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Abstract. It is a long standing open problem to find an explicit de-
scription of the stable set polytope of claw-free graphs. Yet more than
20 years after the discovery of a polynomial algorithm for the maximum
stable set problem for claw-free graphs, there is even no conjecture at
hand today.

Such a conjecture exists for the class of quasi-line graphs. This class
of graphs is a proper superclass of line graphs and a proper subclass of
claw-free graphs for which it is known that not all facets have 0/1 normal
vectors. Ben Rebea’s conjecture states that the stable set polytope of a
quasi-line graph is completely described by clique-family inequalities.
Chudnovsky and Seymour recently provided a decomposition result for
claw-free graphs and proved that Ben Rebea’s conjecture holds, if the
quasi-line graph is not a fuzzy circular interval graph.

In this paper, we give a proof of Ben Rebea’s conjecture by showing
that it also holds for fuzzy circular interval graphs. Our result builds
upon an algorithm of Bartholdi, Orlin and Ratliff which is concerned
with integer programs defined by circular ones matrices.

1 Introduction

A graph G is claw-free if no vertex has three pairwise nonadjacent vertices. Line
graphs are claw free and thus the weighted stable set problem for a claw-free
graph is a generalization of the weighted matching problem of a graph. While
the general stable set problem is NP-complete, it can be solved in polynomial
time on a claw-free graph [21, 29] even in the weighted case [22, 23] see also [32].
These algorithms are extensions of Edmonds’ [10, 9] matching algorithms.
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The stable set polytope STAB(G) is the convex hull of the characteristic
vectors of stable sets of the graph G. The polynomial equivalence of separation
and optimization for rational polyhedra [16, 26, 18] provides a polynomial time
algorithm for the separation problem for STAB(G), if G is claw-free. However,
this algorithm is based on the ellipsoid method [19] and no explicit description
of a set of inequalities is known that determines STAB(G) in this case. This
apparent asymmetry between the algorithmic and the polyhedral status of the
stable set problem in claw-free graphs gives rise to the challenging problem
of providing a “. . . decent linear description of STAB(G)” [17], which is still
open today. In spite of results characterizing the rank-facets [12] (facets with
0/1 normal vectors) of claw-free graphs, or giving a compact lifted formulation
for the subclass of distance claw-free graphs [27] , the structure of the general
facets for claw-free graphs is still not well understood and even no conjecture is
at hand.

The matching problem [9] is a well known example of a combinatorial opti-
mization problem in which the optimization problem on the one hand and the
facets on the other hand are well understood. This polytope can be described by a
system of inequalities in which the coefficients on the left-hand-side are 0/1. This
property of the matching polytope does not extend to the polytope STAB(G)
associated with a claw-free graph. In fact, Giles and Trotter [14] show that for
each positive integer a, there exists a claw-free graph G such that STAB(G) has
facets with a/(a + 1) normal vectors. Furthermore they show that there exist
facets whose normal vectors have up to 3 different coefficients (indeed up to 5
as it is shown in [20]). Perhaps this is one of the reasons why providing a de-
scription of STAB(G) is not easy, since 0/1 normal vectors can be interpreted
as subsets of the set of nodes, whereas such an interpretation is not immediate
if the normal vectors are not 0/1.

A graph is quasi-line, if the neighborhood of any vertex partitions into two
cliques. The complement of quasi-line graphs are called near-bipartite, and a
linear description of their stable set polytope has been given in [33]. The class of
quasi-line graphs is a proper superclass of line graphs and a proper subclass of
the class of claw-free graphs. Interestingly also for this class of graphs there are
facets with a/(a + 1) normal vectors, for any nonnegative integer a [14], but no
facet whose normal vector has more than 2 different coefficients is known for this
class. Ben Rebea [28] considered the problem to study STAB(G) for quasi-line
graphs. Oriolo [25] formulated a conjecture inspired from his work.

Ben Rebea’s Conjecture

Let F = {K1, . . . , Kn} be a set of cliques, 1 ≤ p ≤ n be integral and r = n
mod p. Let Vp−1(F) ⊆ V (G) the set of vertices covered by exactly (p−1) cliques
of F and V≥p(F) ⊆ V (G) the set of vertices covered by p or more cliques of F .
The inequality

(p − r − 1)
∑

v∈Vp−1(F)

x(v) + (p − r)
∑

v∈V≥p(F)

x(v) ≤ (p − r)
⌊

n

p

⌋
(1)
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is valid for STAB(G) and is called the clique family inequality associated with
F and p.

