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Abstract—This paper addresses turbo-encoder design for
coding with high spectral efficiency using parallel concatenated
trellis-coded modulation and symbol interleaving. The turbo-en-
coder design involves the constituent encoder design and the
interleaver design. The constituent encoders are optimized for
symbol-wise effective free distance, and each has an infinite
symbol-wise impulse response. We identify the canonical struc-
tures for the constituent encoder search space. In many cases
of practical interest, the optimal structure for these constituent
encoders connects the memory elements in a single row. This
single row generally applies to turbo-code constituent encoders for
parallel concatenation and is not restricted to symbol interleaving.
To lower the error floor, a new semi-random interleaver design
criteria and a construction method extends the spread-interleaver
concept introduced by Divsalar and Pollara. Simulation results
show that the proposed system employing symbol interleaving can
converge at a lower signal-to-noise ratio than previously reported
systems. We report simulation results between 0.5 and 0.6 dB from
constrained capacity for rates of 2 and 4 bits/s/Hz.

Index Terms—Concatenated coding, convolutional codes, inter-
leaved coding, trellis-coded modulation, turbo codes.

I. INTRODUCTION

T HIS paper presents a method for parallel concatenated
trellis-coded modulation (PCTCM) with constituent

encoders of rate , . The binary inputs are one
symbol over the extension field . Two main approaches
are proposed in the literature for the turbo-encoder structure,
one employing bit interleaving by Benedettoet al. [1] and the
other employing symbol interleaving by Robertson and Wörz
[2], [3].
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For bit interleaving, bit interleavers are used to keep the
bit streams separate. The first constituent encoder in [1], for
even, has half of the input bits as systematic outputs and a
parity output. The second constituent encoder is the same as the
first, but the other half of the input bits become systematic.
Thus, the overall turbo encoder is systematic.

For symbol interleaving as described in [2] and [3] to have
the overall turbo encoder systematic, the interleaver maps even
symbol positions to even symbol positions and odd ones to odd.
The output of the second encoder is deinterleaved and the output
symbols from each encoder are punctured alternatively. The
odd-to-odd and even-to-even interleaving was first described by
Barbulescu and Pietrobon in [4], and is equivalent to using two
separate symbol interleavers of half the length, one for the odd
positions and another for the even ones. This additional struc-
ture of the symbol interleaver reduces the interleaving gain, as
is also observed by Ogiwara and Yano in [5]. Moreover, punc-
turing complicates the design of the constituent encoders.

Our proposed approach combines the turbo-encoder ap-
proach of [1] with a symbol interleaver. Each constituent
encoder, for even, has systematic outputs and
parity outputs. The total output bits of the
encoder are mapped to one constellation point. The upper
constituent encoder has as systematic outputs themost
significant (MSB) input bits while the lower constituent en-
coder has as systematic outputs the least significant (LSB)
input bits. Thus, the systematic bits are evenly divided between
the constituent encoders without puncturing or interleaver
constraints as in [2] (in [5] the interleaver constraints are
removed but puncturing is still employed). Fig. 1 shows an
example of the proposed parallel turbo-code structure that
employs 16QAM modulation in connection with rate
constituent encoders, each with systematic and
parity outputs. Fig. 2 shows another example that employs
8PSK (phase-shift keying) modulation in connection with rate

constituent encoders, each with systematic and
parity outputs. The generalization to encoders using

-point constellations is straightforward whenis even.
Generally, using a symbol interleaver is equivalent to using
bit interleavers that implement the same interleaving pattern.

In contrast, interleaving the bits separately allows spreading
of the components of one error event totimes more error
events, typically accumulating more distance. Thus, a symbol
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Fig. 1. Two-bits/s/Hz PCTCM turbo code with rate 4/4 constituent encoders.

Fig. 2. Two-bits/s/Hz PCTCM turbo code with rate 4/3 constituent encoders.

interleaver imposes a structure that reduces the interleaver gain
of a turbo encoder. Despite the loss in interleaver gain, we are
motivated to use symbol interleaving because it imposes fewer
assumptions on iterative decoding, as discussed below.

