
A Search Engine for
QoS-enabled Discovery of
Semantic Web Services

Le-Hung Vu, Manfred Hauswirth, Fabio Porto, and Karl
Aberer
School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

Abstract:
Directory services are a genuine constituent of any distributed architecture which

facilitate binding attributes to names and then querying this information, i.e., announc-
ing and discovering resources. In such contexts, especially in a business environment,
quality of service (QoS) and non-functional properties are usually the most important
criteria to decide whether a specific resource will be used. To address this problem,
we present an approach to the semantic description and discovery of Web services
which specifically takes into account their QoS properties. Our solution uses a robust
trust and reputation model to provide an accurate picture of the actual QoS to user.
The search engine is based on an algebraic discovery model and uses adaptive query-
processing techniques to parallelize expensive operators. Architecturally, the engine
can be run as a centralized service for small-scale environments or can be distributed
among any number of cooperating registry providers.

Keywords: Semantic Web service; service discovery; QoS; trust; reputation

Reference to this paper should be made as follows: Vu, L.-H., Hauswirth, M., Porto,
F., and Aberer, K. (200x) ‘A Search Engine for QoS-enabled Discovery of Semantic Web
Services’, Special Issue of the International Journal on Business Process Integration
and Management (IJBPIM), Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Le-Hung Vu is a PhD student at the Distributed Information
System Laboratory of the Swiss Federal Institute of Technology Lausanne (EPFL),
Switzerland. His research interests include Semantic Web service discovery, QoS for
Web services, and trust and reputation management in decentralized environments.

Manfred Hauswirth is a senior researcher at the Distributed Information Systems Lab-
oratory, EPFL, Switzerland. His main research interests are large-scale distributed
systems, peer-to-peer systems, sensor networks, self-organizing systems, Web services,
e-commerce systems, and publish/subscribe systems.

Fabio Porto is a senior researcher at the Database Laboratory of EPFL, Switzerland.
His research domain includes distributed query processing systems, query optimiza-
tion, reasoning systems and the Semantic Web.

Karl Aberer is a full professor and head of the Distributed Information Systems Lab-
oratory, EPFL, Switzerland. His main research interests are distributed information
management, peer-to-peer computing, Semantic Web and self-organizing information
systems.

1 INTRODUCTION

High-quality means for resource discovery are an essential
prerequisite for service-oriented architectures. Developers
need to be able to discover Web services and other re-
sources for building their distributed applications. In the
upcoming Semantic Web, discovery becomes even more im-

portant: Assuming that Web services are being semanti-
cally annotated, the tasks of choreographing and orches-
trating semantic Web services are supposed to be dele-
gated to the computer. This not only requires expres-
sive means to describe Web services semantically which
is a major ongoing research effort, for example, WSMO
(http://www.wmso.org), but also puts more complex re-

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147923331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

quirements onto discovery.
Most of the ongoing efforts address functional aspects.

However, in a business environment, usually the non-
functional and QoS properties, such as price, performance,
throughput, reliability, availability, trust, etc., are actually
the first ones to be applied in deciding whether a specific
resource will be used and only if they are considered sat-
isfactory, the functional requirements are being looked at.
In this paper we address this problem by providing an ap-
proach to semantic description and discovery of Web ser-
vices which specifically takes into account QoS. Our service
discovery framework includes a semantic QoS description
model which is suitable for many application domains, is
simple yet expressive and can be used for semantically de-
scribing the QoS requirements of the users and the ad-
vertised Service Level Agreement (SLAs) of the providers,
taking into account the semantic modeling of environmen-
tal factors on QoS parameter values and the relationships
among them.

In contrast to functional specifications which can eas-
ily be verified, the assessment of non-functional proper-
ties and QoS such as performance, throughput, reliability,
availability, trust, etc., is much more complicated. Basi-
cally the QoS described in a specification has to be seen as
a claim. For assessing the actually provided QoS further
evaluation infrastructures need to be in place which en-
able online monitoring or feedback mechanisms or a com-
bination of these. Both have to address specific techni-
cal intricacies: Online monitoring requires modifications
of the participating software components to provide the
required data along with proofs. User feedback on the
other hand must take into account that users provide false
feedback, collude to raise or lower QoS properties, or try
other attacks to get wrong data into the feedback system.
This requires a carefully devised model to filter out wrong
data, but requires only minimal changes to the existing
infrastructures. In the approach presented in this paper
we include a feedback mechanism which is based on user
feedback and feedback from (typically a few) trusted third
parties, e.g., rating agencies, which exist in many appli-
cation and business domains. Based on this data and a
robust statistical trust and reputation model, which takes
into account attacks such as bad-mouthing, collusion, etc.,
to filter out dishonest behavior, we can provide an accurate
picture of the actual QoS.

The suggested framework is general and facilitates the
application of different matchmaking algorithms to the dis-
covery process in the form of discovery algebra operators
and parallelization of the semantic discovery for minimiz-
ing the total discovery time. More precisely, we perform
the categorization of services based on the indexing of their
characteristic vectors as originally proposed in Vu et al
(2005a) and then use this information to filter irrelevant
services during the matchmaking steps. Our framework
also sketches the solution to deal with the heterogeneous
and distributed ontologies using mediation services dur-
ing the semantic reasoning. The search engine can be
run as a centralized service for small-scale environments

or can be distributed among any number of cooperating
providers. To enable scalable discovery we devise a peer-
to-peer-inspired distribution strategy which enables fault-
tolerance and allows registries to maintain full control and
confidentiality on the information they provide.

The Web Service Modeling Ontology (WSMO) model
is used as a proof-of-concept of our proposed discovery
approach. However, the approach is generally applica-
ble to other models, e.g., OWL-S (http://www.w3.org/
submission/owl-s). To be able to concentrate on discovery,
our search engine exploits several components available in
the WSMO eXecution environment (WSMX), which is a
reference implementation of the WSMO model (Burstein
et al (2005)). Without constraining general applicability,
we assume in the following that Web services are described
semantically, including QoS properties, using the WSMO
conceptual model. We focus on the discovery component
and assume that other functionalities such as publishing
of services, managing of service advertisements and on-
tologies, invocation of services, monitoring of service QoS,
etc., are handled by existing (WSMX) components, and
that the interaction between our discovery component and
other components is done via pre-defined APIs.

This paper is organized as follows: In Section 2 we
present our semantic QoS description model, followed by a
description how discovery works in a centralized setting in
Section 3, which we subsequently extend to a distributed
environment in Section 4. Section 5 presents the details
of the architecture of our QoS-enabled service discovery
framework. An analysis of our solution is provided in Sec-
tion 6, Section 7 discusses it in the context of related re-
search efforts, and Section 8 rounds out the paper with our
conclusions.

2 QUALITY OF SERVICE MODEL

2.1 Modeling QoS Parameters

In our perspective, a Web service is a web-based interface
providing an electronic description of a concrete service,
which may offer the functionality of a software component,
for example, a data backup service, or a real-life (business)
activity such as book shipping. Therefore, the notion of
QoS in our work is generic, ranging from application-level
QoS properties to network or software-related performance
features that a user expects from the service execution. Ex-
amples of application-level QoS parameters are the quality
of the food delivered by a online-order pizza service or the
timely delivery of a book. Typical network or software-
related QoS parameters are the availability, response-time,
execution-time, etc., of Web services.

