-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

PISA: PI SOFTWARE ARCHITECTURE FOR INTEGRATED SATELLITE PAYLOAD
CONTROLLERS

F. Pont', R. Siegwart!, D. Akuatse?, O. Moulin?, and R. Vitulli?

'Autonomous Systems Lab, Swiss Federal Institute of Technology, Lausanne, Switzerland, Email:frederic.pont@epfl.ch
2Syderal SA, Neuchatel, Switzerland, Email: daniel.akuatse @syderal.ch
3European Space Agency, ESTEC (TEC-MMA), Noordwijk, The Netherlands

ABSTRACT

With the growing amount of data produced by instru-
ments and the increasing importance of the payload el-
ement that delivers the added value of the missions, a
satellite can be regarded as a distributed system with a
platform integrating all the traditional on-board control
functions (Attitude and Orbit Control and Data Handling
Control) and collaborating with the payload through the
spacecraft bus. In PISA, we investigate tools and meth-
ods to develop a payload controller based on a single em-
bedded computer integrating instrument control software
components developed by several PI teams. A hardware
demonstrator based on PowerPC running RTAI Linux is
also presented.

Key words: Integrated Payload Controller, Software
Framework, Real-time Systems, RTAI Linux.

1. INTRODUCTION

The trend for designing satellites is to embed an ever-
bigger payload component in the on-board system. As a
result, the cost and criticality of the system shifts towards
the payload element that delivers the added value of the
mission. In this context, the role of the platform part of
the satellite is to operate as a dependable carrier of the
value-added embedded in the payload. Hence, a satellite
will have to be regarded as a distributed system with a
platform integrating all the traditional on-board control
functions (Attitude and Orbit Control and Data Handling
Control) and collaborating with the payload through the
spacecraft bus [1].

In order to maximize the total return cumulated during
satellites missions’ lifetime, and as the amount of data
produced by instruments increases faster than the down-
link capacity, the need for increased on-board data pro-
cessing capabilities increases. This means that more in-
telligence and autonomy capabilities must be available, to
provide relevant information rather than large amount of
data to be processed on Earth, for example by executing

on-board data filtering, compression or selection before
transmission.

If the payload offers more services, its complexity in-
evitably increases and the usage of an operating system or
even higher-level structures like software frameworks is
the best solution. New integrated payload controllers will
be based on a single compact computer instead a many
less powerful computers dedicated to controlling a single
instrument [2]. In this integrated approach, the payload
controller will host several software components, each of
them controlling one instrument or sub-instrument, and
each of them potentially being developed and tested by
different teams (PIs). Integrating onto a single embedded
computer software parts produced by different teams is
a complex and challenging task. PISA aims at exploring
tools and methods to facilitate this development, testing
and integration, and to ensure that a robust and flexible
software system can be created to control all instruments
from a single embedded computer.

The remainder of this paper is organized as follows. In
section 2 we present the objectives that have been set for
this project. Section 3 describes in more details the inter-
nals of PISA, including the overall software architecture,
the software parts that compose PISA and the hardware
demonstrator. Section 4 contains the conclusions and out-
look.

2. OBJECTIVES

In this context of new requirements and expectations
for integrated satellite payload controllers, the PI Soft-
ware Architecture (PISA) presented in this paper aims at
proposing new techniques and tools to facilitate the de-
velopment and testing of software components control-
ling instruments, and for integrating and controlling those
software components onto a single embedded computer.

In particular, the following objectives have been defined:

e Facilitate the development and testing of instrument
control software components by PI in a provided de-
velopment environment and testing framework on a

https://core.ac.uk/display/147923229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i PlTeam | i3 Pl Team 2 i PlTeam 3 Pl Team 4 1 g Pl Team 5 :
Caiira L eTems
- Y P () | Development
and Testing
Framework Framework Framework Frameweork Framework Environments
| Linux | | Linux | | Linux | I Linux | | Linux |

' | Desktop | : ‘ | Desktop I ' I Desktop | : ; ' | Desktop I :

Target
Hardware
Platform
Integrating
all Instrument

O O

Payload Controller Software Framework

O

Control
Software

Components

| RTAI Linux Real-Time Operating System

| Embedded Target Hardware Platform |

Figure 1. PISA integration process overview. Instrument control software components are developed and tested by PI
teams, before being integrated onto a single embedded computer by the PISA Integrator.

