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Abstract. A model of motion sensitivity as observed in 
some cells of area V1 of the visual cortex is proposed. Mo- 
tion sensitivity is achieved by a combination of different spa- 
tiotemporal receptive fields, in particular, spatial and tempo- 
ral differentiators. The receptive fields emerge if a Hebbian 
learning rule is applied to the network. Similar to a Linsker 
model the network has a spatially convergent, linear feedfor- 
ward structure. Additionally, however, delays omnipresent 
in the brain are incorporated in the model. The emerging 
spatiotemporal receptive fields are derived explicitly by ex- 
tending the approach of MacKay and Miller. The response 
characteristic of the network is calculated in frequency space 
and shows that the network can be considered as a space- 
time filter for motion in one direction. The emergence of 
different types of receptive field requires certain structural 
constraints regarding the spatial and temporal arborisation. 
These requirements can be derived from the theoretical anal- 
ysis and might be compared with neuroanatomical data. In 
this way an explicit link between structure and function of 
the network is established. 

1 Introduction 

Motion signals are among the most prominent features that 
are extracted from the optical input received by the photore- 
ceptors in the retina. The importance of motion information 
is reflected by the fact that neurons of two areas in the mam- 
malian visual cortex, viz., the middle temporal area (MT or 
V5) and the medial superior temporal area (MST), seem to 
be primarily tuned to the detection of motion of whole pat- 
terns (Movshon et al. 1985). Neurons that are sensitive to 
more basic motion signals can be observed earlier in the 
visual pathway, in particular, in layers 4A and 6 of area 
V1 (Zeki and Shipp 1988). These neurons respond to mo- 
tion in one direction within a small area of the visual field 
only. 

Numerous models have been developed to understand 
motion sensitivity. These models can be divided roughly 
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into four different classes (for a review see Nakayama 1985 
and Sereno 1992): 

(i) Models based on a principle first introduced by Has- 
senstein and Reichardt (Reichardt 1957; Reichardt and 
Poggio 1976). In these so-called Reichardt detectors a 
direction sensitive output is achieved by delayed com- 
parison of two neighbouring receptive fields (van San- 
ten and Sperling 1985). 

(ii) Gradient models where the velocity is calculated by 
deviding the temporal derivative of the light intensity by 

dI / dI the spatial gradient v= = --~- T~x" Marr and Ullmann 
have implemented a special version of a gradient model 
which is used to compute the direction of motion of an 
intensity edge (Marr 1982; Mart and Ullmann 1981). 

(iii) Energy models that perform a spatial and a temporal 
frequency filtering so as to detect velocity (Watson and 
Ahumada 1985; Adelson and Bergen 1985). These sort 
of elementary motion detectors are particularly suit- 
able as building blocks for a model of coherent motion 
(see e.g. Yuille and Grzywacz 1988). 

(iv) Biological models based on identified neural micro- 
circuits that might show a direction dependent re- 
sponse (Maex and Orban 1991, 1992). 

The approach presented here contains elements of all four 
model classes. Our aim is an explanation of some basic 
principles of motion sensitivity as observed in area V1. We 
make, however, no attempt to model the underlying neural 
structure explicitly. Rather, we base our considerations on 
the concept of spatiotemporal receptive fields similar to the 
approach taken in energy models. It is shown that this type 
of receptive field emerges as the result of a Hebbian learning 
process. This way of tackling the problem bears the advan- 
tage of being biologically plausible and, at the same time, 
analytically tractable. Our analysis will proceed in two steps. 
First, the emergence of spatiotemporal receptive fields is in- 
vestigated. In the second step we ask the question of how 
these receptive fields have to be combined to account for 
motion sensitivity. 

The most prominent model to describe the emergence of 
receptive fields has been developed by Linsker (1986a-c). 
He introduced a linear feedforward network consisting of 
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neurons locally connected to neurons of the previous layer. 
The application of a simple Hebb rule results in the emer- 
gence of center-surround and other types of receptive field 
if the parameters are in an appropriate regime. 

Linsker limited his approach to the case of purely spatial 
receptive fields, a restriction which is also found in most of 
the experimental work. Since the introduction of the recep- 
tive field concept by Hartline (1938) most researchers have 
investigated the spatial structure of receptive fields only. A 
prominent example in this line of research is the discovery 
of simple and complex cells in the cat's visual cortex by 
Hubel and Wiesel (1962). 

During recent years, however, there has been growing 
experimental evidence that the temporal characteristic of the 
receptive field is of great importance for visual processing 
as well (Dinse et al. 1991; Eckhorn et al. 1993). A spa- 
tiotemporal receptive field is characterized by the fact that 
it changes its spatial response in dependence upon the time 
that elapses between the arrival of the input to the receptive 
field and its output. Eckhorn et al. (1993) have developed 
an elaborate technique, the RF-cinematogram, to study this 
characteristic explicitly. An important question regarding the 
temporal aspects of receptive fields refers to the possible role 
of feedback in the visual cortex (Dinse et al. 1991; Celebrini 
et al. 1993). While feedback seems to be omnipresent in the 
cortex, we demonstrate that interesting temporal aspects of 
the receptive field can also emerge in a purely feedforward 
structure. Thus, feedback does not have to be incorporated 
necessarily. 

In order to model temporal behaviour we extend the net- 
work and learning rule introduced by Linsker to the case 
of delayed signal transmission. One of the key findings of 
this article is that a spatial and temporal differentiator are 
the dominant receptive fields that emerge within the model. 
A spatial differentiator compares two neighbouring parts of 
the optical field, whereas a temporal differentiator performs 
a comparison operation of inputs to the receptive field at sub- 
sequent times. The architecture of the network, in particular, 
the spatial and temporal arborisation, determines whether a 
spatial or a temporal differentiator is learnt. Thus, we have 
an intricate relation between structure and function of the 
network. Motion sensitivity arises by combining the outputs 
of a spatial and a temporal differentiator. This is done in 
subsequent layers of the network. 