In this context, selecting a service includes agreeing on
the function it delivers and on at least one of the QoS
parameters (criterion) offered by the provider. Thus, we
model a Web service description as F ∧ Q, where F is a
functional criterion and Q is a QoS criterion. Based on
real-world requirements and the most relevant QoS speci-

fication standards such as WSLA (Ludwig et al (2003)),
QML (Frolund and Koisten (1998)), and WSOL (Tosic
(2004)), we need to provide a semantic description for the
following important information of a QoS criterion:
• The description of the QoS parameters and the as-

sociated required level of QoS, e.g., parameter names
and textual descriptions, possible values of the param-
eters, respective measurement units, associated eval-
uation methods, etc. We model this part as C ′(qi),
in which C ′ is a concept expression that constrains
the instance qi of a QoS concept in the QoS domain
ontology.

• The necessary and sufficient conditions that the
provider engages to offer the QoS values for offering
the QoS instances specified by the above QoS level
C ′(qi), for instance, the price of the service, the min-
imum network connection and system requirements,
the maximal number of requests per time unit, etc.
This part is expressed by cnd, an axiom over instances
of a set of concepts specifying a real-world scenario.

Thus, a QoS criterion is modeled as set of tuples, each
of which has the form 〈C ′(qi), cnd〉. For brevity, we denote
cnd as the context to achieve the QoS level C ′(qi) hence-
forth. As an example, the constraint C ′ could be used to
describe the average response-time value of a Web service
while cnd could be used to describe the contextual condi-
tions, e.g., network connection speed, that a client must
have in order to get the specified average response-time.

Symmetrically to a Web service description, a service
discovery request (also called a user query, a service query,
or a user’s goal in the descriptions to follow) consists of
the description of the functional and QoS criteria a Web
service should offer to fulfill a user’s needs. In this context,
a user query is specified as F ∧Q, where F is a functional
criterion and Q is a QoS criterion. A QoS criterion in
user queries is similar to its counterpart in Web service
descriptions. Web service consumers indicate by C ′(qi)
the QoS level they are seeking for and provide information
cnd regarding the state of the real-world they are able to
agree with when searching for a service with that specified
QoS level.

2.2 Feedback on QoS of Web Services

To facilitate the discovery of services with QoS informa-
tion, we must evaluate how well a service can fulfill a user’s
quality requirements from the service’s past performance.
Therefore, the discovery component provides an interface
for the service users to submit their feedback on the per-
ceived QoS of the consumed services. The following infor-
mation should be provided in a user’s QoS report:
• the QoS parameter and its observed value;
• the context in which the user obtained this specific

value of QoS. More precisely, this would include: the
time when the user observed this value and reported
it to the discovery component, and, if possible, the de-
tailed information of the user’s environmental factors

related to the QoS of the transaction between the user
and the service provider.

Supposing that the corresponding QoS criterion of the
user are Q = {〈C ′1(qi1), cnd1〉, . . . , 〈C ′n(qin), cndn〉}, where
C ′j(qij) and cndj are respectively the required instance
constraints and the respective real-world condition of
the ontological QoS concept qj , 1 ≤ j ≤ n, a corre-
sponding QoS report is represented formally as a tuple
〈u, S, t, {qs1, . . . , qsn}〉, where u, S, and t denote the iden-
tifier of the user, the identifier of the corresponding service,
and the report timestamp. Each term qsj = 〈qij , ucndj〉,
1 ≤ j ≤ n includes qij as the instance of a QoS concept qj

and ucndj as an axiom over the set of ontological instances
describing the real-world scenario of the user submitting
the report. The service is considered as fulfilling all QoS
requirements of the user if KB |= C ′1(qi1), . . . , C

′
n(qin),

with KB being the knowledge base of the system con-
structed by composing ontologies referenced in the service
and user query’s descriptions.

2.3 Modeling the QoS Semantic Matchmaking

The above definitions lead to a symmetric representation of
the Web service description and the user query, expressed
as F ∧Q. Nevertheless, F and Q have different meanings.
As a result of this, the semantic matchmaking follows dif-
ferent models when considering functional and quality of
service properties.

Matching of functional descriptions as presented here
has been discussed in Keller et al (2005) and Li and Hor-
rocks (2003). A knowledge base KB is constructed by com-
posing ontologies referenced in both descriptions. Given a
Web service’s functional description specified by a concept
Ca and its user query counterpart Cb, a match µF (Ca, Cb)
occurs iff there exists an instance i, such that i ∈ (CauCb),
in KB, or KB |= µF (Ca, Cb). Matchmaking of qual-
ity criteria µQ is slightly different. Given a pair of QoS
criteria in a Web service description Qws and in a user
query Quq, where, for example, Qws = 〈C ′ws(qiws), cndws〉
and Quq = 〈C ′uq(qiuq), cnduq〉, µQ(Qws, Quq) represents
a match iff, given the above knowledge base KB : (1)
cnduq v cndws; (2) C ′ws(qiws) v C ′uq(qiuq); and (3)
KB |= C ′uq(q̂iws). Here q̂iws is the QoS instance repre-
senting the actual QoS capability of a service in the con-
text cndws, which is estimated by our reputation-based
trust management model based on the set of QoS instances
collected from the feedback of users under similar envi-
ronmental conditions, i.e., those QoS reports of the form
〈u,ws, t, qs〉, where ∃〈qi, ucndj〉 ∈ qs s.t. ucndj v cndws.
Note that the subsumption in (1) follows an inverse di-
rection with respect to (2). This reflects the fact that the
real-world scenario (or client-side conditions) offered by the
user must meet the requirements defined by the provider,
whereas with respect to the QoS concept instance the re-
quirements are stated inversely. The subsumption in (3)
states that our QoS-enabled service discovery is also based
on the historical performance values of the Web services.

2.4 WSMO QoS Modeling Example

The usefulness of this representation model in practi-
cal applications is illustrated in the following scenario,
which we adapted from a real-world case study of our
DIP project (http://dip.semanticweb.org). A financial-
information service provider offers a Web service to re-
trieve the most important index information of the Euro-
pean stock market. We suppose that this service is ac-
cessible via an interface named subscribedServiceInterface.
The produced information is assured to be as fresh as the
actual values in the stock market, i.e., at most 10 min-
utes old. The service is only accessible in the TechGate
building in Vienna city, Austria, and to use the service via
this interface, a valid credit card number of the user is re-
quired to pay for using the service. Figure 1 shows how
we encode QoS parameters and their associated QoS condi-
tions for this service in the WSMO conceptual model, using
the WSML-Rule language syntax for ontological modeling.
The axiom providedDataFreshness is the realization of the
notation QoS constraint C ′(qi) on instances of the QoS
concept DataFreshness. Similarly, the axiom dataFresh-
nessContext corresponds to the context cnd that the Web
service provider engages to offer the values claimed in the
above axiom providedDataFreshness.