Linux computer, without access to the target embed-
ded computer. The algorithms developed to control
the instrument shall be used without any modifica-
tion to the source code on the target embedded com-
puter.

e Facilitate the integration of instrument control soft-
ware components provided by PI teams into a real-
time capable software framework onto the target
embedded computer. This integration shall happen
without any modification to the source code pro-
vided by PI teams.

e Ensure robustness of the complete embedded system
to a failure of the single instrument control software
component.

e Provide in-flight component modification capabil-
ities without any effect on other instrument con-
trol software components. The in-flight component
modification process shall support loading the new
version of a component from the Mass Memory, or
via direct download from the Avionics.

e Demonstrate that the proposed solution is able to
manage up to roughly twenty low data rate in-
struments (average between lkb/sec and Skb/sec,
peak up to 50kb/sec) through a CAN bus, and
medium data rate (average between S5kb/sec and
100kb/sec, peak up to 1 Mb/sec) instruments through
a SpaceWire network.

An overview of the PISA concept is represented in fig-
ure 1, with all PI teams developing and testing their own
instrument control software component on legacy Linux

computers, and later handing it to the PISA Integrator for
integration onto a single embedded computer with real-
time capabilities.

The concepts developed in the context of this project
are demonstrated on a PowerPC target embedded com-
puter running RTAI (Real-Time Application Interface)
Linux [3], an extension of the Linux kernel that provides
hard real-time capabilities. Moreover, PISA relies on
GenoM [4], an open-source component-based software
framework used in several robotics research laboratories
on complex mechatronic systems, from indoor mobile
robots to autonomous cars, as well as prototypes of space
exploration rovers.

3. PISA OVERVIEW

3.1. Software Architecture

The PI software architecture will allow PI teams (devel-
opers) to develop and test software components compat-
ible with the PISA software framework. Each software
component will be responsible for controlling a specific
instrument or sub-instrument. The role of the PISA Inte-
grator is to receive the software components produced by
all PI teams and to integrate them into a software sys-
tem to running on the target embedded computer. An
overview of this process is shown in figure 1.

The PI Software Architecture is composed of software to
be used for development and testing of instrument con-
trol software components at PI teams premises, and of

Instrument
Control
Development
Environment

Instrument Conrol)
aint Instrument Control Testing

Software Framework

PITeams <

Integrator

Instrument
Control
Integration
Environment

Component

Payload Controller Software Framework

PPC RTAI Linux Real-Time on Target Hardware Platform

Figure 2. PISA software parts: Instrument Control De-
velopment Environment and Instrument Control Testing
Software Framework (for PI teams), Instrument Control
Integration Environment and Payload Controller Soft-
ware Framework (for PISA Integrator).

software for integrating and executing those instrument
control software components onto a single target embed-
ded computer, as represented on figure 2.

The PISA software can be divided into four main soft-
ware parts:

e Software to assist PI teams in the development of
instrument control software components on an x86
Linux desktop or laptop. This software part is
called PISA Instrument Control Development Envi-
ronment.

e Software to assist PI teams in testing their instru-
ment control software components on an x86 Linux
desktop or laptop, with the actual instrument con-
nected to it. This software part is called PISA In-
strument Control Testing Software Framework.

e Software to assist the integrator in generating bina-
ries from the instrument control software compo-
nents source code produced by PI teams for the tar-
get hardware platform. This software part is called
PISA Instrument Control Integration Environment.

e Software to integrate and execute all instrument con-
trol software components produced by PI teams onto
the target hardware platform running PPC RTAI
Linux. This software part is called PISA Payload
Controller Software Framework.

The PISA software frameworks (Instrument Control Test-
ing and Payload Controller) can be defined as partially
complete software systems that are meant to be instanti-
ated. A framework defines the architecture for a family of
systems and provides the basic building blocks to create
them. It also defines the places where adaptations for spe-
cific cases can be made, these places are called hot-spots.
Instrument control software components can be plugged

Generic
il Instrument
Skeleton Control
Algorithm !
Development | :
'

1 | Templates for E

I

:

:
! 1| Instrument |:
)= >
escription ! ! lgorithms | 1
: \ '
. .

:

.

|

|

Real-Time
Instrument
Control
Software
Compenent
Binary

Instrument
Control
Software
Component
Binary

Figure 3. Instrument Control Software Component Gen-
eration Process, from the component description file to
the generated binaries.

into hot-spots to be executed. These two frameworks en-
sure that instrument control software components can be
developed and tested by PI without access to the target
embedded computer, and later integrated onto the target
embedded computer without any modification to compo-
nent source code.

The Instrument Control Development Environment is
based on GenoM, a tool to design and develop complex
real-time software architecture. This environment helps
PI teams to generate instrument control software compo-
nent. The detailed generation process is shown on figure
3. The first step of the software component generation
process is to write a component description file in a C-
like format. In PISA, templates of such description files
are provided to PI teams, providing them with manda-
tory configuration and control functionalities that shall be
implemented for each component. Component-specific
functionalities are also defined in this file.