Conjecture 1 (Ben Rebea’s conjecture [25]). The stable set polytope of a quasi-
line graph G = (V,E) may be described by the following inequalities:

(i) x(v) ≥ 0 for each v ∈ V
(ii)

∑
v∈K x(v) ≤ 1 for each maximal clique K

(iii) inequalities (1) for each family F of maximal cliques and each integer p with
|F| > 2p ≥ 4 and |F| mod p �= 0.

In this paper we prove that Ben Rebea’s Conjecture holds true. This is done
by establishing the conjecture for fuzzy circular interval graphs, a class intro-
duced by Chudnovsky and Seymour [6]. This settles the result, since Chudnovsky
and Seymour showed that the conjecture holds if G is quasi-line and not a fuzzy
circular interval graph. Interestingly, since all the facets are rank for this latter
class of graphs, the quasi-line graphs that “produce” non-rank facets are the
fuzzy circular interval graphs.

We first show that we can focus our attention on circular interval graphs [6]
a subclass of fuzzy circular interval graphs. The weighted stable set problem
over a circular interval graph may be formulated as a packing problem max{c x |
Ax ≤ b, x ∈ Z

n
≥0}, where b = 1 and A ∈ {0, 1}m×n is a circular ones matrix,

i.e., the columns of A can be permuted in such a way that the ones in each row
appear consecutively. Here the last and first entry of a row are also considered
to be consecutive. Integer programs of this sort with general right-hand side
b ∈ Z

m have been studied by Bartholdi, Orlin and Ratliff [3]. From this, we
derive a separation algorithm which is based on the computation of a negative
cycle, thereby extending a recent result of Gijswijt [13]. We then concentrate
on packing problems with right-hand side b = α1, where α is an integer. By
studying non-redundant cycles leading to separating hyperplanes, we show that
each facet of the convex hull of integer feasible solutions to a packing problem
of this sort has a normal vector with two consecutive coefficients. Instantiating
this result with the case where α = 1, we obtain our main result.

Cutting Planes

Before we proceed, we would like to stress some connections of this work to
cutting plane theory. An inequality c x ≤ �δ� is a Gomory-Chvátal cutting
plane [15, 7] of a polyhedron P ⊆ R

n, if c ∈ Z
n is an integral vector and

c x ≤ δ is valid for P . The Chvátal closure P c of P is the intersection of P
with all its Gomory-Chvátal cutting planes. If P is rational, then P c is a ra-
tional polyhedron [30]. The separation problem for P c is NP-hard [11]. A poly-
tope P has Chvátal-rank one, if its Chvátal closure is the integer hull PI of
P . Let QSTAB(G) be the fractional stable set polytope of a graph G, i.e., the
polytope defined by non-negativity and clique inequalities. It is known [25] that
QSTAB(G) does not have Chvátal rank one, if G is a quasi-line graph. A famous
example of a polytope of Chvátal-rank one is the fractional matching polytope
and thus QSTAB(G), where G is a line graph.

l
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An inequality c x ≤ δ is called a split cut [8] of P if there exists an integer
vector π ∈ Z

n and an integer π0 such that c x ≤ δ is valid for P ∩ {x ∈ R
n |

π x ≤ π0} and for P ∩ {x ∈ R
n | π x ≥ π0 + 1}. The split closure P s of P is the

intersection of P with all its split cuts and this is a rational polyhedron if P itself
is rational [8, 2]. The separation problem for the split closure is also NP-hard [4].
A polyhedron P ⊆ R

n has split-rank one, if P s = PI .
Both cutting plane calculi are simple procedures to derive valid inequalities

for the integer hull of a polyhedron. It is easy to see that a clique family inequality
is a split cut for QSTAB(G) with π(v) = 1 if v ∈ Vp−1∪V≥p, π(v) = 0 otherwise
and π0 = �n

p �. Thus, while the fractional stable set polytope of a quasi-line graph
does not have Chvátal rank one, its split-rank is indeed one.