¨

§

¥

¦

WebService EUStockMarketMainIndexes
importsOntology {StockMarketOntology}
capability EUStockMarketMainIndexesCapability
...
Interface subscribedServiceInterface

importsOntology {StockMarketQoSOntology,
UserInformationOntology}

nonFunctionalProperties
dc#relation hasValue {providedDataFreshness,

dataFreshnessContext}
endNonFunctionalProperties
...

axiom providedDataFreshness
definedBy

?serviceDataFreshness[
hasMeanValue hasValue ?mean
hasStandardDeviation hasValue ?std
hasMeasurementUnit
hasValue StockMarketQoSOntology#minute

] memberOf StockMarketQoSOntology#DataFreshness
and (?mean <= 10.0).

axiom dataFreshnessContext
definedBy

?userData[
userLocation hasValue loc#Techgate,
hasCreditCardNumber hasValue ?credNo

]memberOf UserInformationOntology#userInformation
and StockMarketOntology#validCreditCard(?credNo).

Figure 1: Representation of QoS in a WSMO
Web Service description (a more complete description
and related ontologies for this example are provided
at http://lsirpeople.epfl.ch/lhvu/ontologies/)

Let us now assume a user who is currently at Vienna
International Airport and would like to obtain statistics
on the European stock market which should not be older
than 15 minutes. The WSMO representation of the cor-
responding user query for such a service (formulated with

the help of GUI tools) is shown in Figure 2. In this query
the QoS required level C ′(qi) of the user and his envi-
ronment cnd are respectively expressed by the axioms re-
questedDataFreshness and userDataFreshnessContext. It
is important to note that the description of the client en-
vironment, i.e., user’s location and credit card number,
which could be necessary for the service discovery process,
is also incorporated into the query. This is done by using
appropriate GUI tools to query the QoS domain ontol-
ogy and derive the related environmental concepts for the
parameter DataFreshness. Regarding the above EUStock-
MarketMainIndexes() service description, this query does
not match the Web service’s requirements as the user is not
in the appropriate location to be able to use the service.

¨

§

¥

¦

Goal EUStockMarketMainIndexesGoal
importsOntology StockMarketOntology
capability EUStockMarketMainIndexesRequestedCapability
...
Interface EUStockMarketMainIndexesRequestedInterface

importsOntology {StockMarketQoSOntology,
UserInformationOntology}

nonFunctionalProperties
dc#relation hasValue {requestedDataFreshness,

dataFreshnessContext,
endNonFunctionalProperties
...

axiom requestedDataFreshness
definedBy

?requiredDataFreshness[
hasMeanValue hasValue ?mean
hasStandardDeviation hasValue ?std
hasMeasurementUnit
hasValue StockMarketQoSOntology#minute

] memberOf StockMarketQoSOntology#DataFreshness
and (?mean <= 15.0).

axiom userDataFreshnessContext
definedBy

?userData[
userLocation hasValue loc#viennaIntAirport,

]memberOf UserInformationOntology#userInformation.

Figure 2: Representation of QoS information in a WSMO
goal description

In another situation, a user working in the TechGate
building uses the web interface of a discovery component,
e.g., a well-known financial information portal on the In-
ternet, to search for such a service and could obtain the
link to the service described in Figure 1. During the testing
of this service (before integrating it into the her company’s
data analysis workflow engine), she finds out that the pro-
vided information values are not as fresh as the current
statistics in the market (via other information sources).
With the help of the portal, she can submit a complaint
on this problem to the service provider via a QoS report.
An example of the semantic description being part of such
a report is shown in Figure 3.

3 CENTRALIZED DISCOVERY APPROACH

Our search engine can be run both in a centralized and in
a distributed configuration. For the centralized discovery

¨

§

¥

¦

instance observedDataFreshness
memberOf StockMarketQoSOntology#DataFreshness
nonFunctionalProperties

dc#relation hasValue qosDataFreshnessContext
endNonFunctionalProperties
hasMeanValue hasValue 20.0

axiom qosDataFreshnessContext
definedBy
?userData[userLocation hasValue loc#Techgate,

accessDay hasValue _gday("Feb 02 2006"),
] memberOf UserInformationOntology#userInformation.

Figure 3: Example of a QoS Report

solution, a service query of a user (or a program interacting
with the discovery component via the API), which includes
both functional and QoS properties of the required service,
is submitted to the system. The basic discovery operation
is the evaluation of a user’s goal against all available Web
service descriptions in the central (in terms of distribution,
local) repository. This semantic matchmaking chooses only
those services satisfying all user requirements, in terms of
both service functionality and QoS, ranks the preliminary
list according to the relevance to the query, and then re-
turns it to the user. To do this step efficiently, we apply
some simple techniques: First, all services which obviously
do not satisfy the query are filtered out. Then, the dis-
covery process can be done in parallel by any number of
available semantic query processors, which compare the
functional and the QoS properties of each service descrip-
tion to the query, and rank them to produce the final result
for the user. The QoS-based service matchmaking and ser-
vice ranking operators also use the actual QoS values as
estimated by our reputation-based trust management sys-
tem, which will be discussed in Section 3.2.

3.1 Semantic Categorization of Web Services

The core of any semantic Web service discovery solution is
a logic-based matchmaking between a user request and the
available Web service descriptions, which is a very expen-
sive task. Therefore, it should be performed only on those
service descriptions which potentially match the query. To
achieve this, we perform a categorization of service descrip-
tions and user queries into different classes based on the
similarity (both in terms of functionality and QoS) among
them. This semantic categorization scheme is an extension
of our previous work (Vu et al (2005a)). Given this cate-
gorization information, the semantic matchmaking is only
applied to the user query and the set of service descriptions
belonging to the same class. Note that the categorization
itself is an expensive process but does not affect the per-
formance of the system since it can be done off-line and
incrementally.

For each service description and user request, we gener-
ate a corresponding characteristics vector using the avail-
able information in its inputs, outputs, precondition, post-
condition, and QoS specification (in the WSMO model,

these are the service capability and service interface de-
scription). All service descriptions and queries are then
classified into different categories, depending on their char-
acteristics vectors. In the first step we partition all con-
cepts in the knowledge-base into different concept groups
based on their similarity. Algorithms for determining the
semantic similarity between two concepts are widely avail-
able, which can be based on the affinity, structural, con-
textual similarity, etc., between two concepts, for exam-
ple, Castano et al (2001). The similarity threshold used
to decide whether two concepts are in the same group de-
pends on the level of matching the system should provide
(the usual trade-off between precision and recall). For ex-
ample, we could simply set the threshold to 0.0 and use
only parental relationships to compute the similarity be-
tween concepts. In this case each concept group would be
a partition of its corresponding ontology. For instance, in
the StockMarketOntology of the Stock Market use case de-
scribed in the previous section, the concepts Stock, Stock-
Variations, StockMarket, Index, Dividend, etc., could be
put into one concept group of terminologies related to
the Stock Market domain, whereas the other concepts like
creditCard, masterCard, visaCard, eCash, paymentModel
should be put into another concept group.

Given the classification of all ontological concepts in the
local repository, we perform another step of categorization
of Web services as shown in pseudo-code in Algorithm 1.