Our iterative decoder implements the soft-input soft-output
(SISO) equations appearing in [6], with input bit probabilities
substituted by input symbol probabilities. Let be the ob-
served sequence at the SISO module corresponding to the upper
constituent encoder, and the input symbols sequence
we try to estimate. The iterative turbo decoder uses the assump-
tion that the exchanged input symbol probabilities are indepen-
dent. This is not true because they are conditioned on the ob-
served output sequence

(1)

Using bit interleaving leads to the additional assumption that the
bits within each symbol are also independent. Again,
this is not true

(2)

Symbol interleaving avoids this additional assumption of inde-
pendence [the assumption of equality in (2)].

This paper addresses the design of our proposed system for
high spectral efficiency, and investigates what benefits it offers
as compared to the previously proposed approaches in the lit-
erature. The turbo-encoder design consists of two components,
the constituent encoder design and the interleaver design, which
are examined in Sections II and III, respectively. More specifi-
cally, Section II derives the optimization criteria for the PCTCM
constituent encoders and extends the effective distance bounds
to symbol-wise inputs. The appropriate encoder structure for
turbo-code constituent encoders is identified, and applied to the
special case of PCTCM. Tables of codes optimized for effective
free distance are provided. Section III addresses the interleaver
design. We propose new semi-random interleaver design criteria
and a construction method that is an extension of the spread in-
terleaver concept introduced by Divsalar and Pollara. The inter-
leaver design applies to both bit and symbol interleaving. Sec-
tion IV presents simulation results, and finally Section V con-
cludes the paper.

II. CONSTITUENT ENCODERDESIGN

The use of a symbol interleaver implies that the constituent
encoders should be optimized for “symbol-wise effective free
distance.” This term refers to the minimum output distance
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when the input symbol sequence has exactly two symbols
different from zero. The usual notion of effective free distance
refers to the minimum output distance for a binary input
Hamming distance of two.

In the rest of this paper, we use several variations of effec-
tive free distance. The superscript refers to the output distance,
Hamming or Euclidean . The number in the subscript
denotes the input weight, whether bit-wise or symbol-wise

. We always imply squared Euclidean distance. For example,
stands for the output squared Euclidean distance when the

symbol-wise input weight is two.

A. Desired Distance Properties

An analytical upper bound to the bit-error probability of turbo
codes by Benedetto and Montorsi in [7] identified effective free
distance as a key parameter. A similar analysis still holds when
the input of the constituent encoders is over , with the
slight modification that the input Hamming weight now refers
to Hamming weight in the extension Galois field . Re-
peating the analysis for symbol-wise input along the lines of [7]
(we do not repeat the exact derivation here), two main guidelines
for the design of constituent encoders are derived as follows.

• For a given symbol-interleaver length, to achieve in-
terleaver gain, the constituent convolutional encoders
must have infinite output weight when the input symbol
sequence contains only one symbol different than zero
( ).

• Among the encoders with , the ones with the best
symbol effective distance (Hamming or Euclidean
depending on the application) optimize the asymptotic
turbo-code performance.

The first guideline equivalently states that there should be no
parallel transitions in the trellis diagram, which was also pre-
sented in [2].

B. Distance Upper Bounds

Consider convolutional codes with binary inputs,
memory elements, and parity (not systematic) outputs. As-
sume that , i.e., the impulse response corresponding
to every one of the binary inputs is infinite. Divsalaret al.
presented in [8] the following bound on the effective free
distance that is a key design metric for constituent encoders
used with bit interleaving:

(3)

where denotes the largest integer smaller than, and
denotes the smallest integer larger than.

