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 Abstract - In this work we address the problem of 
perception, spatial cognition and topological navigation for a 
mobile robot. The objective of this work is to enable the 
navigation of an autonomous mobile robot (or vehicle) in an 
indoor (or outdoor) structured environment without relying on 
maps a priori learned and without using artificial landmarks. A 
new method for incremental and automatic topological mapping 
and global localization using fingerprints of places is presented. 
The fingerprint-based representation permits a reliable, compact 
and distinctive environment-modeling. Experimental results for 
mapping indoor and outdoor environments with a mobile robot 
and a “SMART” vehicle, both equipped with a multi-sensor 
system composed of two 180° laser range finders and an omni-
directional camera are also reported. 
 

 Index Terms – fingerprints of places, topological navigation, 
cognitive mapping, multi-modal perception 
 

I.  INTRODUCTION 

 A robust navigation system requires a spatial model of 
physical environments as a metric [1, 3, 5] or topological map 
[11, 14]. Approaches using metric maps are suited when it is 
necessary for the robot to know its location accurately in 
terms of metric coordinates. However, the state of the robot 
can also be represented in a more qualitative manner, similar 
to the way humans do it. The information can be stored as 
cognitive maps – term introduced for the first time in [15] – 
which permit an encoding of the spatial relations between 
relevant locations in the environment. This has led to the 
concept of topological representation. The topological map 
can be viewed as a graph of places, where at each node the 
information concerning the visible landmarks and the way to 
reach other places, connected to it, is stored. The topological 
representation is compact and allows high-level symbolic 
reasoning for map building and navigation. 

In order to have a robust and reliable framework for 
navigation (i.e. in order to move within an environment, 
manipulate objects in it, avoid undesirable collisions, etc.) 
space cognition, perception, localization and mapping are all 
needed. The objective of this work is to enable autonomous 
navigation without relying on maps a priori learned and 
without using artificial landmarks. Therefore, this paper 
describes a new method for incremental and automatic 

topological mapping and global localization with POMDP 
(Partially Observable Markov Decision Processes) using 
fingerprints of places. One of the main problems in 
topological map building is to detect when a new node should 
be added in the map. Our approach relies on a heuristic that 
detects whether the current location of the robot is similar to a 
mapped one or not. The proposed method permits a reliable 
and distinctive environment model that can be globally 
handled in an efficient way.  

Various methods have been proposed to represent 
environments in the framework of autonomous navigation, 
from precise geometric maps based on raw data or lines to 
purely topological maps using symbolic descriptions. Each of 
these methods is optimal with respect to some characteristics 
but can be very disappointing with respect to others. Although 
literature related to SLAM (Simultaneous Localization and 
Mapping) is very vast, we only concentrate here on papers 
that have directly influenced our thinking and research work.  

Topological approaches to SLAM attempt to overcome 
the drawbacks of geometric methods (e.g. problems 
concerning the global distinctiveness and global consistency) 
by modeling space using graphs. Significant progress has been 
made since the seminal paper by Kuipers [8], where, an 
approach based on concepts derived from a theory on human 
cognitive mapping is described as the body of knowledge 
representing large scale space. Kortenkamp and Weymouth in 
[7] have also used cognitive maps for topological navigation. 
They defined the concept of gateways which have been used 
to mark the transition between two adjacent places in the 
environment. The model described in [4] represents the 
environment with the help of a Generalized Voronoi Graph 
(GVG) and localizes the robot via a graph matching process. 
This approach has been extended to H-SLAM (i.e. 
Hierarchical SLAM) in [10], by combining the topological 
and feature-based mapping techniques. In [16], Tomatis et al. 
have conceived a hybrid representation, similar to the 
previously mentioned work, comprising of a global 
topological map with local metric maps associated to each 
node for precise navigation. Topological maps are less 
complex and permit more efficient planning than metric maps. 
Moreover, they are easier to generate. Maintaining global 
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consistency is also easier in topological maps compared to 
metric maps. However, the main problems to deal with, when 
working with topological maps are the perceptual aliasing (i.e. 
observations at multiple locations are similar) and the 
automatic establishment of a minimal topology (nodes). 

Our method uses fingerprints of places to create a 
topological model of the environment. The fingerprint 
approach, by combining the information from all sensors 
available to the robot, reduces perceptual aliasing and 
improves the distinctiveness of places. The main contribution 
of this paper is the construction of a topological mapping 
system combined with the localization technique, both relying 
on fingerprints of places. This fingerprint-based approach 
yields a consistent and distinctive representation of the 
environment and is extensible in that it permits spatial 
cognition beyond just pure navigation. 

The rest of the paper is structured as follows. Section II 
presents a short review of the fingerprint concept. Section III 
is dedicated to the new topological navigation system with 
fingerprints of places. Experimental results are presented in 
Section IV. The systems (indoor and outdoor) use both, two 
180° laser range finders and an omni-directional camera for 
feature extraction. Finally, Section V draws conclusions and 
discusses further work. 

 II. FINGERPRINTS OF PLACES 

 Representing and interpreting a scene from the 
environment is a hard task. Humans use various sensory cues 
to extract crucial information from the environment. This is 
processed in the cortex of the brain in order to obtain a high-
level representation of what has been perceived.  
 With a view of having robots as companion of humans, 
we are motivated towards developing a knowledge 
representation system along the lines of what we know about 
us. While recent research has shown interesting results, we are 
still far from having concepts and algorithms that represent 
and interpret space, coping with the complexity of the 
environment.  
 The fingerprint of a place concept is used here. 
Fingerprints of places (i.e. circular list of significant features 
around the robot) have been proven to be a very promising 
approach towards effective place characterization and hence 
environment modelling [9, 12, 13]. In this work, we choose to 
use as significant feature: colour bins and vertical edges from 
the visual information and corners from the laser scanner. 
Therefore, this multi-modal, feature based representation of 
space reduces the perceptual aliasing and improve the 
distinctiveness of space. 