Algorithm 1 ClassifyServices()
1: for each Web service description S do
2: Create a Bloom key KS ;
3: for each concept Ci in the capability and QoS description of

S do
4: Find the group CGi of the concept group containing Ci;
5: Add CGi to the Bloom key KS ;
6: end for
7: Classify the service S based on the Bloom key KS ;
8: end for

As a result of this algorithm, all Web services are cat-
egorized based on the concept groups they operate on.
Here we utilize Bloom filters (Bloom (1970)) to determine
the membership of a certain concept group to a service
class efficiently. More precisely, all services S belonging to
the same service class SC are described by a Bloom key
KS which is generated using the identifiers of the concept
groups that those services operate on. Therefore, the nec-
essary condition for a service S to match with a query G
is that its description at least must contain all concepts
related to those specified in the query. Analogously, the
Bloom filter representation KS of a service class SC must
contain the Bloom filter representation KG of the query,
i.e., KS = KS

⊕
KG, where

⊕
denotes bit-wise OR. The

pseudo-code for this step is shown in Algorithm 2.
For example, in the StockMarket use case, all services

whose descriptions do not contain those concepts related
to Stocks, StockIndexes, and do not have any claims for
the QoS parameter DataFreshness, would be classified as
irrelevant for the query and be filtered out.

Algorithm 2 FindMatchedServiceClasses(UserQuery G):
ListOfServiceClasses L
1: Create a Bloom key KG;
2: for each concept Ci in the capability and QoS description part

of G do
3: Find the group CGi of the concept group containing Ci, using

a hash table of concepts;
4: Add CGi to the Bloom key KG;
5: end for
6: Initialize the list of service classes L as empty;
7: for each service class with Bloom key KS do
8: if KS = KS

L
KG then

9: Add service class KS to L;
10: end if
11: end for

Note that the implementation for the partial matchmak-
ing is straightforward: Appropriate GUI tools can help the
user to specify the set of only the most important concepts
in the query from which to generate the key KG. Since ser-
vice providers as well as users can use different ontologies
for their descriptions, our categorization scheme may use
available ontology mediators to homogenize different on-
tologies in the service repository if necessary. An ontology
mediator is a set of rules mapping between two ontolo-
gies, a functionality, which has been realized already in
many ontology mapping frameworks. The architecture of
our discovery component is designed to be able to inter-
act and exploit the available ontology mediation services
in the system and thus addresses ontology heterogeneity
appropriately.

Given a user request G and the list of its corresponding
matching service classes L, we need to compare G against
each Web service S in L to choose only those services sat-
isfying all user requirements, which include functionality
and QoS requirements. Furthermore, we also need to per-
form another step of selection and ranking of results based
on the actual QoS properties of the Web services. This
step can be parallelized to reduce the total search time, as
presented in Section 3.3.

3.2 Reputation-based QoS Management Model

The discovery of services with QoS information requires an
accurate evaluation of how well a service can fulfill a user’s
quality requirements from the service’s past performance.
For this estimation, we use a reputation-based model which
exploits data from many information sources: (1) We use
the QoS values promised by providers in their service ad-
vertisements. (2) We provide an interface for the service
users to submit their feedback on the perceived QoS of con-
sumed services. (3) We also use similar reports produced
by a few trustworthy QoS monitoring agents, e.g., rating
agencies, to observe the QoS statistics of a number of Web
services. (4) In a distributed setting, the different discov-
ery components in the network may periodically exchange
the reputation information and performance statistics of
the service users, services, providers and of the discovery
nodes themselves.

For each QoS parameter Cj (a concept in a QoS ontol-

ogy) provided by a service S, we evaluate the real capabil-
ity of this service in providing this QoS parameter to the
users as follows: With every context cndjk, i.e., a set of
real-world conditions as in Section 2.1, in which the ser-
vice S advertises Cj , the related QoS instances qjkt are
collected. Specifically, we gather all user reports which are
on S and refer to Cj in the corresponding context cndjk.
Such a report by a user u at time t has the form 〈u, S, t, qs〉
where ∃〈qjkt, ucndjkt〉 ∈ qs and ucndjkt v cndjk. The
reputation-based estimation of the actual quality of S in
providing the QoS parameter Cj in context cndjk is an in-
stance q̂jk of Cj computed as follows: Since each QoS in-
stance qjkt consists of a list of property-value pairs 〈pl, vlt〉,
each property pl of the QoS instance q̂jk would then have
the value v̂l. The estimation of a v̂l based on its historical
statistics 〈t, vlt〉 is then done using the time-based regres-
sion methods which we proposed in Vu et al (2005b).

In order to improve the accuracy of this QoS evalua-
tion, the feedback mechanism has to ensure that false rat-
ings of the malicious autonomous agents, for example, bad-
mouthing about a competitor’s service or pushing the own
rating level by fake reports or collusion with other mali-
cious parties, can be detected and dealt with. Addition-
ally, it is also necessary to create incentives for users to
submit feedback on their consumed services and produce
such reports truthfully.

For dealing with the first problem, we have developed a
reputation-based trust management model under two real-
istic assumptions. First, we assume probabilistic behavior
of services and users. This implies that the differences be-
tween the real quality conformance which users obtained
and the QoS values they report follow certain probabil-
ity distributions. These differences vary depending on
whether users are honest or cheating as well as on the level
of changes in their behaviors. Secondly, we presume that
there exist a few trusted third parties. These well-known
trusted agents always produce credible QoS reports and
are used as trustworthy information sources to evaluate
the behaviors of the other users. In reality, companies
managing the discovery components at each peer can de-
ploy special applications themselves to obtain their own
experience on QoS of some specific Web services. Alterna-
tively, they can also hire third party companies to do these
QoS monitoring tasks for them. In order to detect possible
frauds in user feedbacks, we use reports of trusted agents
as reference values to evaluate behaviors of other users by
applying a trust-distrust propagation method and a clus-
tering algorithm. Reports that are considered as incredible
will not be used in the QoS evaluation process. This pro-
posed dishonesty detection algorithm has been shown to
yield very good results under various cheating behaviors
of users although we only deploy the trusted third parties
to monitor QoS of a relatively small fraction of services
(Vu et al (2005b)).

The solution for the second problem is studied exten-
sively by economists using game-theory as their major tool.
In our environment, so as to give incentives for users to
participate and produce reports truthfully, side-payment

schemes with appropriate scoring rules could be well ap-
plicable (Miller et al (2005)). That is, the users who give
feedback truthfully on their consumed Web services should
get certain benefits, from either the discovery component
or from the service providers, e.g., reduced subscription
prices when using or searching for Web services.

3.3 An Execution Model for QoS-enabled Seman-
tic Web Service Discovery

One may envisage a single discovery component manag-
ing a large number of Web service descriptions and being
targeted by numerous user queries with completely unpre-
dictable arrival rates. In this context, the performance
of a discovery process becomes of primordial importance
as well as its ability to respond to variations on incom-
ing query arrival rates, while keeping the discovery time of
each query at an acceptable level.

In order to provide such guarantees, we model the dis-
covery process as a cost-based adaptive parallel query pro-
cessing system (Porto et al (2005)). Within the discovery
process we distinguish independent operators with clear
semantics and to which one may associate estimated eval-
uation costs. A discovery query is modeled as an oper-
ator tree, in which nodes represent discovery operators
and edges denote the dataflow between each pair of them.
Potentially, a single discovery query may be modeled by
a number of different operator trees, albeit equivalent in
terms of the results they produce. Thus we derive an oper-
ator tree producing the smallest estimated cost for a given
discovery query.