Next, this configuration file is processed by the GenoM
parser and templates (.h and .c files) are generated. These
templates contain empty functions to be completed by de-
velopers to implement the functionalities to control their
specific instrument using the C programming language.
Once the coding of the control algorithms is complete,
binaries for a x86 Linux computer can be generated by
the environment. Those binaries can be executed in the
Instrument Testing Framework and tested. The software
component can be tested with the actual instrument if it is
available. Otherwise, a simulator for the instrument has
to be developed by the PI team. In order to ensure that the
code developed by PI teams can be later integrated onto
the target embedded computer without any modification,
all hardware access shall be performed through Hardware
Abstraction Layer (HAL) provided by PISA.

The PISA Hardware Abstraction Layer (HAL) repre-
sented on figure 4 ensures that instrument control soft-
ware components can be developed and tested indepen-
dently of the underlying hardware devices for CAN,
SpaceWire and Mass Memory access. This decoupling is

Mass Memory

Mass Memory API

local Fs | | spw
SpaceWire CAN
SpaceWire API CAN API
use- || __ 1 [use-
SpW 5 cPCl CAN cPCI

Figure 4. Hardware Abstraction Layer for CAN,
SpaceWire and Mass Memory, providing a consistent AP
for hardware access during development, testing and in-
tegration phases.

key for software development by PI at their premises on
a standard Linux computer without access to the target
embedded computer. As a result, CAN and SpaceWire
accesses are abstracted through the PISA HAL and the
instrument control algorithms developed by PI teams are
totally decoupled from the underlying hardware devices.
Moreover, the PISA HAL also abstracts Mass Memory
access to ensure that PIs can develop and test Instrument
Controller software using a Mass Memory Emulator as if
they were using an actual Mass Memory device.

As represented on figure 5, the Payload Controller Soft-
ware Framework is capable of executing software com-
ponent with real-time constraints, if it is required for spe-
cific instruments. A specificity of RTAI Linux on Pow-
erPC is that real-time components have to be executed
in kernel space (See [5] for more information about the
Linux user space kernel space duality). The PISA HAL
ensures that the exact same API (Application Program-
ming Interface) for accessing CAN, SpaceWire and Mass
Memory is available in kernel space and in user space,
so that the instrument control software component devel-
oped by PI teams can be executed with real-time con-
straints without modification whenever necessary. Note
that usual restrictions about code that can be executed in
kernel space apply, and that the robustness of components
executed in real-time is limited due to the sharing of a sin-
gle memory address space with the Linux kernel.

The PISA CAN Hardware Abstraction Layer provides a
consistent interface to the following CAN hardware de-
vices:

e USB CAN dongle CPC-USB by EMS Wuensche to
be used by PIs during development of their instru-
ment control software component.

o CAN ports embedded on the cPCI 405 PowerPC
CPU board to be used on the target hardware sys-
tem for PISA. Access to this CAN device will be

User Space

BT U] vt Time |

* PISA Hardware Abstraction Layer Components !
5 '
_______________________ ol DT L L E LR
£
i '
'
§ Kernel Space |
! Linux Kernel |
' - &£
' o
') =]) “ Real-Time
1 || PISA Hardware Abstraction Layer Components
'

| RTAIl Micro Kernel |

| Hardware |

Figure 5. Integrated Payload Controller Architecture
with hardware abstraction and real-time capabilities.

provided both for non real-time (user-space) com-
ponents and real-time (kernel-space) components.

The SpaceWire Hardware Abstraction Layer provides a
consistent interface to the following SpaceWire hardware
devices:

e USB SpaceWire dongle by Star-Dundee to be used
by PIs during development.

o cPCI SpaceWire board to be used on the target hard-
ware system for PISA.

The Mass Memory Hardware Abstraction Layer provides
a uniformed API to the following mass memory emula-
tors:

e A Mass Memory emulator running on the local host
file system to be used by PI during development of
an Instrument Control Software Component.

e A Mass Memory emulator accessible through a
SpaceWire network to be used on the target hard-
ware. Note that a real Mass Memory device
can transparently replace this emulator without any
change to the PISA MM HAL for real applications.
This emulator allows us to demonstrate the capabil-
ities of the PISA Mass Memory HAL without the
need of an actual Mass Memory device.

Each instrument control software component that relies
on the PISA HAL will have to provide a mandatory con-
figuration function (in the form of a GenoM configura-
tion request) to ensure that HAL underlying hardware
devices or emulators can be selected using a TCL com-
mand. One such mandatory configuration function will
have to be provided for Mass Memory, SpaceWire and
CAN, if these HAL subsystems are used on the compo-
nent. These configuration functions will be available in
the GenoM templates to be used by PI teams when they
start development of an instrument control software com-
ponent.