The paper is organized as follows. Section 2 introduces 
a Hebbian rule that allows learning spatiotemporal corre- 
lations. The dominant receptive fields that emerge during 
learning are calculated. In Sect. 3 possible mechanisms that 
lead to direction sensitivity are investigated. We perform our 
analysis both in frequency and in real space. We conclude 
our considerations with a short discussion on the biological 
aspects of our model in Sect. 4. 

2 The emergence of spatiotemporal receptive fields 

This section aims at deriving analytically how spatial and 
temporal differentiators are learnt in a modified Linsker net- 
work. One has to keep in mind that these types of receptive 
field are the essential building blocks for deriving our model 
of motion sensitivity in Sect. 3. 
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Fig. 1. Structure of an extended Linsker network with axonal delays: a 
Synapses from layer A to B are fixed and constant, whereas synapses from 
layers B to C are learnt according to a Hebbian rule. b Two neurons are 
not only linked by one synapse as in Linsker's original model but by many 
synapses with different delays T 

2.1 Network structure and learning rule 

Our model is an extended version of the linear feedforward 
network introduced by Linsker (1986a-c). The essential char- 
acteristic of Linsker's network is its spatially convergent 
structure (see Fig. la). That is, a neuron in layer M with 
M=B or C receives inputs from many, say n = 103, neu- 
rons of the previous layer L with L=A or B, respectively. 
The neurons of layer L to which a given neuron in layer M 
is linked are chosen according to a normal distribution in 
dependence upon the distance Irl (see Fig. lb). 

In contrast to Linsker's approach two neurons of our 
model are not linked by a single synapse but by several, say 
1 ~ 10 - 20, synapses with different delays. For a given pair 
of neurons ( i , j )  with i c M and j E L the l delays 7-ij 
are sampled from a normal distribution with a mean delay 
TO. For the sake of simplicity, the mean and width of the 
temporal distribution are assumed to be independent of the 
distance Irl. Summing up, the structure of the network is 
completely characterized by three parameters for each layer: 
the width of the spatial distribution, the mean delay and the 
width of the temporal distribution of the synapses. 

Synapses with a range of different delays have proven 
to be useful in other model contexts as well, e.g. in an as- 
sociative network for temporal sequences (Herz et al. 1988, 
1989). There are different sources of a delayed response in 
a neural system. In particular, axonal transmission times, 
the low pass characteristic of many synapses, and passive 
transport along the dendrite may altogether account for ef- 
fective latency times of 10 ms but also up to 100 ms (see 
e.g. Dinse et al. 1993). In a Linsker network synapses are 
adjusted according to a Hebbian learning rule. In our net- 
work with delays, we have to modify the standard Hebbian 
rule appropriately in order to store correlations both in space 
and time. 

Let us take a closer look at a single neuron in layer M 
that receives inputs from neurons in the previous layer L. 
If we assume a linear transfer function, the activity SMi(t)  
of neuron i in layer M at time t is a weighted sum of the 
activities Sc j ( t  - "rij) in layer L. The sum has to be taken 
over space, indicated by an index j and over all possible 
delays ~-~j 



SMi(t) = Z E Jij(Tij)SLj(t - 7ij). (1) 
j "rlj 

Since the index ij  of the delays 7ij will become irrelevant 
when adopting a continuum representation in Sect. 2.3 we 
will drop it in the following. 

We have chosen an analogue neuron representation 
where SMi(t) and SLi(t) may take arbitrary positive or nega- 
tive values. Obviously, this is an extremely crude description 
of a single neuron. The biological quantity, which S is re- 
lated to most closely is the postsynpatic membrane potential, 
where positive and negative values of S denote potentials 
above or below the resting potentials. These potentials are 
summed in the soma and evoke a spike that originates from 
the soma and will produce another postsynaptic potential at 
subsequent neurons. By choosing a linear form as in (1), we 
have neglected both the explicit spike structure of the axonal 
membrane potential and the non-linear transfer characteristic 
of a real neuron. Since the synapses Jij('r) depend both on 
a spatial distance ij  and a temporal distance 7 they are well 
suited to store spatial and temporal correlations according 
to a Hebbian rule. 

Correlations in a network that describes elements of the 
visual pathway can arise from two different sources. They 
may stem either from correlations within the visual input to 
the network or from fixed synapses that are not modified 
during learning. In the following we will concentrate on the 
latter. To be specific, we keep all synapses from layer A to 
layer B unmodified and constant. The Hebbian rule is applied 
to synapses from layer B to layer C only. During learning, 
random and hence uncorrelated patterns are fed into the input 
layer. The fixed synapses between A and B will introduce 
Gaussian correlations at layer B. At each learning period that 
lasts for a time A, the synapse Jij(7) is modified according 
to the Hebbian rule 

1 f A d s  { [ S c j ( t - s ) - c 2 ]  AAJ~j(7, t) = e-~ 

• [SBi(t -- s -- 7) -- el] +a3}.  (2) 

That is, the presynaptic activity of neuron i in layer B at 
time t - s - 7 is correlated with the postsynaptic activity 
of neuron j in layer C at time t - s with s > 0 sampling 
the past. In this way the signal transmission time 7 of the 
presynaptic pulse is taken into account. In particular, the 
change of the synaptic efficacy is based on the information 
locally available to the synapse at time t (Herz et al. 1988, 
1989). 