We have identified a set of discovery operators that to-
gether form a discovery algebra. Each operator represents
a particular function within the discovery process and may
be implemented using different algorithms:
• restriction σ - reduces the set of Web service descrip-

tion candidates for matching with the user query. Our
current implementation uses Bloom filtering as de-
scribed in Section 3.1. Web service descriptions whose
Bloom keys do not match those of the user query are
filtered out.

• match µ - applies a semantic matchmaking algorithm
to assess the similarity between a Web service descrip-
tion and a user query. Matchmaking is implemented
as described in Section 2.3.

• rank ρ - orders matched Web service descriptions
based on the results of the match operation and ac-
cording to user’s preferences, as we will discuss later.

• project π - delivers results to the user.
In addition to ordering operators into an operator tree,

our execution model extends traditional query execution
by supporting reasoning and introducing some dynamic
optimization techniques. The reasoning task is invoked as
part of the match operator and deserves special attention
as it can become a bottleneck for the execution. Thus an
efficient evaluation of a discovery query must target three
main issues: (1) reduce the number of reasoning tasks; (2)
reduce the elapsed time for each individual Web service de-

scription semantic matchmaking evaluation; (3) adapt to
variations in execution environment conditions. We cope
with these three issues by introducing control operators
into the operator tree that manage data transfer, data ma-
terialization, reasoning task parallelization and scheduling,
etc. For brevity reasons, we refer the interested reader to
our previous work (Porto et al (2005)) describing the par-
allelization and adaptive execution strategies in detail.

The ranking operator ρ is realized as follows: Let us
consider a user query G with QoS requirements QG =
{〈C ′1(qi1), cnd1〉, . . . , 〈C ′n(qin), cndn〉}, where C ′k(qik), 1 ≤
k ≤ n, represents the required QoS level of a QoS con-
cept qk in a QoS ontology, and cndk is the user’s as-
sociated context to achieve C ′k, respectively. Suppose
that the list of services that match the above query is
LG = {S1, S2, . . . , Sm}. As described in Section 2.3, the
QoS semantic matchmaking µQ requires that for every Si,
all QoS concepts qk’s that are specified in QG must ap-
pear in the description of Si. Moreover, the corresponding
context for Si to achieve the QoS level C ′k would be cndik,
where cndk v cndik.

Let q̂ik be the estimation of the actual QoS capability
of Si in providing the QoS concept qk under the context
cndik. This is already computed based on the historical
performance statistics of Si, as described in Section 3.2.
We denote ρ(Si) º ρ(Sj), or Si has the partial higher rank
than Sj , in terms of QoS and with respect to the user
query G, iff Φ(i, j) =

∑n
k=1 wk.1{cqik≥cqjk} ≥ ξG, where

0 ≤ wk ≤ 1 is the level of importance of the quality qk

to the user,
∑n

k=1 wk = 1, and ξG is a threshold which is
chosen according to the wk’s. q̂ik and q̂jk are estimated
instances of qk provided by Si and Sj with the meaning as
explained above. The wk’s and ξG are collected from user’s
preferences in the systems. The global rank of a service
depends on the number of higher ranks it gets when com-
pared to all other services. Thus, the global rank score of
the service Si is Ti =

∑
Sj∈LG,j 6=i 1{ρ(Si)ºρ(Sj)}. The rank-

ing operator ρ is a sort of the list LG in descending order
of Ti. In other words, we will give higher ranks to services
which actually offer the more important QoS concepts at
the higher levels to the user. The semantic of the compari-
son q̂ik ≥ q̂jk is defined as the ordering relation of two QoS
instances in the corresponding QoS domain ontology.

4 DECENTRALIZED DISCOVERY APPROACH

In scenarios with independent providers of service directo-
ries a centralized solution is infeasible. Here, a distributed
strategy for searching in a network of providers is required
which still provides the same functionalities and guaran-
tees as the centralized version. To achieve good scala-
bility, high flexibility, and self-maintenance and addition-
ally avoid unwanted dependencies among the providers,
we apply a P2P-based approach for distributed discovery.
However, in reality, any distributed infrastructure could be
used to realize our solution.

4.1 Semantic Query Routing

To route queries in a distributed setting, we first need to
identify all relevant discovery locations and forward the
query to these nodes. Moreover, the distribution of queries
should be efficient in terms of message cost and bandwidth
consumption in the network. To achieve these require-
ments, we propose to use a structured overlay network on
top of the network of peer discovery engines based on the
indexing of the data stored at each peer (Figure 4).

Peer 1

Peer 2

Peer 3

Peer 4

Peer 5

Peer 6

Peer 9

Peer 7

Peer 8

Discovery

engine 1

Discovery

engine 3

Discovery

engine 7

Discovery

engine 8

Discovery

engine 9

P-Grid structured

overlay

P2P network of

discovery engines

Legend

Network link

Overlay link

Discovery

engine 4

Discovery

engine 5

Discovery

engine 6

Discovery

engine 2

Figure 4: Structured overlay on top of discovery nodes

Search is done via the overlay routing algorithm to lo-
cate the responsible peers holding the requested informa-
tion. The key idea of our solution to the identification of
relevant discovery locations is the indexing of the ontolo-
gies used in the service descriptions of the service reposi-
tories. This indexing scheme is beneficial for several rea-
sons: (1) A semantic service query using certain ontologies
in its description should be forwarded only to those peers
with related ontologies, since these peers are likely to store
matching services. (2) This solution preserves the privacy
of nodes, as it uses only the basic and not the detailed
information about the services in a provider’s repository,
which are generally unavailable for indexing in the net-
work. (3) This basic information are less likely to change
than the detailed descriptions of the services. The update
cost in a large-scale network, if necessary, would be less
costly.

Our semantic query routing also takes into account the
trust and reputation of the discovery locations in the sense
that a node would not forward queries to those with which
it had bad experiences. The evaluation of a peer’s repu-
tation is based on the QoS of the services it has provided
and will be discussed in more detail in the next section. At
each peer receiving a query, another local service discov-
ery process would take place in parallel. After collecting
all partial results, which are already ranked by the respec-
tive peers, we perform another final ranking before return-
ing the results to the user. In this step, we simply assign
higher ranks for services provided by the peers with higher
reputation and for those services with higher QoS levels.