2 From Circular Interval to Quasi-Line Graphs

A circular interval graph [6] G = (V,E) is defined by the following construction:
Take a circle C and a set of vertices V on the circle. Take a subset of intervals
I of C and say that u, v ∈ V are adjacent if {u, v} is a subset of one of the
intervals.

Any interval used in the construction will correspond to a clique of G. Denote
the family of cliques stemming from intervals by KI and the set of all cliques in
G by K(G). Without loss of generality, the (intervals) cliques of KI are such that
none includes another. Moreover KI ⊆ K(G) and each edge of G is contained in
a clique of KI . Therefore, if we let A ∈ {0, 1}m×n be the clique vertex incidence
matrix of KI and V one can formulate the the (weighted) stable set problem on
a circular interval graph as a packing problem

max
∑

v∈V c(v)x(v)
Ax ≤ 1

x(v) ∈ {0, 1} ∀v ∈ V

where the matrix A is a circular ones matrix (e.g. using clockwise ordering of
the vertices).

Chudnovsky and Seymour [6] also introduced the more general class of fuzzy
circular interval graphs. A graph G is a fuzzy circular interval if the following
conditions hold.

(i) There is a map Φ from V to a circle C.
(ii) There is a set of intervals I of C, none including another, such that no point

of C is the end of more than one interval so that:
(a) If two vertices u and v are adjacent, then Φ(u) and Φ(v) belong to a

common interval.
(b) If two vertices u and v belong to a same interval, which is not an interval

with endpoints Φ(u) and Φ(v), then they are adjacent.

In other words, in a fuzzy circular interval graph, adjacencies are completely
described by the pair (Φ, I), except for vertices u and v such that one of the in-
tervals with endpoints Φ(u) and Φ(v) belongs to I. For these vertices adjacency
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is fuzzy. We are particularly interested in non-empty cliques arising from end-
points of intervals of I. If [p, q] is an interval of I such that Φ−1(p) and Φ−1(q)
are both non-empty, then we call the cliques (Φ−1(p), Φ−1(q)) a fuzzy pair.

Trivially, a circular interval graph is a fuzzy circular interval graph. When is
a fuzzy circular interval graph a circular interval graph? The following lemma
addresses this question. Say that a graph is C4-free if it does not have an induced
subgraph isomorphic to a cordless cycle of length 4. For X ⊆ V , we denote by
G[X] the subgraph of G induced by X.

Lemma 1 (Chudnovsky and Seymour [5]). Let G be a fuzzy circular inter-
val graph. If for every fuzzy pair of cliques (Ki,Kj), the subgraph G[Ki ∪Kj ] is
C4-free, then G is a circular interval graph.

We sketch a proof of the above lemma. Trivially, if a fuzzy circular interval
graph admits a fuzzy representation with no fuzzy pairs of cliques, then G is a
circular interval graph. Now let (Φ, I) be a fuzzy representation of G minimizing
the number of vertices belonging to fuzzy pairs. Let (K1,K2) be a fuzzy pair of
cliques with respect to (Φ, I). Every vertex v ∈ K1 has a neighbor and a non-
neighbor in K2. Otherwise one could remove v from the fuzzy pair, contradicting
the minimality of (Φ, I). Now the following statement holds true: if G = (V,E)
is any graph with V = V1 ∪ V2, V1 and V2 cliques and such that every vertex
of V1 (V2) has a neighbor and a non-neighbor in V2 (V1), then there exist an
induced C4 = {u1, u2, v2, v1} with u1, u2 ∈ V1 and v1, v2 ∈ V2.

Theorem 1. Let F be a facet of STAB(G), where G is a fuzzy circular interval
graph. Then F is also a facet of STAB(G′), where G′ is a circular interval graph
obtained from G by removing some edges.

Proof. Suppose that F is induced by the valid inequality a x ≤ β. Trivially, if we
remove an edge (u, v) connecting two vertices u ∈ Ki to v ∈ Kj of a fuzzy pair
of cliques (Ki,Kj), the graph G\(u, v) is still a fuzzy circular interval graph. An
edge e is F -critical, if a x ≤ β is not valid for STAB(G\e). If e is not F -critical,
then F is also a facet of STAB(G \ e). We prove that the removal of all non
F -critical edges connecting two vertices in different cliques of fuzzy pairs results
in a circular interval graph G′. Therefore, since F is a facet of STAB(G′), the
claim follows.