Using (1) one obtains 

k "r' 

[ A f o A d S ( ~ B k ( t - - S - - T t ) - - S B )  

x (SB,( t-s-7)--SB)+kT_]+kl 

= e E Z J j k ( 7 ' ) [ Q ( i , k ; 7 , 7 ' ; t ) + k z ] + k l  (3) 
k "1" I 

where 
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k I = c 2 c  1 - -  C2"SB +C 3 
- -2  

k2 = S B - c l S B ,  (4) 

SB denotes the time averaged activity that is assumed to be 
the same for all neurons in layer B, and Q is the correlation 
matrix 

lfoA Q(i ,  k; 7, 7'; t) = -~ ds  ( S B k ( t  -- ~ -- 7 ' )  -- ~ B )  

• ( s B ~ ( t  - s - 7 )  - s B ) .  (5 )  

We assume that the random patterns fluctuate fast as 
compared with the rate of change of the couplings. There- 
fore, a self-averaging of the correlation product over s in (2), 
(3) and (5) seems to be adequate. Due to the averaging and 
the random character of the input patterns, the correlation 
function Q no longer depends on the time t, 

�9 I Q(z, k; 7, 7 ; t) = Q(i, k; 7, 7'). (6) 

The above separation of time scales allows us to rewrite (3) 
as a differential equation for the slow change of the cou- 
plings that has to be contrasted with the fast fluctuations of 
the input patterns. Thus, we obtain 

d J q ( r ,  t)  
dt - e E Z  Jjk(r' , t)[Q(i,k;7,7')+k2]+kl .(7) 

k T ~ 

According to the differential (7) an infinite increase of 
the couplings might occur. To avoid such biologically im- 
plausible behaviour, an upper and a lower bound of the cou- 
plings is introduced 

-Jmax <- Jij(T) <_ Jmax for all i , j ,  and 7. (8) 

2.2 Outline of the analysis 

A detailed analysis of a purely spatial Linsker network has 
been performed by MacKay and Miller (1990). Many of their 
arguments can be applied to the spatiotemporal case as well. 
Following these authors we can solve the differential equa- 
tion (7) by analysing the fixed points of (7) and calculating 
the eigenvalues and eigenfunctions of (Q(/, k, % r ' )  + k2). 
To this end we rewrite (7) as a matrix equation 

,] - e  (Q + k2I) J = kin, (9) 

where J is a vector, Q a matrix in space and time, 

I(i , j ,  7,7') = 1 for all i , j ,  7,7', (10) 

and n denotes the vector 

n(i, 7) = 1 for all i, r. (1 l) 

The fixed points of the equation are 

j F P  = ___kl ( Q - l -  k 2 I ) - l n  
s 

ea �9 n FP kl Z - -  J; Oa. (12) = - - ~  )~a ea= 
a a 

ea and ha are the eigenvectors and eigenvalues of Q + k2I. 
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As a solution of the differential equation (9) one obtains 
a linear combination of a special solution plus a solution to 
the homogeneous equation. A special solution is the fixed 
point of (9). Thus, we end up with 

S(t) = ~ [ z f f e  + (Ja(0) - ag'Fe')ea~ ea, (13) 
a 

w h e r e  de FP and Ja(0) are the components in direction of the 
eigenvector ea of the fixed point vector j F P  and the initial 
vector J(0). 

If the couplings are distributed randomly at the begin- 
ning, all eigenvectors start with equal amplitude. The compo- 
nents of J belonging to the largest eigenvalues, however, will 
grow fastest and reach the upper and lower bound • 
first. Thus, the largest eigenvalue determines the emerging 
receptive field. 

A different situation may arise if one component j f fe  
of the fixed point vector in the direction of an eigenvector 
e~ exceeds both all other components of the fixed point vec- 
tor and the components of the initial weight vector J(0); in 
particular, the fixed point component belonging to the domi- 
nant eigenvalue. Such a component receives a head start and 
may reach the upper and lower bounds before the component 
corresponding to the maximal eigenvalue starts dominating 
the dynamics. As was pointed out by MacKay and Miller, 
taking a head start into account is necessary to explain the 
emergence of center-surround receptive fields, as observed 
by Linsker. In the following, however, we will neglect this 
mechanism and concentrate on a search for the dominant 
eigenvalues and the respective spatiotemporal eigenfunctions 
of Q + kzI. These eigenfunctions are then identified as the 
receptive fields of the network. 

2.3 Calculation of the dominant receptive fields 

To calculate the dominant receptive fields, that is, the eigen- 
functions of Q + k2i corresponding to the largest positive 
eigenvalue, we proceed as follows. First, we adopt a contin- 
uum representation to facilitate the analysis. Thereupon, we 
derive the correlation function Q for random input patterns 
and fixed synapses from layer A to B. The eigenfunctions 
are then calculated in two steps. First, the case k2 = kl = 0 
is discussed. After that, the influence of a negative constant 
k2 is investigated. 

To formulate the problem in a continuum representation, 
we have to introduce a distribution of the couplings in space 
and time. An important assumption that is made at this point 
is that the spatial and the temporal distribution are indepen- 
dent of each other 

P(r ,  7.) = P(r)P(7.) (14) 

We choose 

{ ' e x p (  ~ ')~) p(7.) = ~ ~ for 7. > 0 (15) 
0 for 7. < 0 

For V ~  << ro one can approximate P(7.) by 

g('r) - 1 ( (7. - T0)2"~ 
exp ~ F  ] for all 7. (16) 
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Fig. 2. Correlations are introduced by fixed synapses that link a given 
neuron in layer B with neurons of the previous layer A that lie in a circular 
area directly underneath. Gaussian correlations in space and time reflect 
normal distributions of the couplings with respect to Irl and r 

A Gaussian form is chosen for the spatial distribution as 
well (cf. Fig. lb), 

1 (_jr12  (17) P ( r ) = ~ e x p \  2 A ]  

The activity of a neuron can now be calculated by 

SM(ro, t ) = f d 2 r / d r P ( r - r o ) P ( 7 . )  

x J ( r  - ro, 7.)Sz(r,t - r) (18) 

and the differential equation that describes the learning pro- 
cess takes the form 

d J ( r -  ro,'r,t) [ / f dt =e d2r ' dT.tp(r ~ - ro)P(r ' )  

• J ( r '  - 7.', t) 7., 7.') + k:)  ] 
+~kl (19) 

Let us derive the explicit form of the correlation function 
Q. Since the input patterns are uncorrelated in space and 
time and the averaging time is long on the short time-scale 
of input pattern fluctuations, the correlation function of the 
input layer is a simple product of two delta functions, 

QA(r, rt; 7., 7-t) = ~ d8 (SA(r', t -- s -- 7.') -- Sa) 

X ( S A ( r  , t -  8 - -  7 - ) - - S a )  

= AS2A6(r -- r ' )5(r -- 7.'), (20) 

where ASZA = . ( (SA(r ' t ) -  SA) z} and where the brackets 

denote averaging over space and time. For convenience we 
set AS 2 = 1 in the following. 