4.2 Decentralized Reputation-based Trust Man-
agement

In a distributed environment, a provider can have its own
service registry for its Web services and hence may have in-
centives to give feedback biased to its own services. There-
fore, we also have to estimate the trustworthiness of the
various partial search results returned from the different
discovery nodes. Our proposal to deal with this problem is
as follows: After the invocation of a Web service S which
is provided by a node q, the user may report a QoS as-
sessment on this service through a QoS report R. The
report submission mechanism should ensure that R is sent
to all nodes (or peers) pi in the list LP of peers involved
in the semantic query routing algorithm. This enables the
fair sharing of QoS experience among the peers who are
likely to work in the same domain, since they are desti-
nations of the semantic query route. This helps to avoid
the case where some pi and q collude to deter negative
feedback. Available cryptography techniques could be ap-
plied to ensure that the feedback is authentic, for example,
QoS reports could be digitally signed by both the service
provider and the service user. Digital signatures also en-
sure that nodes can only read but not tamper with the
contents of the QoS reports. The reputation of a peer q
is updated periodically by each node pi ∈ LP . For doing
this, each pi first needs to apply certain dishonesty de-
tection techniques, such as the trust-distrust propagation
algorithm we proposed in Vu et al (2005b), to filter out
possibly cheating reports. Then, pi evaluates the general
reputation value of the peer q according to the set of re-
ports it has about the QoS of the services provided by q.
Moreover, the pi can exchange information about the rep-
utation of q among each other and compute an aggregated
reputation value. A node q whose reputation (in the view
of pi) falls below a certain threshold rti is put on a black-
list Li

D of nodes that pi distrusts. That means that pi will
not forward service queries to q anymore.

The reputation value of a node q should reflect its ca-
pability of providing good services in the past, which is
expressed in corresponding reports of the users on the
QoS of these services. A discovery node pi assigns the
default reputation for a newly joined peer q as the mini-
mal reputation value in the list of its accepted peers, i.e.,
ri
q = max {rti, min

pj∈Li
D

{rj}}. Such a default value of rep-
utation would create chances for new discovery nodes to
join the system and cause the least harm to the reputa-
tion of the judging peer pi. Otherwise, pi computes the

reputation of peer q as ri
q =

P
∀R∈Rq

e−λt1{Qd≥Qa}P
∀R∈Rq

e−λt , where

Rq is the set of QoS reports in the data repository of pi

that related to the services recommended by q, Qd and Qa

denote the QoS levels delivered by this service to the user
and the respective level advertised by the provider at time
t. λ is a constant to reflect the decay of the reports over
time. The indicator function 1{Qd≥Qa} evaluates to 1 if
the user considers all QoS requirements to be fulfilled by
the service and 0 otherwise. Its computation is straight-

forward by comparing values in the reports with those in
the service advertisements.

5 SOFTWARE ARCHITECTURE

Figure 5 shows the high-level software architecture of our
search engine. Each participating node hosts the same
basic functionalities and cooperates with other sites over
the network, i.e., the individual discovery nodes form a
discovery overlay network.

Network

Service

User
Service

Provider

QoS

Reporters

Discovery engine nDiscovery engine 1

Query Analyzer

Semantic

Query Engine 1

Service Management and

QoS Reputation Mechanism

...Semantic

Query Engine 2

Semantic

Query Engine n

Web Service Registry InterfaceMediation Service Interface

Query Optimizer

and

Execution

Manager

QoS Data

Repository

C
o
m
m
u
n
ic
a
tio
n
 M
a
n
a
g
e
r

Service Index

Repository

Semantic Web Service Discovery Interface

Figure 5: The search engine architecture

The architecture consists of the following components
hosted by each node:

Semantic Web Service Discovery Interface: This is the
central access point for all available functionalities (search-
ing, querying reputation information, providing feedback,
system management, etc.)

Query Analyzer: Upon receiving a user request, e.g.,
a WSMO goal, this component extracts the relevant in-
formation, i.e., the required functional and QoS specifi-
cations, and generates an internal representation for the
query optimizer.

Query Optimizer and Execution Manager : This compo-
nent uses the output of the query analyzer and produces
an execution plan for the semantic matchmaking, using
the algebraic operators defined in Section 3.3. The key
idea is that we use the query optimizer to parallelize the
semantic matchmaking (and other operators) over differ-
ent semantic query engines. The execution manager part
of the component is responsible for controlling query exe-
cution and collecting the final results.

Semantic Query Engine: These components in parallel
run parts of the query execution plan assigned to them

by the query optimizer / execution manager. All query
engines have access to the service index repository, the QoS
data repository, and the service registry of the local node
via standardized interfaces to get the required data for
their execution. They can also use the mediation service
to deal with translating among different QoS ontologies
during the matchmaking processes.

Service Index Repository : This repository stores the in-
dexes of the web service descriptions obtained from the
service registry. During the QoS-enabled service discovery
process, information in this database helps the semantic
query engines to filter out service descriptions irrelevant
to the query by comparing the category index of a service
and a user’s query. This frees us from doing expensive
reasoning on those services.

Service Management and QoS Reputation Mechanism:
This component performs the semantic categorization of
the semantic web services in the service index repository.
It is also responsible for evaluating the QoS of different ser-
vices, given the data collected from various QoS reporters.

QoS Data Repository : This repository stores the feed-
back of QoS reporters, the reputation information of all
service providers as well as the evaluated QoS information
of all QoS-aware web services, i.e., those services with QoS
information in their descriptions. The QoS data repository
acts as an additional data source for the semantic query
engines during query resolution.

Communication Manager : This component enables
communication among the nodes of the search engine, e.g.,
query routing to and result collection from remote nodes.

While these components already provide the core func-
tionalities required to perform the discovery task, they de-
pends on two following external components: an optional
mediation service and a mandatory service repository.

Mediation Service Interface: This is the access point
to the mediation services possibly provided by other com-
ponents, e.g., the mediation service of the WSMX frame-
work. Mediation is incorporated into our design via a stan-
dardized interface.

Web Service Registry Interface: This interface pro-
vides access to the web service registry to be used, which
provides us with functionalities to manage the storage and
retrieval of web service descriptions, ontologies and asso-
ciated mediators.

6 DISCUSSION OF OUR APPROACH

6.1 Discovery Cost Analysis

We anticipate that the main cost of the discovery process
is local service discovery for two reasons: (1) A discovery
component is able to pre-compute and maintain destina-
tions for distributed queries to accelerate the search for
relevant discovery locations. (2) The distributed discovery
is done in parallel at these locations and the main cost
would then be that of the slowest local discovery process.

Therefore, in this section we focus on the analysis of the
efficiency of the centralized discovery.

We adopted a parallel cost model to represent the cost of
evaluating a discovery query. It considers the costs of in-
dividual operators as well as a global function that models
the complete query execution. The global execution model
supports two modes: intra-operator and inter-operator.
The former instantiates multiple copies of the same op-
erator into different execution nodes, whereas the latter
provides a pipelined execution of operators in a branch
of the operator tree. In addition, we consider an initial-
ization cost Ic that encompasses the cost of instantiat-
ing fragments of the operator tree into different nodes,
as well as the cost of transferring initial data to remote
nodes. For the initialization cost we have the estimation
Ic = tB + tOpt + tCI where tB is the cost of computing
the Bloom key for the user query, tOpt is the cost of the
scheduling algorithm for finding the set of most suitable
nodes, and tCI is the time for initializing the appropriate
nodes for the corresponding operators which is negligible
in a centralized environment with well-known operators.

Once the query execution plan has been produced and
the system has been initiated, the time of checking whether
the first web service description S1 matches with the user
query G is T1 ' tCL + tµ1S1uG, where tCL is the time
of checking whether the service class of S matches with
that of the query, tµ is the time for doing the semantic
matchmaking µF ∧ µQ of the query with the service, if
their classes matched with each other, i.e., 1S1uG = 1.