Suppose G′ is not a circular interval graph. Then from Lemma 1, there exists
a fuzzy pair of cliques (K1,K2) such that the subgraph G′[K1∪K2] contains a C4.
Say V (C4) = {u1, u2, v1, v2} with u1, u2 ∈ K1, v1, v2 ∈ K2, (u1, v1), (u2, v2) ∈
E(C4). The edge (u1, v1) is F -critical. Hence there exists a set S containing
u1, v1 such that S violates a x ≤ β and S is stable in G′ \ (u1, v1). Property (ii)
above implies that K1 has no other fuzzy pair than K2 and thus u1 and u2 are
adjacent to the same vertices in G′ \K2. This implies that (S\u1)∪u2 is a stable
set. Therefore a(u2) < a(u1) (else (u1, v1) is not F -critical). Applying the same
argument to (u2, v2) leads to a(u1) < a(u2). Which is a contradiction. ��

Fuzzy circular interval graphs are quasi-line graphs. Chudnovsky and Sey-
mour [6] gave a complete characterization of the stable set polytope of a quasi-
line graph for the case in which the graph is not a fuzzy circular interval graph.

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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Let F = {K1,K2, ...,K2n+1} an odd set of cliques of G. Let T ⊆ V be the set
of vertices which are covered by at least two cliques of F . Then the inequality∑

v∈T x(v) ≤ n is a valid inequality for STAB(G) and inequalities of this type
are called Edmonds’ inequalities.

Theorem 2 ([6]). Let G be a connected quasi-line graph, which is not a fuzzy
circular interval graph. Then all non trivial facets of STAB(G) are Edmonds’
inequalities.

Observe that Edmonds’ inequalities are special clique family inequalities asso-
ciated with F and p = 2. Moreover, Theorem 1 implies that, if we prove that
all the non-trivial facets of the stable set polytope of a circular interval graph
are clique family inequalities, then the same holds for the stable set polytope of
a fuzzy one (cliques of G′ are also cliques of G). Therefore, if we combine these
facts, we may give a positive answer to the Ben Rebea’s Conjecture if we prove
that it holds for circular interval graphs. This is what we are going to show in
the following sections.

3 Slicing and Separation

Let P be a polytope P = {x ∈ R
n | Ax ≤ b, x ≥ 0}, where A ∈ {0, 1}m×n is a

circular ones matrix and b ∈ Z
m an integral vector. In this section, we consider

the separation problem for the integer hull PI of P :

Given x∗ ∈ R
n, determine, whether x∗ ∈ PI and if not, determine an

inequality c x ≤ δ which is valid for PI and satisfies c x∗ > δ.

We present a membership algorithm of Gijswijt [13] and develop it further to
retrieve a separating hyperplane. Following Bartholdi, Orlin and Ratliff [3], we
consider the unimodular transformation x = T y, where T is the unimodular
matrix

T =

⎛

⎜⎜⎜⎝

1−1 1
−1 1

−1

. . .
1−1 1

⎞

⎟⎟⎟⎠ (2)

The problem then reads, separate y∗ = T−1x∗ from the integer hull QI of the
polytope Q defined by the system

(
A
−I

)
T y ≤

(
b
0

)
. (3)

In the following we denote the inequality system (3) by B y ≤ d. Let us rewrite
the matrix B as B = (N |v), i.e. v is the n-th column of B. Observe that, by

construction, v is also the last column of
(

A
−I

)
.

Each row of the matrix N has at most one entry which is +1 and at most
one entry which is −1. All other entries are 0. The matrix N is thus totally



297

unimodular. Thus, whenever y(n) is set to an integer β ∈ Z, the possible values
for the variables y(1), . . . , y(n − 1) define an integral polytope Qβ = {y ∈ R

n |
B y ≤ d, y(n) = β}. We call this polytope Qβ the slice of Q defined by β.

Since T is unimodular, the corresponding slice of the original polyhedron
P ∩ {x ∈ R

n | ∑n
i=1 x(i) = β} is an integral polyhedron. From this it is already

easy to see that the split-rank of P is one. However, we present a combinatorial
separation procedure for the integer hull PI of P which computes a split cut via
the computation of a negative cycle.