.....................................

Emulator

'
1 1 1 1
1 1 1 1
1 1 1 1
X ! X '
1 1 1
' Real-Time : ' H
1 Instrument . CAN 1 | Very Low - Low Data |1
X Control # o Rate Instrument |*
: Software ! ' Emulator '
1 Component : 1 1
' '
i HAL [' SPW._ | Medium Data Rate |1
L e 1 | Instrument Emulator |!
! Instrument ' ! 1
: Control 1 : :
1
! Software 1SPW. Mass Memory |1
' Companent ' ! Emulator H
' i '
1 1
X 1
L 1
1

Figure 6. PISA Hardware Demonstrator, based on a Pow-
erPC embedded CPU and an Emulator Unit Tester PC.

The role of the PISA Integrator is to receive the instru-
ment control software component developed by PI teams
and to integrate them onto the target embedded computer.
The first step is to receive the source code of each soft-
ware component and to cross-compile them for the target
hardware platform. PI teams have developed and tested
their software component on x86 Linux computers, and
the target hardware in the PISA project is based on a Pow-
erPC.

The Instrument Control Integration Environment is also
based on GenoM, and allows the Integrator to produce
binaries that can be executed on the PISA Payload Con-
troller Software Framework on the target embedded com-
puter, with real-time constraints whenever required.

As represented on figure 5, the Payload Controller Soft-
ware Framework integrates all instrument control soft-
ware components produced by PI teams. The frame-
work can execute software components with real-time
constraints if necessary, and provides in-flight compo-
nent modification capabilities. Moreover, it provides a
TCL-based (Tool Command Language) interface for con-
trolling all software components with a high-level script
language that can be used by scientists or PI teams to de-
scribe experiments scenarios in a convenient manner.

3.2. Hardware Demonstrator

For the development and the demonstration of the PISA
project, a PowerPC platform running RTAI Linux has
been selected. The complete hardware setup is shown in
figure 6. The hardware demonstrator includes two CAN
buses and two SpaceWire links. In order to demonstrate
the PISA functionalities, instrument emulators will be de-
veloped and run on the Unit Tester PC.

The first instrument emulator will be connected to the tar-
get embedded computer through a CAN bus, emulating a
very-low to low data rate instrument. The second instru-
ment emulator will be connected via a SpaceWire net-
work and will emulate a medium data rate instrument. A
Mass Memory emulator will also be developed and run
on the Unit Tester PC.

4. OUTLOOK

The goal of the PISA project is to demonstrate the feasi-
bility of an integrated approach in satellite payload con-
troller by facilitating the development of instrument con-
trol software components by PI teams and supporting
the integration of all component onto a single embedded
computer. With PISA, we are demonstrating the feasi-
bility of such a concept, including real-time capabilities,
resilience to a failure of a software component and pro-
viding the in-flight software component modification ca-
pabilities.

Moreover, PISA provides a solution that allows PI teams
to focus on their speciality and on their instrument, free-
ing them from the burden of developing and delivering
a complete embedded system. With PISA, they can rely
on the development tools and environment that is pro-
vided to develop and test their instrument on a standard
Linux computer before delivering their instrument con-
trol software component to the PISA Integrator, an em-
bedded system expert who takes care of handling specific
problems.

Another advantage of this integrated approach it that it al-
lows PI teams to take advantage of an increased process-
ing power that has to be shared among all instruments that
would not be available in a dedicated payload controller
approach, allowing them to increase the on-board auton-
omy and intelligence, sending to the Earth more valuable
data.

Next steps for PISA includes the application of the pro-
posed concepts for developing a control software com-
ponent for an actual instrument, and a possible port on
a lighter operating system frequently used like RTEMS,
possibly on a LEON processor.

REFERENCES

[1] Compact dpu software development. Statement of
work, European Space Agency ESA-ESTEC, 2004.

[2] Ph. Armbruster. European space technology har-
monisation: On-board payload data processing sys-
tems. Technical dossier, European Space Agency
ESA, 2003.

[3] RTAI: Real-time
http://www.rtai.org.

[4] S. Fleury, M. Herrb, and R. Chatila. GenoM: a tool
for the specification and the implementation of oper-
ating modules in a distributed robot architecture. In
Proceedings of the International Conference on In-
telligent Robots and Systems, pages 842-848, Geno-
ble, France, September 1997.

[5] D. Bovet and M. Cesati. Understanding the Linux
Kernel, Second Edition. O’Reilly and Associates,
Inc, 2003.

application interface.