As our semantic query engines work as a parallel pipeline
processing system, and the most expensive stage is the
matchmaking µ which is scheduled to run in parallel on Ne

different nodes, the time of doing the semantic matching
of NS web service descriptions against the query is Ψ =
Ic +T1 + tµ(kNS

KSNe
− 1)+ tR ' tB + tOpt + tCL + tµ1S1uG +

tµ(kNS

KSNe
−1)+ tR, where Ne is computed according to the

scheduling algorithm, KS is the number of service classes,
k is the number of service classes matched with the query,
and tR is the cost of the ranking operator.

Suppose each ontology has an average of Np partitions,
each of which has Nc concepts. Furthermore, let the aver-
age number of concepts in a web service description and in
a user query be ls and lg, correspondingly. For the estima-
tion of the execution time of different algorithms, in the
following we also use the notions τz to denote the approx-
imate time for doing one operation of the corresponding
algorithm z. With the use of a hash table, finding the
respective concept groups for each concept in the service
query can be done with constant time O(1). Hence we
have tB = lgτb. Since the checking whether the query
matches with a service class is a bitwise OR, tCL = 1τc.
The time tµ is of a logic-based reasoning operation, which
usually has exponential complexity in terms of the number
of concepts in the ontology and of the service and query
description (Baader et al (2003), Ch. 9), so we could envis-
age tµ ' eNpNclglsτµ in the worst case. The cost tOpt of the
scheduling algorithm in our scenario is O(P log P), where

P is the number of all available nodes in the system (Porto
et al (2005)). Given a limited number of nodes in our lo-
cal environment, tOpt is also negligible with respect to the
actual execution time of the whole discovery process. The
time tR of the ranking algorithm, given the length of the
result list lr, depends mostly on the pair-wise comparison
of services. Thus tR ≈ (lrlg)2τr.

Therefore, we have Ψ ' lgτb + tOpt + τc +
eNpNclglsτµ1S1uG +eNpNclglsτµ(kNS

KSNe
−1)+(lrlg)2τr. This

could be further reduced as Ψ ' eNpNclglsτµ
kNS

KSNe
'

tµ
kNS

KSNe
, since this is the most significant cost compared

with the other terms such as lgτb, τc, e
NpNclglsτµ1S1uG and

(lrlg)2τr. On the other hand, the time cost of the dis-
covery process without any enhancement techniques is
Ω = NStµ. The estimated speed-up of our solution is
therefore Sp = Ω

Ψ ' NStµ

NStµ
k

KSNe

= KSNe

k .

As the concept definitions are actually the core of the
functional and QoS criteria in a user query, with the se-
mantic categorization of services based on the groups of
concepts they operate on, we can have a high selectivity
while choosing the matched service classes for a certain
request. That is, KS is expected to be high and k is of
much smaller magnitude. Thus the discovery time for one
query can be can significantly reduced. Moreover, in an
environment where there is an unexpected high number of
queries, our solution also takes into account the load and
throughput statistics of each node in the system and op-
timizes the execution via the node-scheduling algorithm.
Therefore, our total gain of efficiency is extremely relevant
in terms of not only the reduction in the response time
of each individual query but also the optimization of the
overall performance of the system as well.

6.2 Effectiveness of the Reputation-based Trust
Management Model

We have implemented the QoS-based selection and rank-
ing algorithm with the application of our reputation-based
trust management model and then studied its effective-
ness under various settings. We observed the dependency
between the quality of selection and ranking results and
other factors, such as the percentage of trusted users and
reports, the rate of cheating users in the user society and
the various behaviors of users. Details of these experi-
ments are discussed in Vu et al (2005b). Through em-
pirical experiments, our QoS-based service selection and
ranking algorithm yields very accurate and reliable results
even in extremely hostile environments (up to 80% cheat-
ing users with varying cheating behaviors), which is due
to facts that the use of trusted third parties monitoring a
relatively small fraction of the services (3%–5%) can sig-
nificantly improve the detection of dishonest behavior even
in extremely hostile environments. The experiments sug-
gest to deploy trusted agents to monitor the QoS of the
most important and most widely-used services in order to
get a “high impact” effect when estimating behaviors of
users. Additionally, we can pre-select the important ser-

vices to monitor, keep the identities of those specially cho-
sen services secret and change them periodically to make
the model even more robust. Thus, cheaters will not know
on which services they should report honestly in order to
become high-reputation recommenders and have to pay a
very high cost to if they want to achieve great influence in
the system. In reality, this also helps us to reduce the cost
of setting up and maintaining trusted agents as we only
need to deploy them to monitor changing sets of services
at certain time periods.

7 RELATED WORK

The traditional UDDI standard (http://uddi.org/pubs/
uddi-v3.0.2-20041019.htm) does not mention QoS for Web
services, but many proposals have been devised to extend
the original model and describe Web services’ quality ca-
pabilities, e.g., Ludwig et al (2003), Frolund and Koisten
(1998), and Tosic (2004). Chen et al (2003) suggest using
dedicated servers to collect the feedback of consumers and
then predict future performance of published services. Bil-
gin and Singh (2004) propose an extended implementation
of the UDDI standard to store QoS data submitted by ei-
ther service providers or consumers and suggest a query
language (SWSQL) to manipulate, publish, rate and se-
lect those QoS data from the repository. According to
Kalepu et al (2004), the reputation of a service should be
computed as a function of three factors: different ratings
made by users, service quality compliance and its verity,
i.e., the changes of service quality conformance over time.
However, these solutions have not yet addressed the trust-
worthiness of QoS reports produced by various users, which
is important to assure the accuracy of the QoS-based se-
lection and ranking results. Liu et al (2004) rate services
in terms of their quality with QoS information provided by
monitoring services and users. The authors also employ a
simple approach of reputation management by identifying
every requester to avoid report flooding. In Emekci et al
(2004), services are allowed to vote for quality and trust-
worthiness of each other and the service discovery engine
utilizes the concept of distinct sum count in sketch theory
to compute the QoS reputation for every service. Other
solutions such as Tian et al (2003); Ran (2003); Ouzzani
and Bouguettaya (2004); Patel et al (2003); Maximilien
and Singh (2002) use mainly third-party service brokers or
specialized monitoring agents to collect performance of all
available services in registries, which would be expensive
in reality.

Regarding decentralized solutions for service discovery,
Verma et al (2005) and Schlosser et al (2002) propose a
distribution of Semantic Web service descriptions based
on a classification system expressed in service or registry
ontologies. Kashani et al (2004) uses an unstructured P2P
network as the service repository, which would be not very
highly scalable and efficient in terms of search and update
costs. Schmidt and Parashar (2004) indexes service de-
scription files (WSDL files) by a set of keywords and uses

a Hilbert-space-filling-curve to map the n-dimensional ser-
vice representation space to a one-dimensional indexing
space and hash it onto the underlying DHT-based storage
system. Emekci et al (2004) suggests the discovery of ser-
vices based on the process structure of the services, but we
consider these as less important in our case, since they are
difficult to use in queries and unlikely to be the primary
selection criteria in searches, and thus not critical in terms
of indexing.