If y∗(n) is integral, then y∗ lies in QI if and only if y∗ ∈ Qy∗(n). Therefore
we assume in the following that y∗(n) is not integral and let β be an integer
such that β < y∗(n) < β + 1 and let 1 > µ > 0 be the real number with
y∗(n) = β + 1 − µ. Furthermore, let QL and QR be the left slice Qβ and right
slice Qβ+1 respectively. A proof of the next lemma follows from basic convexity.

Lemma 2. The point y∗ lies in QI if and only if there exist yL ∈ QL and
yR ∈ QR such that

y∗ = µ yL + (1 − µ)yR.

In the following we denote by y ∈ R
n−1 the vector of the first n−1 components

of y ∈ R
n. From the above discussion one has y∗ ∈ QI if and only if the following

linear constraints have a feasible solution.

y∗ = yL + yR

NyL ≤ µ dL

NyR ≤ (1 − µ) dR

, (4)

where dL = d − βv and dR = d − (β + 1)v.
Using Farkas’ Lemma [31], it follows that equation (4) defines a feasible sys-

tem, if and only if
∑n−1

i=1 λ(i)y∗(i)+µfLdL+(1−µ)fRdR is nonnegative, whenever
λ, fL and fR satisfy

λ + fLN = 0
λ + fRN = 0

fL, fR ≥ 0.
(5)

Now λ+fLN = 0 and λ+fRN = 0 is equivalent to λ = −fLN and fLN = fRN .
Thus (4) defines a feasible system, if and only if the optimum value of the
following linear program is nonnegative

min−fLN y∗ + µfLdL + (1 − µ)fRdR

fLN = fRN
fL, fR ≥ 0.

(6)

Let w be the negative sum of the columns of N . Then (6) is the problem of
finding a minimum cost circulation in the directed graph D = (U,A) defined by
the edge-node incidence matrix

M =
(

N w
−N −w

)
and edge weights µ(−N y∗ + dL), (1 − µ)(−N y∗ + dR) (7)

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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Thus y∗ /∈ QI if and only if there exists a negative cycle in D = (U,A). The
membership problem for QI thus reduces to the problem of detecting a negative
cycle in D, see [13].

A separating split cut for y∗ is an inequality which is valid for QL and QR but
not valid for y∗. The inequality fLNy ≤ fLdL is valid for QL and the inequality
fRNy ≤ fRdR is valid for QR. The corresponding disjunctive inequality (see,
e.g., [24]) is the inequality

fLNy+c(n)y(n) ≤ δ, where c(n) = fLdL−fRdR and δ = (β+1)fLdL−βfRdR.
(8)

The polytopes QL and QR are defined by the systems

y(n) = β
N y + v y(n) ≤ d

and
y(n) = β + 1

N y + v y(n) ≤ d
(9)

respectively.
Let fL,0 be the number c(n) − fLv. Then the inequality (8) can be derived

from the system defining QL with the weights (fL,0, fL). Notice that, if y∗ can
be separated from QI , then fL,0 must be positive. This is because y∗ violates
(8) and satisfies the constraints (9) on the left, where the equality y(n) = β in
the first line is replaced with y(n) ≥ β. Let fR,0 be the number c(n) − fRv.
Then the inequality (8) can be derived from the system defining QR with the
weights (fR,0, fR). Notice that, if y∗ can be separated from QI , then fR,0 must
be negative.

A negative cycle in a graph with m edges and n nodes can be found in time
O(m n), see, e.g. [1]. Translated back to the original space and to the polyhedron
P this gives the following theorem.

Theorem 3. The separation problem for PI can be solved in time O(m n).
Moreover, if x∗ ∈ P and x∗ �∈ PI one can compute in O(m n) a split cut c x ≤ δ
which is valid for PI and separates x∗ from PI together with a negative integer
fR,0, a positive integer fL,0 and a vector fL, fR, which is the incidence vector of
a simple negative cycle of the directed graph D = (U,A) with edge-node incidence
matrix and weights as in (7), such that c x ≤ δ is derived with from the systems

1x ≤ β
Ax ≤ b
−x ≤ 0.

and
−1x ≤ −(β + 1)
Ax ≤ b
−x ≤ 0,

(10)

with the weights fL,0, fL and |fR,0|, fR respectively.

The above theorem gives an explicit derivation of the separating hyperplane as
a split cut of P . We have the following corollary.