For symbol-interleaved PCTCM, it is interesting to examine
the bound. An upper bound to , when , with
parity (not systematic) outputs andbinary inputs, is given by
substituting with in (3)

(4)

The proof follows along the same lines as the proof of (3)
given in [9]. The main point is as follows. If the feedback poly-

nomial of a convolutional encoder is primitive, then the state di-
agram has one loop with zero inputs and nonzero outputs. This
loop includes all the nonzero states. An input sequence
with two nonzero symbols causes the encoder to enter the loop
(with the first nonzero input) and exit it (with the second nonzero
input). The output weight of any output parity bit going around
the whole loop is . If binary inputs exist, there areways
to enter and leave the loop via single input bits, and thus the min-
imum output weight of a single parity output, along the part of
the loop that it travels before it exits, can be in the best case,

. Considering symbol inputs, there are instead
ways to join/exit this loop, and thus the minimum output weight
of a single parity bit can be, in the best case, .
This reasoning leads to the second argument of the minimiza-
tion in (4). In general, inputs should be taken into account
instead of , which can be similarly applied to the bit-wise proof
in [8] for the first argument and for nonprimitive feedback poly-
nomials.

The upper bound (4) indicates that there is less symbol-wise
effective free distance available than bit-wise, as expected.
Indeed, grouping any convolutional code’s error events
symbol-wise instead of bit-wise can only reduce the effective
distance.

C. Range of Encoders to Search

Without concatenation, searching for good trellis codes that
maximize free distance requires examining only one code
within each group of range-equivalent encoders. Two encoders
are calledrange-equivalentif they have the same set of possible
output sequences [10] (Forney’s notion of equivalence). So,
it is sufficient to restrict attention within a set of canonical
encoders, which are identified by Forney [11]. For turbo
codes, the mapping from input to output sequences plays an
important role. Range-equivalent codes can have quite different
performance. For example, feedback encoders always have a
range-equivalent feedforward encoder which would perform
poorly with parallel concatenation.

Define asinput-Hamming-weight equivalentencoders that
map the same input weight error events to the same output
distance. If two encoders are not input-Hamming-weight
equivalent, we call them input-Hamming-weight distinct.
When searching for constituent encoders that maximize ef-
fective distance, it is sufficient to examine all codes that are
input-Hamming-weight distinct to each other.

We now examine the structural properties of encoders that
should be included in this search. A general description of a
convolutional encoder with inputs, outputs, and memory
elements is given by the state-space equations over

(5)

where is the state vector of dimension , is the output
vector of dimension , is the input vector of dimension

, matrix has dimension , matrix has dimension
, and matrix has dimension .

Matrix determines the way the memory elements are
connected. For a feedback encoder,is the companion matrix
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of the encoder’s feedback polynomial. The companion matrix
of a polynomial is
defined [12] as

(6)

For example, the upper constituent encoder in Fig. 1 has feed-
back polynomial which corresponds to
the matrix in the encoders state-space description

(7)

(8)

Consider the state vector similarity transformation ,
where is a nonsingular matrix. Under this transformation, the
encoder described by the linear system

(9)

has the same generator matrix [13] as (5)

(10)

where is the identity matrix. Moreover, an invertible transfor-
mation maps the zero state to the zero state, and thus the en-
coders have the same mapping from input error events to output
error events. The matrix , with nonsingular, is called
similar to the matrix . In an exhaustive search for encoders

Fig. 3. An encoder with two rows of memory elements.

which are input-Hamming-weight distinct, it is redundant to ex-
amine similar matrices . For example, it is redundant to ex-
amine the matrix that is similar to matrix

(11)

The range of matrices to consider can be found from the ra-
tional form theorem presented in Horn and Johnson [12, p. 154]
and the references therein. This theorem states that any matrix
over a field ( in our case) is similar over to
a matrix that may be written as the direct sum ofcompanion
matrices, i.e., to a block diagonal matrix withblock elements
each having the form of (6). This block diagonal matrix is the
same as the matrix of an encoder with rows of memory
elements.

In other words, this theorem states that for any convolutional
encoder with memory elements, no matter how these memory
elements are connected, there exists an input-Hamming-weight
equivalent encoder with the memory elements connected in
rows for some . The following theorem helps to further refine
the encoder structures of interest. The proof is provided in the
Appendix.