Correlations in layer B are introduced by the set of fixed 
synapses between layer A and B (see Fig. 2) 

QB(r ,r ' ;7 . ,7 . ' )=fder ' /d2r" fdr" fdT." 'P(r")P(r  "') 

• P(7.")P(r")J(r", 7.")J( r" ,  7-"') 
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XQA(r + r", r' + r"', r + r", r' + r"') 
= OB(r, r ')OB(r,  r '). (21) 

The fact that Q separates into a spatial and a temporal part 
will facilitate the calculation below. 

With J(r ,  r)  = 1 from A to B one obtains 

QB(r, r')=id2r"P(r")P(r - r' + r") 

( (r - r')2 ) (22)  ,-o exp ~-~-~ 

QB(r, r')= f dr"P(r")P(r - r' + r") 

( (7- -- ./)2 
-2--ZB ) (23) exp 

\ 

with CB = 2AA and ZB = 2TA. 
Now we are ready to solve the eigenvalue problem 

AJ(r-  ro, r) = e [ i d2r' i dr'P(r' - ro)P(r ') 

x (Qs(r ,  r'; r, r ')+k2) J(r '  - ro, r')] 

+ eki) (24) 

The point is that the constant kl appears only in the formula 
of the fixed point (cf. (12)) and the effects of a large jFP 
are omitted in our considerations, so that we can set kl = 0. 

In a first step the eigenfunctions for k2 = 0 are calculated. 
In this case the problem simplifies considerably, because 
Q is a product of a spatial and a temporal part, and the 
eigenproblem can be solved for space and time separately. 
The solution for the couplings can then be formulated as a 
product of a spatial and a temporal part 

J ( r  - ro, r)  = J ( r  - ro)J(r)  (25) 

The same is true for the eigenvalues 

A = A~A~ (26) 

Let us formulate the spatial part of the eigenvalue problem 1 

A~J(r) = f d2r'QB(r' r ' )P( r ' ) J ( r ' )  (27) 

with 

= exp ( (r2_c~ . } -  r')2"~ (28) QB(r , r ' )  

and 

P(r ' )  - 1 ( Ir'12 "~ (29) 
2rcAB exp - 2AB ] 

The solutions of this equation have been derived by MacKay 
and Miller (1990), and the three leading eigenfunctions are 
summarized in Table 1. 

Similarly, the temporal eigenvalue problem can be writ- 
ten as 

A~ J(r) = i dr' QB(r, r')P(T')J(T') (30) 

1 Since the problem is invariant with respect to translations, we put 
ro=O. 

( r2) J l ( r )=exp  - 

J2(r) = r cos Oexp --2-R-'~B 

J 3 ' r ) :  ( l - - r ~ ) e x o ( - - 2 - - ~ R )  

= c 

= A f  J 

= AII 

with 

and r~ = A I 3 R B  
U 2AB+t=t B 

Table 1. Spatial part of the eigenfunctions 

al (r) = exp ( -  ~ "~ \ 2w. ) 

a~(~) = (~ - ~o)exp ( _ . c . ~ ' ~  \ : w . )  

~ ( r ) = ( l - ~ )  exp{-(~-r~ 2 W B  ] 

= Z B  ) 

= ) 

) 
= TB 

~ZB 1 + 

and v 2 = W B T B ( T B ~ - ~ " ~ - - ~ T ' B )  
3 

(T B +W B) 2 - T 2 

Table 2. Temporal part of the eigenfunctions 

with 

( (r - r')2 ) (31) Qs('r, r ' )  = exp ~ - ~  

and 

1 ( ( 7 - - - % )  2 ) 
P(T) - exp (32) 

See Table 2 for the leading eigenfunctions and eigenvalues. 
An explicit derivation of the temporal part of the eigenfunc- 
tions and eigenvalues that proceeds along the same line as 
the derivation in the spatial case can be found in the Ap- 
pendix. 

Putting things together, we find that the three leading 
eigenfunctions of (24) for k2 = 0 are 

J*'(r ,  r) = exp --2---~B exp 2WB 
1 

r 2 
J~ = rc~ 

(33) 
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(34) 

J~~ ~-) = exp - ~ (T--T0) exp 2WB 

3 

(35) 
Thus, for kz = 0 the eigenfunction JS~(r,~-) emerges as 
the dominant receptive field during learning. Since jss is 
symmetric both in space and time, it does not show any 
functional properties besides averaging over space and time. 

In the following we will therefore investigate whether 
for k2 =~ 0, other types of receptive fields that show more fa- 
vorable characteristics are learnt in a Linsker network when 
a Hebbian rule is applied. 

For k2 > 0 we can use the Perron-Frobenius theorem 
(Bellman 1970; MacKay and Miller 1990; Seneta 1990), that 
states that for a matrix whose entries are all non-negative, the 
components of the principal eigenvector all have the same 
sign. Therefore, as in the c a s e  k 2 = 0, an eigenfunction of 
the jss type is learnt, and no additional functional properties 
are gained. 

For k2 < 0, however, the situation changes dramatically. 
To clarify how the order of the eigenfunctions is rearranged 
we go to the limit k2 ( (  0, in particular Ik21 >> ~ s .  In 
this case Q can be considered as a perturbation of k2. The 
eigenfunctions of 

~J(r,r)=/d2r ' fdT'k2P(r ' )P(7- ' )J(r ' ,r  ') (36) 

are Jo(r, ~-) = 1 corresponding to an eigenvalue ~0 = k2 
and an arbitrary, degenerate set of functions orthogonal to 
Jo(r, r )  = 1 corresponding to an eigenvalue .~ = 0. Since 
I)~01 >> ~ ,  the eigenfunction that is symmetric in both 
space and time and which one obtains for the perturbed prob- 
lem is a slight modification of Jo(r, T) = 1. Hence, it cor- 
responds to a large and negative eigenvalue. Therefore the 
symmetric receptive field without zeros will be suppressed 
[see Eq. (13)] and other types of receptive fields can emerge 
during learning. 