Corollary 1. The integer hull PI is the split closure of P .
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4 The Facets of PI for the Case b = α · 1

In this section we study the facets of PI , where P = {x ∈ R
n | Ax ≤ b, x ≥ 0},

where A is a circular ones matrix and b is an integer vector of the form α1, α ∈ N.
For this, we actually inspect how the facets of the transformed polytope Q
described in Section 3 are derived from the systems (9) and apply this derivation
to the original system. It will turn out that the facet normal-vectors of PI have
only two integer coefficients, which are in addition consecutive. Since the stable
set polytope of a circular interval graph is defined by such a system with α = 1,
we can later instantiate the results of this section to this special case. We can
assume that the rows of A are inclusion-wise maximal.

Let F be a facet of QI and let y∗ be in the relative interior of F . This facet
F is generated by the unique inequality (8), which corresponds to a simple cycle
of (6) of weight 0. Furthermore assume that F is not induced by an inequality
y(n) ≤ γ for some γ ∈ Z. Since F is a facet of the convex hull of integer points
of two consecutive slices, we can assume that y∗(n) = β + 1/2 and thus that
µ = 1/2 in (6). This allows us to rewrite the objective function of problem (6)
as follows:

min(s∗ + 1
2v) fL + (s∗ − 1

2v) fR (11)

where s∗ is the slack vector

s∗ =
(

α1
0

)
− By∗ =

(
α1
0

)
−

(
A
−I

)
x∗ ≥ 0. (12)

The point x∗ in (12) is x∗ = T y∗. Notice that x∗ satisfies the system Ax ≤ α1.
Furthermore, we are interested in the facets of QI which are not represented

by the system B y ≤ d. If F is such a facet, then one can translate y∗ away from
QI , without changing y∗(n) = β +1/2, such that y∗ /∈ QI and By∗ ≤ d with the
property that the facet we are considering is the unique inequality (8), where
fL, fR is a simple negative cycle in the graph D = (U,A).

In the following we denote U = {1, . . . , n}, where node i corresponds to the
i-th column of the matrix M in (7). Notice that A partitions in two classes of arcs
AL and AR. The arcs AR are simply the reverse of the arcs AL.
AL consists of two sets of arcs SL and TL, where SL is the set of arcs asso-
ciated with inequalities Ax ≤ α1 and TL are the arcs stemming from the lower
bounds x ≥ 0. Likewise AR can be partitioned into SR and TR. In other words,
if we look at the arc-node incidence matrix M in (7), the rows of M appear in
the order SL,TL, SR,TR.

In particular, let a denote a row vector of A. Since A is a circular ones
matrix one has a x ≤ α ≡ ∑p

h=0 x(i + h) ≤ α for some suitable i and p, where
computation is modulo n, so xn ≡ x0, xn+1 ≡ x1, etc. It is straightforward to
see that a x ≤ α generates the arcs (i + p, i − 1) ∈ SL and (i − 1, i + p) ∈ SR of
A, see Figure 1. The weights of the two arcs coincide, if n /∈ {i, i + 1, . . . , i + p}
and is exactly the slack α − ∑p

h=0 x∗(i + h) in this case. Otherwise, the weight
of the arc (i + p, i − 1) is α − ∑p

h=0 x∗(i + h) + 1/2 and the weight of the arc
(i − 1, i + p) is α − ∑p

h=0 x∗(i + h) − 1/2.

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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On the other hand, a lower bound −xi ≤ 0 generates the two arcs (i− 1, i) ∈
TL and (i, i − 1) ∈ TR. The weight of both arcs is equal to x∗(i), if i �= n. If
i = n, the arc (n − 1, n) ∈ TL has weight x∗(n) − 1/2 and (n, n − 1) ∈ TR has
weight x∗(n) + 1/2.

Since the slacks are non-negative, the arcs whose cost is equal to the corre-
sponding slack minus 1

2 are the only candidates to have a negative cost. We call
those light arcs. Consequently we call those arcs whose cost is equal to the slack
plus 1

2 heavy. Observe that the light arcs belong to SR ∪ {(n − 1, n)}.
Lemma 3. Let C be a simple negative cycle in D, then the following holds:

(a) C contains strictly more light arcs than heavy ones.
(b) An arc of C in SL (TL) cannot be immediately followed or preceded by an

arc in SR (TR).
(c) The cycle C contains at least one arc of SR or contains no arc of SL ∪ SR.