Theorem 1: Consider a convolutional encoder withinputs,
parity outputs, and memory elements. For all (, , )

values such that

(12)

the bound in (3) cannot be achieved if thememory elements
are connected in multiple “disconnected” memory rows, that is,
multiple distinct memory rows with no common inputs.

Disconnected memory rows are described by block diagonal
matrices and , so the state equation in (5) can be decom-
posed into a separate state equation for each memory row. Fig. 3
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shows an example of an encoder with two disconnected memory
rows, described by the state equation

(13)

In an exhaustive search, if the memory elements connected in a
single row give a code with that achieves the upper bound,
there is no need to expand the search to multiple rows. This is
very often the case in practice. The rational form theorem and
Theorem 1 usually result in a small number of matricesto
examine. However, for each matrix all matrices , , and
still have to be examined.

The input vector transformation for any matrix
that performs row permutation also leads to input-Hamming-

weight equivalent encoders. Indeed, the corresponding gener-
ator matrices and still map the same input weight
error events to the same output distance. Thus, in an exhaus-
tive search there is no need to examine both sets of matrices
( , ) and ( , ). For example, keep only the matrices
where each row (interpreted as a binary number) is greater than
the previous row, coupled with all possible matrices. Simi-
larly, output Hamming weight is not affected by permuting the

outputs, which in this case reduces the number of matrices
to examine. To describe an encoder we give in octal notation
the feedback polynomial , the rows of matrix

, the columns of matrix , and the columns
of matrix that correspond to the parity out-

puts. For example, the upper constituent encoder in Fig. 1 with
state-space equations (7), (8) is described as

Application to Bit Interleaving:Table I provides code
fragments with inputs, parity outputs, and memory
elements optimized for and identified through exhaustive
search using our proposed structure. Such tables are useful for
bit-interleaving coupled with binary PSK or 4PSK modulation,
and outperform in terms of similar code tables provided
in [14]. Benedettoet al. [15] use a group theoretic approach
to propose a different encoder structure and provide encoder
tables that are equally good (but not better) in terms ofthan
the codes identified in Table I.

Table I includes for each code fragment the upper bound on
the effective Hamming distance , the distance, the
distance, and the free distance denoted by, with the number
of nearest neighbors in parentheses. The code fragments can be
made systematic by addingsystematic outputs. So, although
their free distance might be zero, the free distance of the com-
plete code will be positive because of the additional systematic

TABLE I
CODE FRAGMENTS OPTIMIZED FORd

outputs. Codes noted with an * have repeated outputs and do not
perform well in simulations [14].

Application to Symbol Interleaving:For PCTCM, we are in-
terested in constituent encoders withparity
and systematic outputs optimized for . Theorem 1 can
be extended to symbol-wise inputs by replacingwith .
Theorem 1 and Section II-B refer to output Hamming distance.
For the simulations, we want to maximize the output Euclidean
distance . Although there is no monotone relation between
Hamming and Euclidean distance, they are closely related. For
example, for 16QAM and Gray labeling [16], it holds that

(14)

Motivated by the previous arguments, and because completely
exhaustive searches are beyond our computational capabilities,
in Section IV, we restrict our attention to encoders with memory
elements connected in a single row.

For symbol interleaving, to have , the rows
of matrix of dimension have to be linearly

independent, i.e., matrix has to be full-rank and .
Moreover, the input vector transformation for any

nonsingular matrix does not affect thesymbol-wise
input-Hamming-weight. So there is no need to examine both
sets of matrices, and , for
any nonsingular .

In the special case where , the rows/columns of matrix
form a basis. Any other basis is related with a linear transfor-

mation to it. So, in an exhaustive search, it is sufficient to use
any one full-rank matrix , since any other full-rank matrix
is related through a linear transformationto it, coupled with
all possible matrices .