In our search for the eigenfunctions corresponding to 
the leading eigenvalue, we will now examine the class of 
functions that are either odd in space with respect to the 
origin or in time with respect to ~-0 or both. To this end we 
rewrite the eigenvalue problem (24) 

~J(r,'c)= e l f  d2r' f dT'Q(r,r')Q('c,r') 

• P(r')PO")J(r', r') 

+k2fd2r'fdr'P(r')P(r')J(r',r')] (37) 

Since according to our assumption J ( r ' ,  ~-') is an odd func- 
tion the second part of the right-hand side in (37) will vanish 
for this class of functions. Therefore, these types of recep- 
tive fields and their eigenvalues are independent of k 2 and 
can be found by solving the special c a s e  k 2 : 0, as we did 
above. 

In particular, jos (34) and jso (35), which are odd in the 
spatial part with one zero and symmetric in the temporal part 
and vice versa, correspond to the largest eigenvalues of the 
subclass of odd functions and are therefore good candidates 
for the dominant receptive fields as well. 

The only question that remains is whether an eigenfunc- 
tion with an even number of zeros in the spatial or the 
temporal part corresponds to an eigenvalue larger than the 
ones of jo~ or j~o, what seems to be improbable regarding 
the ordering of the eigenfunctions in the case k2 = 0. We 
have checked this point numerically, and it turns out that 
jos or jso actually correspond to the largest eigenvalue for 
Ik21 >> )~0 and are therefore learnt, if a spatiotemporal Heb- 
bian rule is applied to a Linsker network. An alternative ap- 
proach would be to perform degenerate perturbation theory 
similar to the approach taken in MacKay and Miller (1990). 
To summarize, jo~ and jso are the dominant eigenfunc- 
tions of our problem. In the following we will investigate 
the properties of these functions. 

2.4 Properties of the emerging receptive fields 

The receptive field jos changes its sign under reflection 
along one spatial axis with a positive sign on one side and 
negative sign on the other. The temporal part of jos is pos- 
itive for all delays ~-. Therefore, it compares two neighbour- 
ing regions in space while performing an average over time. 
Thus, jos is a spatial differentiator; see Fig. 3a. ,  

j,o, on the other hand, can be interpreted as a temporal 
differentiator since this type of receptive field is asymmetric 
with respect to To in the temporal part and does not change 
sign in the spatial part. Hence, jso compares the input to 
the receptive field at subsequent time steps; see Fig. 3b. 

The question of whether a spatial or a temporal differen- 
tiator is learnt depends on the size of the respective eigen- 
values. In particular, a spatial differentiator is learnt, if 

~os > ~ o  (38) 

This is equivalent to 

AB TB 
- -  > - -  ( 3 9 )  CB ZB 
AB and TB denote the width of the spatial and the temporal 
part of the receptive field in layer B. On the other hand, 
since CB = 2AA [cf. (22)] and ZB = 2TA [cf. (23)], CB 
and ZB are functions of the widths of the receptive field in 
the preceding layer A, and we find that (39) boils down to 

AB TB AB AA (40) 

In conjunction with the mean delay To, the widths A of the 
spatial distribution and the widths T of the temporal dis- 
tribution of the couplings for the different layers provide a 
complete description of the network. Thus, the size of the 
eigenvalues Aos and Aso and, hence, the answer to the ques- 
tion of whether a spatial or a temporal differentiator emerges 
during learning are determined entirely by the architecture 
of the network, in particular by the way in which the spa- 
tial and temporal widths of the receptive field change from 
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Fig. 4. Structure of the model network: due to variations in the arborisation 
of the synapses between layers B and C, a spatial differentiator can be 
learnt on one side and a temporal differentiator on the other. The Gaussian 
correlations in layer B are introduced by fixed synapses between layers A 
and B. For the sake of simplicity, temporal but no spatial arborisation is 
assumed between layer C and D and between layers D and E. Again, fixed 
synapses between layers C and D cause Gaussian correlations in time in 
layers D that result in the emergence of a temporal differentiator between 
layers D and E 

Fig. 3. A spatial and a temporal differentiator emerges as the dominant re- 
ceptive fields when a Hebbian learning rule is applied to the spatiotemporal 
Linsker network. The spatial and the temporal part are shown respectively 

layer to layer. In this way we have derived an explicit link 
between the structure and the function of  the network. 

To summarize the results of  this section: from a more ab- 
stract point of  view, the algorithm performed by the network, 
that is, spatial or a temporal differentiation, is not determined 
by the software, i.e. the learning rule, but by the hardware, 
in particular, the "anatomy" of  the network. According to 
Zeki (1993) this seems to be a general principle governing 
the organisation of  the visual cortex. Different algorithms 
require a different anatomical machinery and, hence, have 
to be performed in different areas of  the visual cortex. This 
strong relation of  algorithm and network structure is identi- 
fied by Zeki as the main reason for functional segregation 
taking place along the visual pathway. 

3 Modelling motion sensitive cells 

In this section we return to the question of  how the emer- 
gence of  motion sensitivity can be explained within the 
framework of an extended Linsker network. Here, motion 
sensitivity is understood in the following specific sense: a 
neuron responds to a pattern, like a moving edge, only if the 
movement is in one particular direction and remains silent 
if the pattern moves in the opposite direction. 

Furthermore, we have to address the problem of how the 
network responds to motion patterns of  different contrast. 
In particular, it seems to be a reasonable requirement for a 
motion detector that its output does not depend on the sign of  

the intensity gradient in the direction of  motion. Thus, for 
example, our network should respond to a moving black- 
white and a white-black edge in the same way. 