Proof. (a) follows from the fact that the slacks are nonnegative. (b) follows from
our assumption that the rows of the matrix A are maximal and that C is simple.

To prove (c) suppose that the contrary holds. It follows that (n − 1, n) is in
C, because it is the only light arc not in SR. We must reach n − 1 on the cycle
without using heavy arcs.

Each arc in SL with starting node n is heavy. Thus (n − 1, n) is followed by
(n, 1) ∈ TL. Suppose that (n−1, n) is followed by a sequence of arcs in TL leading
to i and let (i, j) /∈ TL be the arc which follows this sequence. It follows from
(b) that (i, j) /∈ TR and thus that (i, j) ∈ SL. Since (i, j) cannot be heavy, we
have 1 ≤ j < i < n. This is a contradiction to the fact that C is simple, since we
have a sub-cycle contained in C, defined by (i, j) and (j, j + 1), . . . , (i− 1, i). ��
Lemma 4. If there exists a simple cycle C of D with negative cost, then there
exists a simple cycle C′ of D with negative cost that does not contain any arc
from SL.

i
i + p

i − 1

l
l − 1

Fig. 1. The incidence vector of a row of A consists of the nodes{i, i+1, . . . , i+p} which
are consecutive on the cycle in clockwise order. Its corresponding arc in SL is the arc
(i + p, i − 1). The arc (l − 1, l) in TL corresponds to the lower bound x(l) ≥ 0
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ki − 1 j − 1 l

A B C

(a)

ki − 1 j − 1 l

A B C

(b)

Fig. 2. (a) depicts an arc (k, i− 1) ∈ SL, followed by arcs in TL and the arc (j − 1, l) ∈
SR. (b) depicts the situation, where the intermediate arcs are in TR

Proof. Suppose that C also contains an arc from the set SL. We know from
Lemma 3 that the cycle C contains at least one arc of SR. Lemma 3 implies that
C has an arc in SL, followed by arcs in TL or TR but not both, followed by an
arc in SR. We first consider the case that the intermediate arcs are all in TL.

This situation is depicted in Figure 2, (a). The arc in SL is (k, i− 1). This is
followed by the arcs (i− 1, i), . . . , (i− 1, j − 1) in TL and the arc (j − 1, l) in SR.
Let this be the path P1. We now show that we can replace this path with the
path P2 = (k, k+1), . . . , (l−1, l) consisting of arcs in TL. We proceed as follows.
First we show that the weight of this path is at most the weight of the original
path, where we ignore the addition of ±1/2 to the arc-weights. Let light(P) and
heavy(P) be the number of light and heavy edges in a path P, respectively. We
then show that light(P2) − heavy(P2) = light(P1) − heavy(P1), from which we
can conclude the claim in this case.

Consider the set of indices A = {i, . . . , j − 1}, B = {j, . . . , k} and C =
{k + 1, . . . , l} and the numbers A =

∑
µ∈A x∗(µ), B =

∑
µ∈B x∗(µ) and C =∑

µ∈C x∗(µ) . Ignoring the eventual addition of ±1/2 to the edge weights, we
have that the weight of P2 is C and that of P1 is α− (A+B)+A+α− (B +C)
and suppose that this is less than C. Then B + C > α which is not possible,
since x∗ satisfies the constraints Ax ≤ α1. Thus, if none of the edges in P1 and
P2 is heavy or light, the weight of P2 is at most the weight of P1.

Suppose now that n ∈ A. Then P1 contains exactly one heavy edge (k, i− 1)
and one light edge (n − 1, n). The path P2 contains no heavy or light edge.
Suppose that n ∈ B, then P1 contains exactly one heavy edge, (k, i− 1) and one

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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light edge (j − 1, l). P2 does not contain a heavy or light edge. If n ∈ C, then
P1 contains exactly one light edge (j − 1, l) and no heavy edge. P2 also contains
exactly one light edge (n − 1, n). This concludes the claim for the case that an
arc of SL is followed by arcs of TL and an arc of SR.

The case, where the intermediate arcs belong to TR is depicted in Figure 2,
(b). The assertion follows by a similar argument. ��

Combining Theorem 3 with the above lemma we obtain the following
theorem.