III. I NTERLEAVER DESIGN

The turbo-encoder performance depends upon both the con-
stituent encoders and the interleaver it employs. This section
addresses the interleaver design, which can be applied to both
bit and symbol interleaving.
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TABLE II
SQUARED EUCLIDEAN DISTANCE FORERROREVENTS. ROW W: SYMBOL-WISE INPUT WEIGHT. COLUMN L: SYMBOL-WISE ERROREVENT LENGTH

(a) (b)

(c) (d)

Fig. 4. Small input weight error events.

An interleaver of length is completely described by a mutu-
ally exclusive and collectively exhaustive listing of the integers
from 1 to . Define to be the integer in theth position in
the list. The input symbol in positionbefore interleaving is in
position after interleaving.

A. Spread Interleaver

The role of the interleaver is to interconnect the error events
of the constituent encoders in such a way that the total output
weight of a turbo-encoder codeword accumulates distance from
as many distinct error events as possible from each constituent
encoder.

A commonly used example is that when a constituent encoder
has a single error event of input weight one, it unavoidably maps
to a single error event of weight one in the second constituent en-
coder. This produces a very small total output weight, unless the
constituent encoders have infinite impulse responses. A second
way to have a small number of interconnected error events is de-
picted in Fig. 4(a) where component symbols of one error event
in the upper encoder become part of the same error event in the
second encoder. This case can be avoided by using the spread
interleaver introduced by Divsalar and Pollara. The spread inter-
leaver is described in [17] as a semi-random interleaver based on
the random selection without replacement ofintegers from 1
to under the following constraint.

Constraint 1: The th randomly selected integer must
be rejected if there exists , such that

(15)

This constraint guarantees that if two symbols, are within
distance in the upper constituent encoder, they cannot be
mapped to distance less thanin the lower constituent encoder.

B. Extended Spread Interleaver

An extension of the spread interleaver concept considers mul-
tiple error events in the upper encoder. As an example, Fig. 4(b)
depicts two error events of the upper encoder that interchange

their component symbols, and thus the weight accumulation
stops in two steps. To avoid this situation, we define two more
parameters and and impose on the construction of the
spread interleaver an additional constraint. Again, randomly se-
lect without replacement integers from 1 to, and if the th
selection satisfies Constraint 1 described previously, check
if the following condition is also satisfied.

Constraint 2: The th randomly selected integer must
be rejected if there exist , such that

(16)

This constraint guarantees that two relatively close compo-
nent symbols and in the upper encoder do not have
near and near in the lower encoder, with and
near each other in the upper encoder. Fig. 4(b) and (c) illustrate
error events that are avoided.

This procedure can be extended to three error events in the
upper encoder. Define parameters and and impose on
the semi-random interleaver the following additional condition.

Constraint 3: The th randomly selected integer must
be rejected if there exist , such that

(17)

Fig. 4(d) illustrates an example of an avoided error event. Ex-
tension to more than three error events is usually not of interest,
because it leads to increased output weight that does not deter-
mine the free distance.

To motivate the introduction of Constraints 2 and 3, con-
sider the following example for a symbol-interleaved system
with constituent encoders of rate 4/3 employing 8PSK. The el-
ement ( , ) of Table II is the minimum squared Euclidean dis-
tance, associated with a constituent encoder error event with
symbol-wise input Hamming weight and symbol-wise length
. Observe that when Constraint 1 is satisfied with

, the minimum squared Euclidean distance that can be
associated with the error event depicted in Fig. 4(a) is 4.10
1.17 5.27 (let the upper error event have length 11 and the
lower 2). For the case depicted in Fig. 4(b) though, if the con-
stituent error events have length 2 or 3, the associated squared
Euclidean distance is . For the case depicted in
Fig. 4(c), the minimum squared Euclidean distance is 60.59

3.54. Thus, these error events dominate the performance and
should be mitigated before further increasingand . Simi-
larly, the minimum squared Euclidean distance associated with
the error event depicted in Fig. 4(d) is 61.17 7.02, so this
error event also determines the performance forand larger
than 16.
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The interleaver performance is closely related to the con-
stituent encoders that are employed. A constituent encoder,
to take advantage of the interleaver structure, must have the
following important property: the output weight of the error
events with small input weight must increase with the error
event length.