Similarly to the energy model of Watson and Ahu- 
mada (1985), the essential building block of  our model is 
the linear combination of  a spatial and a temporal filter. 
These filters can now be identified with the receptive fields 
jos and jso, the spatial and temporal differentiator, derived 
in the previous section. 

3.1 A model network for the emergence of motion sensitivity 

The network we propose in the following has to be consid- 
ered as a prototype only, i.e. it is one of many possible archi- 
tectures that may account for motion sensitivity by linking a 
spatial and a temporal differentiator. Our main intention has 
been to keep the network as simple as possible in order to 
make an analytical treatment feasible. 

For the sake of simplicity, we make the following as- 
sumption concerning our network. We suppose that two lay- 
ers linked by fixed synapses (from layer A to B and from 
layer C to D in Fig. 4) alternate with layers connected by 
synapses that show Hebb plasticity (from layer B to C and 
from layer D to E). This supposition can be interpreted as 
an abstraction of  the fact that synapses in different regions 
of the cortex may learn at different velocities. 

We assume that during learning strong random fluctua- 
tions are present in every layer of  the network. These in- 
duce Gaussian correlations via the fixed synapses, which we 
assume to be stronger than correlations induced by earlier 
layers. So, technically speaking, the layers of  fixed synapses 
combined with high internal noise help to avoid higher-order 
correlations that might be introduced by the previously learnt 
receptive fields themselves. In this way the analytic deriva- 
tions of Sect. 2 remain applicable to our model network. 



88 

During learning a spatial and a temporal differentiator 
emerge at the synapses from layer B to layer C, where we 
assume that these two types of receptive fields lie next to 
each other. As described in Sect. 2.4, the character of the 
receptive field is determined by the size of the eigenvalues 
,~os and ~so, which in turn depends on the ratio AB/AA and 
TB/TA, respectively. These ratios reflect the way the spatial 
and temporal widths of the receptive field change from layer 
to layer. Therefore, slight variations of the network structure 
within one layer may cause a situation, where )~os exceeds 
,\so at one point, while it is smaller in a neighbouring region. 
This could explain the emergence of a spatial and a temporal 
differentiator next to each other. 

The outputs of the spatial and the temporal differentiator 
are combined linearly in layer C. Whether the responses are 
added or subtracted will determine the direction of motion 
our model network is sensitive to. As will be demonstrated 
in the following subsection, a network consisting of layers A 
to C only suffices to explain the phenomena of motion sen- 
sitivity. However, the sign of the response in layer C is 
dependent on the contrast of the moving pattern. 

This dependence is compensated by the subsequent lay- 
ers D and E. For the sake of simplicity, we have assumed 
that no spatial arborisation takes place between layers C and 
D and layers D and E. As in previous layers, however, two 
neurons are linked by several synapses associated with dif- 
ferent delay times. Synapses from layer C to layer D are 
again fixed and constant, whereas synapses from layer D to 
layer E show Hebbian plasticity. Thus, a temporal differen- 
tiator emerges between D and E during learning. The output 
neuron of layer E then responds to motion in one direction, 
independent of the contrast of the moving pattern. 

We would like to stress once again that the model net- 
work of Fig. 4 is one of many possible networks that could 
explain motion sensitivity. For example, if one assumes ad- 
ditional spatial arborisation between layers C and D and 
layers D and E, the temporal differentiator between layers D 
and E might be replaced by a spatial differentiator. Fur- 
thermore, the linear combination of the temporal and spatial 
differentiator taking place in layer C might be performed 
equally well by spatial synapses linking layer C to an ad- 
ditional layer. These changes would not alter the functional 
properties of the network. 

In the next subsection the response properties of the net- 
work are analysed in frequency and real space. It will be 
demonstrated that the network represents a spatiotemporal 
filter suitable for the detection of motion signals in one di- 
rection. 

3.2 The response properties of the network in frequency 
and real space 

The use of frequency space through a Fourier transformation 
will simplify our analysis considerably since the response 
of one neuron as described in (18) can be regarded as a 
convolution in space and time. 

After factorizing the synpatic kernel J ( r - r 0 ,  T) = J ( r -  
ro)J(~-) one obtains 

SM(ro, t)=/d2rfd'rP(r-ro)J(r-ro) 
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Fig. 5. A stationary pattern has a Fourier transform restricted to the w = 0 
axis. Movement in positive x-direction shifts the Fourier pattern into the 
2rid and 4th quadrants 

xP(T)J&)SL(r, t - T) 

= f dkexp(-ikro) f d~exp(-ia~t) 
• [(27;-) 3 (P J) (k) (P J) (w)SL(k, w)] 

(41) 

or equivalently 

SM(k, w) = (P J) (k) (P J) (w)SL(k, w), (42) 

where (P J) (k) is the Fourier transform of P ( - r ) J ( - r )  and 
(P J)(w), SM(k, w), Si(k,  w) are the Fourier transforms of 
P(~-)J(T), SM(r, t) and SL(r, t), respectively. 

Before calculating the explicit response of our network in 
frequency space, let us investigate how the Fourier transform 
of a pattern changes if it is moving into a specific direction, 
say, the direction of the x-axis. 

The Fourier transform of the resting pattern S(r , t )  is 
S(k, w). Movement of the pattern at a constant velocity v~ 
then gives the Fourier transform 

f S(x - v~t, y, t) exp [-i(kzx + kyy)] 

x exp (-iwt) dxdydt 

f S(x, y, t) exp [-i(k~x + kyy)] 

x exp [-it(w + kxvx)] dxdydt 
= S(k, w + k~vx) (43) 

That is, motion means shifting the Fourier distribution along 
the spatial frequency kx into the temporal frequency domain 
w by a value -kxvx; see Fig. 5. Therefore, a network that 
is expected to show direction sensitivity in the x-direction 
has to respond in two opposite quadrants of the wkx-plane 
only, whereas the response in the two remaining quadrants 
has to be zero. 