Theorem 4. Let P = {x ∈ R
n | Ax ≤ α1, x ≥ 0} be a polyhedron, where

A ∈ {0, 1}m×n is a circular ones matrix and α ∈ N a positive integer. A facet of
PI is of the form

a
∑

v∈T

x(v) + (a − 1)
∑

v/∈T

x(v) ≤ a β, (13)

where T ⊆ {1, . . . , n} and a, β ∈ N.

Proof. Theorem 3 implies that a facet which is not induced by Ax ≤ α1, x ≥ 0
or 1x ≤ γ is a nonnegative integer combination of the system on the left in (10)
with nonnegative weights fL,0, fL. Lemma 4 implies that fL can be chosen such
that the only nonzero (+1) entries of fL are corresponding to lower bounds
−x(v) ≤ 0. The theorem thus follows with a = f0,L and T set to those variables,
whose lower bound inequality does not appear in the derivation. ��

5 The Solution to Ben Rebea’s Conjecture

Let G be a circular interval graph and let KI the family of cliques stemming from
the intervals in the definition of G (see Section 2). Then QSTAB(G) = {x ∈
Rn | Ax ≤ 1, x ≥ 0} where the 0/1 matrix A, corresponding to the cliques KI ,
has the circular ones property. Theorem 4 implies that any facet of STAB(G)
is of the form

a
∑

v∈T

x(v) + (a − 1)
∑

v �∈T

x(v) ≤ a · β (14)

We now show that a facet, which is not induced by an inequality of Ax ≤
1, x ≥ 0 is induced by a clique family inequality associated with some set of
cliques F ⊆ KI and some integer p. Recall from Theorem 3 that any facet of
this kind can be derived from the system

−1x ≤ −(β + 1)
Ax ≤ 1
−x ≤ 0,

(15)

with weights |fR,0|, fR, where fR,0 is a negative integer while fR is a 0-1 vector. A
root of F is a stable set, whose characteristic vector belongs to F . In particular,
we have that the multiplier fR(v) associated with a lower bound −x(v) ≤ 0 must
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be 0 if v belongs to a root of size β + 1. If v does not belong to a root of size β
or to a root of size β + 1, then the facet is induced by x(v) ≥ 0. Thus if v /∈ T ,
then v belongs to a root of size β + 1.

Let F = {K ∈ KI | fR(K) �= 0} and p = a + |fR,0|. The multiplier |fR,0|
must satisfy

−|fR,0| + |{K ∈ F | v ∈ K}| = a − 1 ∀v �∈ T
−|fR,0| + |{K ∈ F | v ∈ K}| = a ∀v ∈ T, v is in a root of size β + 1
−|fR,0| + |{K ∈ F | v ∈ K}| ≥ a ∀v ∈ T, v is not in a root of size β + 1

−|fR,0|(β + 1) + |F| = aβ

Observe that |F| = (a + |fR,0|)β + |fR,0| and therefore r = |F| mod p = |fR,0|.
Moreover, any vertex not in T belongs to exactly p − 1 cliques from F , while
each vertex in T belongs to at least p cliques from F . Therefore, inequality (14)
is the clique family inequality associated with F and p. We may therefore state
the following theorem.

Theorem 5. Let G be a circular interval graph. Then any facet of STAB(G),
which is not induced by an inequality of the system Ax ≤ 1, x ≥ 0, is a clique
family inequality associated with some F and p such that |F| mod p �= 0.

If we combine this result with Theorem 1, Theorem 2 and we recall that
Edmonds’ inequalities are also clique family inequalities associated with |F| odd
and p = 2, we obtain the following corollary.

Corollary 2. Let G be a quasi-line graph. Any non-trivial facet of STAB(G) is
a clique family inequality associated with some F and p such that |F| mod p �= 0.

We may assume, without loss of generality, that the cliques in the family
F are maximal [25]. A last lemma is the missing brick to the solution of Ben
Rebea’s conjecture.

Lemma 5. Let G be a quasi-line graph and (F , p) a pair such that

(p − r − 1)
∑

v∈Vp−1(F)

x(v) + (p − r)
∑

v∈V≥p(F)

x(v) ≤ (p − r)
⌊ |F|

p

⌋
(16)

is a facet of STAB(G). If |F| < 2p, then the inequality (16) is a clique inequality.

We may therefore state our main result:

Theorem 6. Ben Rebea’s conjecture holds true.
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