C. Construction Procedure

A uniform interleaver of length is created by randomly se-
lecting without replacement integers from 1 to with equal
probability. For a semi-random interleaver, the randomly se-
lected integers need to satisfy a set of imposed constraints. This
section presents a technique for constructing such interleavers.

The generation of a length interleaver consists of steps,
where each step selects an integer for the respective position. At
the th step of the interleaver generation, the interleaver contains

assigned numbers and there exist unassigned
numbers. Randomly select one of the unassigned
numbers with equal probability, for example, number. Check
if placing number at interleaver position violates any of the
imposed constraints. If it does not violate any constraints, then
continue with the next step . If it does violate a constraint,
try to place in between two other previously assigned indices.
Uniformly choose one of thecandidate positions and check if
placing there violates any of the constraints. Continue until
either all previously assigned indices have been examined or a
suitable position is found. If there does not exist an appropriate
position, repeat for a number selected among the unassigned and
not already examined numbers , .

This procedure does not guarantee that it will identify a semi-
random interleaver that meets the constraints, even if such an in-
terleaver exists, but generally gives good results. Whether such
an interleaver exists depends upon the interleaver length and the
constraint parameter values.

IV. SIMULATION RESULTS

This section provides simulation results for 2 bits/s/Hz em-
ploying 16QAM and 8PSK and 4 bits/s/Hz employing 64QAM

2 8 PAM.
Table III contains in octal notation codes identified through

computer search, and optimized for normalized with the
edge profile optimal [10], [16] constellation labelings illustrated
in Fig. 5. Our search over all interesting constituent convolu-
tional encoders mapped onto the chosen labeling, in fact, pro-
duces all interesting constituent codes that could be found with
any other labeling related to the chosen one by a binary linear
transformation. If two constellations are related with a linear
transformation, an exhaustive search would lead to the same en-
coders with the linear transformation applied to their output. The
set of labelings related to each other with a linear transformation
is broad enough to include all common labelings. For example,
the Gray, natural, and reordered 8PSK labeling reported in [1]
are included in such a set.

Each code has the MSB inputs as systematic outputs and
parity outputs. To describe a code, we give in octal notation

the feedback polynomial , the rows of matrix
, the columns of matrix , and the columns

TABLE III
CODESOPTIMIZED FORd

Fig. 5. Labeling for the constellations used in the simulations.

of matrix that correspond to theparity outputs
(for an example, see Section II). The simulated codes are shown
in boldface. The search identified a large number of codes with
the same value of .

The constituent encoders of rate greater than one (4/3, for ex-
ample) are catastrophic, but the overall turbo encoder is not.
The upper constituent encoder has as systematic bits the
MSB input bits, so in the catastrophic loops (i.e., nonzero-input,
zero-output loops) only the LSB bits may be nonzero. Sim-
ilarly the lower constituent encoder has as systematic bits the

LSB input bits so in a catastrophic loop only the MSB
input bits may be nonzero. Because the input symbols for the
upper and lower constituent encoder catastrophic loops are dif-
ferent, the overall turbo encoder does not have an error event that
involves catastrophic loops in both the constituent encoders, so
the overall turbo encoder is not catastrophic. Each constituent
encoder individually implies no coding gain; the coding gain of
our system is provided by connecting two constituent encoders
in the proposed turbo-encoder structure.

The interleavers used in the simulations are uniform random
or semi-random, as specified in each case. To describe an inter-
leaver we give the constraint parameters in the following order:
( , , ), where , , and

. A uniform random interleaver can be described by
the spread parameters (0, 0, 0).

The performance is compared against the constrained ca-
pacity, which is the mutual information between the channel’s
input drawn uniformly from a finite constellation and the
channel’s output [18].