The output of our model network in frequency space 
is now derived for layers C and E simply by multiplying 
and adding the responses of subsequent layers. The relevant 
Fourier transforms are summarized in Table 3. 
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P(r) 

P(r) 

Real space Frequency space 

= ~ exp - 2"~ 

P(w) = exp (--Tw2)exp(/w'ro)  

Spatial differentiator 

p(r)jOS(r) A+R = TX-~ r cos 69 

�9 exp - i -~  exp -~-~ 

/g (-r---tO)2 ~ P(7")J~ = V ~ exp k - W  ] 

(p j )os  (k) = i ~ k  cos r ( ) 
( AR ]~2~ �9 exp ~ , - ~  j 

�9 W T  2 (py)o8 (w) = exp(zwT0) exp (-- TT-Ww ) 

Temporal differentiator 

P(r)JS~ exp (--  ~-~) exp (--  ~ - - ~ ) r 2  r2 

p(r)jSO(T ) = T+W :--~--~(~- - to) 
�9 exp ( - ~ )  exp ( - ~ )  

{ AR k2] (pj)sO(k) = exp ~ - ~  ] 

m J r  o = e x p  

WT 2 �9 exo ( -  ) 

Table 3. Fourier transforms relevant to the detection of motion signals 

The distribution of the input connections from A to B of 
the temporal and spatial differentiator is denoted by PAI and 
Pff , respectively. Multiplication with (pj)~o and (PJ)~ 
yields the input to layer C. The output of layer C is the sum 
of the spatial and temporal differentiator. Thus, we have 

Sc(k, w) = [P~(k)P~(w) (pj)~o (k) (pj)~o (w) 

+P~ff (k)P~(w) (PJ)y (k) (pg)o~ (w)] 

X S A (k, t~3) (44) 

A similar calculation for layer E gives 

SE(k, w) = [P~(k)PIA(W) (PJ)~B ~ (k) (pj)~o (w) 

+Pd~(k)PArX(w) (PJ)y (k) (PJ)~ (w)] 

x Pc(w) (PJ)SD~ (W)SA(k, w) (45) 

The response kernels in the wk~-plane are plotted for both 
cases in Fig. 6. We find that neurons in both layer C and 
layer E respond to signals in the 2nd and 4th quadrants of 
the wkx-plane only, whereas signals in the 1st and 3rd quad- 
rants are suppressed. Comparison of the filter properties with 
the signal characteristics of a moving pattern in frequency 
space shows that the system is sensitive to motion in the 
positive x-direction; cf. Fig. 5. 

Note, however, the change of sign between the 2nd and 
4th quadrants in the case of a layer C output (Fig. 6). As 
mentioned in Sect. 3.1, this reflects the fact that the response 
of layer C depends on the contrast of the moving pattern. 
We would like to contrast this with the response of a layer E 
neuron, two layers further up in the pathway, which shows 
no change of sign in frequency space. In other words, the 
output is independent of the contrast of the moving pattern. 

To clarify this point, let us investigate the response of 
the network to a moving black-white or white-black edge in 
Fourier space 2 

+1 for x > 0 
SA(X, t) = • -- vxt) with sgn= -1  for z < 0 ' (46) 

where the +sign denotes the two types of edge. 
Taking the Fourier transform of (46), one obtains 

S A ( k x ,  ~ )  = T i  ff---~6(W + k~) (47) 

So the stimulus has different signs in the kx < 0 and kx > 0 
half-plane, and inserting (47) into (44) for layer C results in 
a response whose sign depends on the contrast of the pat- 
tern. On the other hand, in order to calculate SE(k, w) one 
multiplies a response kernel that is positive in the whole 
wk-plane (see Fig. 6) with a stimulus that changes sign at 
kz = 0. Therefore, SE(k, w) is negative (positive) in the 2nd 
and positive (negative) in the 4 th quadrant for the rightward 
motion of a white-black (black-white) edge. Thus, the re- 
sponse to both types of edges has a positive component that 
can be extracted by a threshold element. That is, the sensi- 
tivity of the output neuron is independent of the contrast of 
the moving pattern. 

By taking the inverse Fourier transformation of Sc(k, w) 
and SE(k, w) we could now derive the output of the network 
as a function of time. Instead, we will verify our analytical 
results in frequency space by simulating the response of lay- 
ers C and E to the movement of an edge in a network of 
discrete neurons. The results of this simulation in real space 

2 Since we consider motion in the x-direction, we neglect Fourier com- 
ponents in the ky-direction. 
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reports on experiments in the cat 's striate cortex that aim at 
investigating the effects of contrast reversal on the output 
of  direction sensitive neurons. Whereas one group of neu- 
rons responds to motion in one direction independently of 
the contrast of the moving pattern as in layer E, another 
group shows a response characteristic similar to the output 
of layer C. In these cells the preferred direction of  motion 
is reversed if the contrast of the stimulus is reversed. How- 
ever, the response for one type of  contrast is normally much 
weaker than that for the other type. Passing the output of  
layer C through a threshold element reproduces exactly such 
behaviour. 

The examples which we have considered so far dealt with 
motion in the x-direction exclusively. Since we have chosen 
the spatial differentiator in such a way that it changes its 
sign along the x-axis, our model network is most sensitive 
to motion in this direction. 

Finally, let us suppose our network is stimulated by 
a contrast edge moving in an arbitrary direction v = 
(v cos @, v sin 69). A glance at Eq. (34) shows that the re- 
sponse of the spatial differentiator from layer B to C is di- 
minished by a factor cos 69. In particular, it goes to zero for 
motion in the y-direction. On the other hand, the response 
of  the temporal differentiator is independent of  the direction 
of motion. Thus, the response in C and E changes gradually 
from a motion detector to a purely temporal differentiator as 
0 changes from 0 to 7r/2. 