8 CONCLUSIONS

In this paper we have proposed a semantic description
model for the QoS of Web services, whose expressivity fa-
cilitates modeling a wide range of QoS requirements. Our
framework includes a solution for dynamic assessment and
management of QoS values of Web services based on user
feedback and performs QoS-enabled discovery and rank-
ing of Web services based on their QoS compliance. The
ranking is based on a reputation-based trust management
mechanism to evaluate the actual QoS of the services,
which increases the robustness and accuracy of our solu-
tion. We have introduced a scalable and efficient QoS-
enabled Semantic Web service discovery framework, which
can be used both as a centralized discovery component or
as a decentralized registry system consisting of cooperating
discovery nodes (discovery overlay network). Additionally,
our discovery architecture is based on a query processing
architecture in which operations are modeled algebraically,
enabling query optimization and parallelization of opera-
tor execution. The decentralized discovery approach in our
framework prescribes a realistic solution for large-scale dis-
tributed discovery of Web services and addresses the issue
of heterogeneous and distributed ontologies.

ACKNOWLEDGMENTS

The work presented in this paper was (partly) carried out
in the framework of the EPFL Center for Global Com-
puting and was supported by the Swiss National Funding
Agency OFES as part of the European project DIP (Data,
Information, and Process Integration with Semantic Web
Services) No 507483. Le-Hung Vu is supported by a schol-
arship of the Swiss federal government for foreign students.

REFERENCES

Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,
Patel-Schneider, P. (2003) ‘The Description Logic hand-
book’, Cambridge University Press, 2003.

Bilgin, A. S. and Singh, M. P.(2004) ‘A DAML-based
repository for QoS-aware semantic Web service selec-
tion’, Proceedings of the ICWS’04, page 368, USA, 2004.

Bloom, B.H. (1970) ‘Space/Time trade-offs in hash cod-
ing with allowable errors’, Communication of the ACM’,
13(7), p.p. 422–426, 1970.

Burstein, M. et al (2005) ‘A Semantic Web Services Ar-
chitecture’, IEEE Internet Computing. Vol. 9, No. 5,
September, October 2005.

Castano, S., De Antonellis, V., and di Vimercati, S. D. C.
(2001)‘Global Viewing of Heterogeneous Data Sources’,
IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 13, no. 2, pp. 277-297, Mar/Apr, 2001.

Chen, Z., Liang-Tien, C., Silverajan, B., Bu-Sung, L.
(2003) ‘UX- an architecture providing QoS-aware and
federated support for UDDI’, Proceedings of ICWS’03,
2003.

Ding, H., Solvberg, I. T., and Lin, Y. (2004) ‘A vision
on semantic retrieval in P2P network’, Proceedings of
AINA’04, USA, 2004.

Emekci, F., Sahin, O. D., Agrawal, D., Abbadi, A. E.
(2004) ‘A peer-to-peer framework for Web service dis-
covery with ranking’, Proceedings of the ICWS’04, page
192, USA, 2004.

Frolund, S., Koisten, J. (1998) ‘QML: A Language for
Quality of Service Specification’, http://www.hpl.hp.
com/techreports/98/HPL-98-10.html.

Kalepu, S., Krishnaswamy, S., Loke, S. W. (2004) ‘Reputa-
tion = f(user ranking, compliance, verity)’, Proceedings
of ICWS’04, page 200, USA, 2004.

Kashani, F. B., Chen, C. C., Shahabi, C. (2004) ‘WSPDS:
Web services peer-to-peer discovery service’, Proceedings
of the International Conference on Internet Computing,
p.p. 733–743, 2004.

Keller, U., Lara, R., Lausen, H., Polleres, A. and Fensel,
D. (2005)‘Automatic location of services’, Proceedings of
ESWC’05’, 2005.

Li, L. and Horrocks, I. (2003) ’A software framework for
matchmaking based on Semantic Web technology’, Proc.
of the Twelth Intl. WWW’03, Hungary, 2003.

Liu, Y., Ngu, A., Zheng, L. (2004) ‘QoS computation and
policing in dynamic Web service selection’, Proceedings
of the WWW conference on Alternate track papers &
posters, p.p. 66–73, USA, 2004.

Ludwig, H., Keller, A., Dan, A., King, R.-P., Franck,
R. (2003) ‘Web Service Level Agreement (WSLA) Lan-
guage Specification’, available online at http://www.
research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

Maximilien, E. M. and Singh, M. P.(2002)‘Reputation and
endorsement for Web services’, SIGecom Exch., 3(1):24–
31, 2002.

Miller, N., Resnick, P., and Zeckhauser, R. (2005)
‘Eliciting Informative Feedback: The Peer-Prediction
Method’, Forthcoming in Management Science, 2005.

Ouzzani, M., Bouguettaya, A. (2004) ‘Efficient access to
Web services’, IEEE Internet Computing, p.p. 34–44,
March/April 2004.

Patel, C., Supekar, K., Lee, Y. (2003)‘A QoS oriented
framework for adaptive management of Web service
based workflows’, Proceeding of DEXA’03, p.p. 826–835,
2003.

Porto, F., Silva, V. F. V., Dutra, M. L., Bruno, S. (2005)
‘An adaptive distributed query processing grid service’,
Proceedings of the Workshop on Data Management in
Grids, VLDB2005, Trondheim, Norway, 2005.

Ran, S.(2003) ‘A model for Web services discovery with
QoS’, SIGecom Exch., 4(1):1–10, 2003.

Schlosser, M., Sintek, M., Decker, S., Nejdl, W. (2002) ‘A
scalable and ontology-based P2P infrastructure for se-
mantic Web services’, Proceedings of P2P’02, page 104,
Washington, DC, USA, 2002.

Schmidt, C. and Parashar, M. (2004)‘A peer-to-peer ap-
proach to Web service discovery’, Proceedings of the
WWW’04, 7(2):211–229, 2004.

Tang, C., Xu, Z., and Dwarkadas, S. (2003) ‘Peer-to-peer
information retrieval using self-organizing semantic over-
lay networks’, Proceedings of ACM SIGCOMM’03, USA,
2003.

Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Schiller,
J. (2003) ‘A concept for QoS integration in Web ser-
vices’, Proceedings of Fourth International Conference
on Web Information Systems Engineering Workshops,
Vol. 00, p.p. 149–155, Italy, 2003.

Tosic, V. (2005) ‘Service Offerings for XML Web Services
and Their Management Applications’, Ph.D. disserta-
tion, Department of Systems and Computer Engineer-
ing, Carleton University, Canada, 2004.

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.,
Oundhakar, S., Miller., J. (2005) ‘METEOR-S WSDI:
A scalable P2P infrastructure of registries for semantic
publication and discovery of Web services’, Inf. Tech.
and Management, 6(1):17–39, 2005.

Vu, L.-H., Hauswirth, M., Aberer, K. (2005a) ‘Towards
P2P-based Semantic Web Service Discovery with QoS
Support’, Proceeding of Workshop on Business Processes
and Services (BPS), Nancy, France, 2005.

Vu, L.-H., Hauswirth, M., Aberer, K. (2005b) ‘QoS-based
service selection and ranking with trust and reputation
management’, Proceedings of OTM’05, R. Meersman
and Z. Tari (Eds.), LNCS 3760, p.p. 466-483, 2005.