A. Two-bits/s/Hz PCTCM with 16QAM

For 2-bits/s/Hz PCTCM with 16QAM, the constituent en-
coders implement 4/4 codes with parity and
systematic outputs, and have memory elements. The
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Fig. 6. Two-bits/s/Hz turbo code employing 16QAM. Capacity= 1:76 dB.
Constrained capacity= 2:1 dB. Interleaver length= 8192 symbols. Input
block size8192� 4 bits.

whole turbo encoder is depicted in Fig. 1. The simulated code
is in the first row of Table III.

For interleaver length 8192 symbols (input block size in bits:
8192 4), the performance is within 0.5 dB of constrained
capacity at BER 10 (Fig. 6) with a semi-random interleaver
(30-0-0). Compared with the bit-interleaved performance
in [19] for 2-bits/s/Hz PCTCM with 16QAM, constituent
encoders with four memory elements, and interleaver length
16 384 (input block size in bits: 16 384 2), the proposed
symbol-interleaved system can converge 0.1 dB earlier with the
same number of decoder iterations, and 0.2 dB earlier with a
few more decoder iterations. The proposed system has an error
floor at around 5 10 which is higher than the error floor in
[19]. This is because the smaller symbol-wise effective distance
leads to a smaller for the symbol-interleaved system and
thus a higher error floor. Convergence at a lower signal-to-noise
ratio (SNR) with increased number of iterations may be useful
for applications such as deep-space communications.

B. Two-bits/s/Hz PCTCM with 8PSK

For 2-bits/s/Hz PCTCM with 8PSK, the constituent encoders
implement a 4/3 code with parity and systematic
outputs and have memory elements. The simulated code
is at the first row of Table III. The turbo encoder is depicted in
Fig. 2.

For interleaver length 2500 symbols (input block size in bits:
2500 4), the performance is within 0.6 dB of constrained ca-
pacity at (Fig. 7). Compared with the symbol-
interleaved system in [2] for interleaver length 5000 symbols
(input block size in bits: 5000 2), 2-bits/s/Hz PCTCM with
8PSK but constituent encoders with memory elements
(which leads to roughly half the decoder complexity), the pro-
posed system can converge up to 0.25 dB earlier. The random

Fig. 7. Two-bits/s/Hz turbo code employing 8PSK. Capacity= 1.76 dB.
Constrained capacity= 2.8 dB. Interleaver length= 2500 symbols. Input
block size 2500� 4 bits.

Fig. 8. Two-bits/s/Hz/ turbo code employing 8PSK. Performance with a (20,
4, 1) interleaver. Interleaver length= 2500 symbols. Input block size 2500� 4
bits.

interleaver causes a high error floor, which can be lowered by
using a more elaborate interleaver. Fig. 8 shows that the inter-
leaver (20, 4, 1) lowers the error floor compared to the random
(0, 0, 0) interleaver.

Fig. 9 shows that by using different constituent encoders a
designer has the option to trade-off convergence at a lower SNR
with a lower error floor. The first encoder can converge 0.1 dB
earlier, while the second encoder has an error floor more than
an order of magnitude lower. The first encoder is the same as
in Fig. 8 with the (20, 4, 1) interleaver. The second encoder
is described by the encoder polynomials in the second row of
Table III, and employs a (20, 5, 0) interleaver.

To identify the second encoder, we observed that in Fig. 8 the
type error events [Fig. 4(b)] determine the free distance. The
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Fig. 9. Two-bits/s/Hz/ turbo code employing 8PSK. The first encoder employs
a (20, 4, 1) interleaver and the second encoder employs a (20, 5, 0). Input block
size 2500� 4 bits.