4 Conclusions and biological discussion 

Fig. 6. Response kernel of the model network in frequency space (a) as 
seen in layer C and (b) in layer E. Comparison with Fig. 5 reveals that both 
a network up to layer C and a network up to layer E represent a space- 
time filter sensitive for rightward motion. However, the response kernel of 
layer C changes sign between the 2rid and the 4th quadrants. Therefore, 
the response depends on the contrast of the moving pattern. This contrast 
dependence is compensated by the subsequent layers D and E, as can be 
recognized from (b) 

are summarized in Fig. 7. A black-to-white edge moving to 
the right causes a positive activity in layer C, and a white-to- 
black edge moving in the same direction evokes a negative 
activity in this layer, whereas there is only a weak response 
of  the network to motion in the opposite direction. Thus, our 
simulation confirms the contrast dependence of the activity 
in layer C. In layer E, however, the situation is different. 
Here the response has both a positive and negative con- 
tribution for the two contrast types. If  we pass this signal 
through an additional threshold, we obtain a positive com- 
ponent which is independent of  the contrast of  the moving 
pattern but highly sensitive to its direction. 

It is worth mentioning that neurons corresponding to an 
output in layer C as well as neurons corresponding to an out- 
put in layer E can be observed experimentally. Atbus (1980) 

We have developed a simple linear feedforward network 
that generalizes an architecture introduced by Linsker to the 
case with delays. Within this framework the emergence of  
direction-sensitive cells can be understood as the result of a 
combination of  different types of time-dependent receptive 
fields, in particular, a spatial and a temporal differentiator. 
These receptive fields are learnt in our network, if a Hebbian 
rule that stores correlations in space and time is applied. 

Analytically, the receptive fields can be interpreted as the 
eigenfunctions of the spatiotemporal correlation function Q 
corresponding to the leading positive eigenvalue. The ques- 
tion of whether a spatial or a temporal differentiator emerges 
during learning is determined entirely by the widths of the 
spatial arborisation and the distribution of  the delays, that 
is, by the architecture of the network. 

Obviously, our model has shortcomings with respect to 
biological details. In particular, we restrict ourselves to a 
purely linear feedforward network, neglecting feedback con- 
nections and non-linearities caused by the synaptic transfer 
function and postsynaptic integration. Furthermore, the com- 
plicated spike response of  single neurons is replaced by a 
simple analogue neuron representation. We do not distin- 
guish between excitatory and inhibitory synapses but use 
abstract synapses and neurons that may have both signs. 
Finally, preprocessing in the retina, in particular, the tran- 
sient response characteristic of  M ganglion cells, is neglected 
completely. 

The aim of this study, however, was not towards a 
detailed neurobiological model of the visual pathway, but 
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Fig. 7. Simulation results for a moving black-white and a white-black edge: the network is sensitive to rightward motion in both layers C and E. Whereas the 
sign of the response depends on the contrast of the edge for layer C, the output neuron in layer E responds both positively and negatively for a black-white 
as well as a white-black edge. Passing the output through an additional threshold element yields a positive response for both cases 

rather towards a principle issue. We wanted to clarify the re- 
lation between structural properties and the functional char- 
acteristics of  the network. Indeed, one important result of our 
investigations is that an explanation of  motion sensitivity can 
be based on the linear concept of spatiotemporal receptive 
fields. These linear components have to be completed, at the 
very end, by a simple threshold element. While  non-linear 
response characteristics or feedback loops are known to be 
present all over the cortex, they are not central for our model 
of  motion sensitivity of  cells in V13. Only recently, Jagadesh 
et al. (1993) performed experiments supporting the idea that 
linear mechanisms play an important role in direction sen- 
sitivity. They have demonstrated by intracellular recordings 
that the changes in the membrane potential evoked by a 
moving stimulus are predicted accurately by the linear sum- 
mation of  responses to stationary stimuli. 

A central issue of  our derivation is the combination of 
a spatial and a temporal differentiator situated next to each 
other. Is there experimental  evidence that nature actually 
computes motion signals in this manner? Physiological stud- 
ies of  Baker and Cynader  (1988) and other authors revealed 
that motion sensitive neurons in V1 are independently tuned 
to spatial and temporal frequency - a result that seems to sup- 
port our assumption. Furthermore, our analysis shows that 
local variations in the spatial and temporal arborisation of the 
synapses are necessary prerequesites for the emergence of a 
structure with a temporal and a spatial differentiator next to 
each other. These variations may be reflected neuroanatom- 

3 A different point of view regarding this problem has been advocated 
by Dinse et al. (1991). 

ically by the patches of motion-sensit ive cells in layer 4A 
of V1 projecting to V5 (Shipp and Zeki 1989) that can be 
revealed by the injection of  the retrograde tracer horseradish 
peroxidase (HRP) to V5. 

A major assumption of  our discussion concerns the im- 
portance of  Hebbian learning during development.  It is, how- 
ever, still an open problem, to what extent the structure of  
the visual cortex has to be explained primari ly by learning 
during early development (Rakic 1977) or by genetic deter- 
mination. To answer this question, more experimental  and 
theoretical work seems to be necessary. 
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Appendix 

Following the arguments for the derivation of  the spatial 
eigenfunctions by MacKay and Mil ler  (1990), we solve the 
temporal eigenproblem 

A~J(7-) = / d'r'Q('r, T' )P(~J)J (T  ')  (48) 

with 

( Qs(T, ~-') = exp }--Z-~ j (49) 

and 
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1 ( - 70)2"  
P(7) - ~ exp 2TB J (50) 

The integral in (48) can be considered as a convolution of 
Q with (P J). So by going to a Fourier representation, the 
right-hand side of (48) becomes a product 

ArJ(w) = Q(w) (P J) (w) (51) 

As an ansatz we take a Gaussian multiplied by a polynomial 

( ( 7 - 7 " 0 )  2 ) 
J(7) = exp 2--1/17 L(~- - 70) (52) 

with L being of the form L(7) = 1,L&) = 7, orL(~-) = 
1 + a72. The expressions for W and a are then obtained by 
comparing coefficients in Fourier space. 
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