017.

Kempter, R., Leibold, C., Wagner, H., & van Hemmen, J. L. (2001). Formation
of temporal-feature maps by axonal propagation of synaptic learning. Proc.
Natl. Acad. Sci. U.S.A., 98, 4166—4171.



Intrinsic Stabilization of Output Rates 2739

Kistler, W. M., & van Hemmen, J. L. (2000). Modeling synaptic plasticity in
conjunction with the timing of pre- and postsynaptic action potentials Neural
Comput., 12, 385-405.

Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-
Verlag.

Levy, W. B., & Stewart, D. (1983). Temporal contiguity requirements for long-
term associative potentiation/depression in the hippocampus. Neurosci., 8,
791-797.

Linden, D. J. (1999). The return of the spike: Postsynaptic action potentials and
the induction of LTP and LTD. Neuron, 22, 661-666.

Linsker, R. (1986). From basic network principles to neural architecture:
Emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA, 83, 7508
7512.

MacKay, D. J. C., & Miller, K. D. (1990). Analysis of Linsker’s application of
Hebbian rules to linear networks. Network, 1, 257-297.

Markram, H., Liibke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275,
213-215.

Miller, K. D. (1996a). Receptive fields and maps in the visual cortex: Models of
ocular dominance and orientation columns. In E. Domany, J. L. van Hemmen,
& K. Schulten (Eds.), Models of neural networks III (pp. 55-78). New York:
Springer-Verlag.

Miller, K. D. (1996b). Synaptic economics: Competition and cooperation in
correlation-based synaptic plasticity. Neuron, 17, 371-374.

Miller, K. D., & MacKay, D. J. C. (1994). The role of constraints in Hebbian
learning. Neural Comput., 6, 100-126.

Oja, E. (1982). A simplified neuron model as a principal component analyzer.
J. Math. Biol., 15, 267-273.

Paulsen, O., & Sejnowski, T. J. (2000). Natural patterns of activity and long-term
synaptic plasticity. Curr. Opin. Neurobiol., 10, 172-179.

Plesser, H. E., & Gerstner, W. (2000). Noise in integrate-and-fire models: From
stochastic input to escape rates. Neural Computation, 12, 367-384.

Pockett, S., Brookes, N. H., & Bindman, L. J. (1990). Long-term depression at
synapses in slices of rat hippocampus can be induced by bursts of postsy-
naptic activity. Exp. Brain Res., 80, 196-200.

Poliakov, A. V., Powers, R. K., Sawczuk, A., & Binder, M. D. (1996). Effects of
background noise on the response of rat and cat motoneurons to excitatory
current transients. J. Physiol., 495, 143-157.

Roberts, P. D. (1999). Computational consequences of temporally asymmetric
learning rules: I. Differential Hebbian learning. J. Compu. Neurosci., 7, 235-
246.

Ruf, B., & Schmitt, M. (1997). Unsupervised learning in networks of spiking
neurons using temporal coding. In W. Gerstner, A. Germond, M. Hasler, &
J.-D. Nicoud (Eds.), Proc. 7th Int. Conf. Artificial Neural Networks (ICANN’97)
(pp. 361-366). Heidelberg: Springer-Verlag.

Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons
J. Mathematical Biology, 4, 303-321.



2740 R. Kempter, W. Gerstner, and J. L. van Hemmen

Sejnowski, T. J., & Tesauro, G. (1989). The Hebb rule for synaptic plasticity:
Algorithms and implementations. In J. H. Byrne, & W. O. Berry (Eds.), Neural
models of plasticity: Experimental and theoretical approaches (pp. 94-103). San
Diego: Academic Press.

Senn, W., Tsodyks, M., & Markram, H. (1997). An algorithm for synaptic modifi-
cation based on exact timing of pre- and postsynaptic action potentials. In W.
Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Proc. 7 th Int. Conf.
Artificial Neural Networks (ICANN'97) (pp. 121-126). Heidelberg: Springer-
Verlag.

Senn, W., Markram, H., & Tsodyks, M. (2001). An algorithm for modifying neuro-
transmitter release probability based on pre- and postsynaptic spike timing.
Neural Comput., 13, 35-67.

Shouval, H. Z., & Perrone, M. P. (1995). Post-Hebbian learning rules. In M. A.
Arbib (Ed.), The handbook of brain theory and neural networks (pp. 745-748).
Cambridge, MA: MIT Press.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci., 3, 919—
926.

Stanton, P. K., & Sejnowski, T. J. (1989). Associative long-term depression
in the hippocampus induced by Hebbian covariance. Nature, 339, 215
218.

Stemmler, M., & Koch, C. (1999). How voltage-dependent conductances can
adapt to maximize the information encoded by neurons. Nat. Neurosci., 2,
521-527.

Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: The
more things change, the more they stay the same. Trends Neurosci., 22, 221-
227.

Turrigiano, G. G, Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B.
(1998). Activity-dependent scaling of quantal amplitude in neocortical neu-
rons. Nature, 391, 892-896.

Turrigiano, G. G., & Nelson, S. B. (2000). Hebb and homeostasis in neuronal
plasticity. Curr. Opin. Neurobiol., 10, 358-364.

Urban, N. N., & Barrionuevo, G. (1996). Induction of Hebbian and non-Hebbian
mossy fiber long-term potentiation by distinct patterns of high-frequency
stimulation. J. Neurosci., 16, 4293-4299.

van Hemmen, J. L. (2000). Theory of synaptic plasticity. In F. Moss & S. Gielen
(Eds.), Handbook of biological physics, Vol. 4: Neuro-informatics, neural modelling
(pp. 749-801). Amsterdam: Elsevier.

van Hemmen, ]J. L., Gerstner, W., Herz, A., Kiihn, R., Sulzer, B., & Vaas, M.
(1990). Encoding and decoding of patterns which are correlated in space
and time. In G. Dorffner (Ed.), Konnektionismus in artificial intelligence und
kognitionsforschung (pp. 153-162). Berlin: Springer-Verlag.

Volgushev, M., Voronin, L. L., Chistiakova, M., & Singer, W. (1994). Induction of
LTP and LTD in visual cortex neurons by intracellular tetanization. NeuroRe-
port, 5,2069-2072.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in
the striate cortex. Kybernetik, 14, 85-100.



Intrinsic Stabilization of Output Rates 2741

Wimbauer, S., Gerstner, W., & van Hemmen, J. L. (1994). Emergence of spatio-
temporal receptive fields and its application to motion detection. Biol. Cybern.,
72,81-92.

Wiskott, L., & Sejnowski, T. (1998). Constrained optimization for neural map for-
mation: A unifying framework for weight growth and normalization. Neural
Comput., 10, 671-716.

Xie, X., & Seung, S. H. (2000). Spike-based learning rules and stabilization of
persistent neural activity. In S. A. Solla, T. K. Leen, & K.-R. Miiller (Eds.),
Advances in neural information processing systems, 12 (pp. 199-205). Cambridge,
MA: MIT Press.

Zhang, L. 1., Tao, H. W,, Holt, C. E., Harris, W. A., & Poo, M.-m. (1998). A criti-
cal window for cooperation and competition among developing retinotectal
synapses. Nature, 395, 37-44.

Received January 4, 2000; accepted March 1, 2001.