Fig. 10. Four bits/s/Hz turbo code employing 8PAM. Capacity 5.74 dB.
Constrained Capacity 6.6 dB. Interleaver length 4096 symbols. Input block
size4096 � 4 bits.

highest parameter value interleaver the construction proce-
dure could create for interleaver length 2500 was the (20, 5, 0)
interleaver. We performed a search among all encoders with the
largest value of to find the encoder that achieves the largest
free distance with this interleaver. We additionally required that
the output weight of input weight two error events increases with
the error event length. In other words, we specifically designed
the second encoder to perform well with the (20, 5, 0) inter-
leaver. Fig. 10 shows the block-error rate performance for the
two encoders [20]

For interleaver length 5000 symbols (input block size in bits:
5000 4), the performance is within 0.5 dB of constrained ca-
pacity at BER 10 (Fig. 11) for the first encoder. The inter-

Fig. 11. Two-bits/s/Hz turbo code employing 8PSK. Capacity= 1.76 dB.
Constrained capacity= 2.8 dB. Interleaver length= 5000 symbols. Input block
size 5000� 4 bits.

Fig. 12. Four bits/s/Hz/ turbo code employing 8PAM. Capacity 5.74 dB.
Constrained Capacity 6.6 dB. Interleaver length 4096 symbols. Input block
size4096� 4 bits.

leaver (25, 6, 1) lowers the error floor compared to the random
(0, 0, 0) interleaver.

C. Four-bits/s/Hz PCTCM with PAM 64QAM

For 4-bits/s/Hz PCTCM with PAM 64QAM (Fig. 12),
the constituent encoders implement a 4/3 code with parity
and systematic outputs, and have memory el-
ements. For interleaver length 4096 symbols (input block size
in bits: 4096 4), and (30, 0, 0) interleaver, the performance
at BER 10 is within 0.6 dB of constrained capacity. Com-
pared with the bit-interleaved system performance in [1] for
4-bits/s/Hz PCTCM with 64QAM, four memory elements, in-
terleaver length 4096 symbols (input block size in bits: 4096
4), and (30, 0, 0) interleaver, the proposed symbol-interleaved
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system can converge earlier (e.g., approximately 0.2 dB for 8 it-
erations) but again has a higher error floor at around 510 .

V. CONCLUSIONS

This paper examined a method to achieve high spectral effi-
ciency using symbol-interleaved PCTCM. The turbo-encoder
design consists of two parts, constituent encoder design and
interleaver design. The constituent encoder design determined
the optimization criteria and extended the effective distance
bound to symbol-wise inputs. The rational form theorem shows
that in order to examine all strictly equivalent encoders, it is
sufficient to consider only the canonical memory structures
with rows. In many cases, only encoders with the memory
elements connected in a single row ( ) or with common
inputs can achieve the maximum output effective distance. The
interleaver design extended the spread interleaver design to take
into account multiple error events and proposed a semi-random
interleaver construction method. Simulation results for 2
bits/s/Hz with 16QAM and 4 bits/s/Hz with 64QAM show that
the proposed symbol-interleaved system, as compared to bit
interleaving reported in the literature, can converge at lower
SNR but at the cost of a higher error floor, which is due to a
lower free distance.

APPENDIX

PROOF OFTHEOREM 1

It suffices to show that the use of multiple rows of memories
enforces an upper bound on the effective free distance lower
than the bound in (3).

Assume that the memory elements are connected in
rows with memory elements in row, , and

. Let be the number of inputs in row, ,

, and be the number of outputs from row,
. In the example of Fig. 3, , , ,
, , , , and .

For one memory chain, is bounded by

(18)

So, for the total encoder, it holds that

(19)

To show that the multiple-row upper bound is lower, it suf-
fices to show that it is lower for both the two terms of the min
function in (3).

1) For the second term of the bound, if thememories are
connected in one row

(20)

If the memories are connected inrows

(21)

(22)

2) Similarly, for the first term of the bound, if the memo-
ries are connected in one row

(23)

If the memories are connected inrows

(24)

If it holds that for all possible
and partitions, then (23) and (24), are related by a
strict inequality. However, for any integer, ,
integers , , and integer , it holds
that

(25)

so it suffices that . Similarly, for strict
inequality between (20) and (22), it suffices that

.
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