III. TOPOLOGICAL NAVIGATION 

Navigation described by Gallistel in [6], as the capacity to 
localize itself with respect to a map, is an elementary task that 
a mobile and autonomous robot must carry out. To navigate 
reliably in indoor or outdoor environments a mobile robot 
must know where it is. For this, the robot needs to construct or 
maintain a spatial representation of the environment. Here, we 

approach the SLAM (Simultaneous Localization and 
Mapping) problem that is of a “chicken and egg“ nature – to 
localize the robot, a map is necessary and to update a map the 
position of the mobile robot is needed. 

A.   Topological Mapping 
While navigating in the environment, the robot first 

creates and then updates the global topological map. One of 
the main issues in topological map building is to detect when a 
new node should be added in the map. Most of the existing 
approaches to topological mapping place nodes periodically in 
either space (displacement, ∆d) or time (∆t) or alternatively 
attempt to detect important changes in the environment 
structure. Any of these methods cannot result in an optimal 
topology. In contrast, the approach presented in this work is 
based directly on the differences in the perceived features. 
 Instead of adding a new node in the map by following 
some fixed rules (e.g. distance, topology) that limit the 
approach to indoor or outdoor environments, the method 
described in this work introduces a new node into the map 
whenever an important change in the environment occurs. 
This is possible using the fingerprints of places. A heuristic is 
applied to compare whether a new location is similar to the 
last one that has been mapped. Thus, a new node is introduced 
in the topological map just when important changes into the 
environment occur. With this, at the end, each node will be 
composed of a set of similar fingerprints of places. In order to 
compact even more the current representation, a unique 
identifier named the mean fingerprint is generated. This 
technique of clustering fingerprints of places into a single 
representation enables the construction of a very distinctive 
and compact representation of the environment. Therefore, a 
new node contains all posterior knowledge about the 
environment until the previous node. A more detailed 
presentation is given in one of our previous works [12]. The 
incremental nature of the approach permits incremental 
additions to the map and yields the most up-to-date map at any 
time.  

B.   Topological Localization with POMDP 
Finding an efficient solution to the robot localization 

problem is necessary for the robots to be integrated into our 
daily lives. Most tasks for which robots are well suited 
demand a high degree of robustness in their localizing 
capabilities. A series of localization techniques based on the 
fingerprint concept have been already presented in [13]. These 
approaches perform a fingerprint-matching operation so as to 
localize the robot. The matching methods compare the 
observed features encoded in the fingerprints of places with 
the map fingerprints. Only the extereoceptive sensory 
information contained in fingerprints of places is used for 
matching, without taking into account the motion of the robot 
and the previous estimation. 

Hence, for topological navigation, a Partially Observable 
Markov Decision Process (POMDP) model [2] is used here. 
The POMDPs integrate both the motion and sensor reports 
data to determine the pose distribution. Thus, by adding the 



motion information to the system, new knowledge about the 
robot’s position is acquired. The probability of being in a 
place is calculated in function of the last probability 
distribution, and the current action and observation.  

A POMDP is defined as <S,A,T,O>, where: S is a finite 
set of environment states; A is a finite set of actions; T(s,a,s’) 
is a transition function between the environment states based 
on the action performed; O is a finite set of possible 
observations; OS is an observation function. With this 
information, the probability of being in a state s’ (belief state 
of s’) after having made observation o, while performing 
action a, is given by: 
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normalizing factor. 
The key idea is to compute a discrete approximation of a 

probability distribution over all possible poses in the 
environment. An important feature of this localization 
technique is the ability to globally localize the robot within the 
environment. More details about this approach are given in 
[2].  
 In our approach, the set of observations O is composed of 
the fingerprints of places generated by the robot in the 
environment. These observations are very distinctive since 
distinctiveness is one of the main characteristics of the 
fingerprints of  places. An observation contains information 
given by the extereoceptive sensors and designates a subset of 
the world state. The information for the observation function 
OS within the topological framework is given by the 
fingerprint matching algorithm: Global Alignment with 
Uncertainty [13].  

C.   Map Update 
While navigating in the environment, the robot first 

creates and then updates the global topological map. By using 
a POMDP (Partially Observable Markov Decision Process), a 
discrete approximation of a probability distribution over all 
possible poses in the environment is computed. The entropy of 
a probability distribution is used here. The lower the value is, 
the more certain the distribution is. When the robot is 
"confused", the entropy is high. So the POMDP is confident 
about its state if the entropy is smaller than a fixed threshold. 

Therefore, the strategy of updating the map will be the 
following:  

a) When the entropy of the belief state is low enough, 
the map will be updated and so the fingerprint and the 
uncertainty of the features will also be updated. 

b) If the entropy is above the threshold, then the 
updating will not be allowed, and the robot will try to 
reduce the entropy by continuing the navigation with 
localization. 

When the robot feels confident concerning its state, it can 
decide if an extracted feature is new by comparing the 
observed fingerprint to the fingerprint from the map, 
corresponding to the most confident state. This can happen 
either in an unexplored portion of the environment, or in a 
known portion where new features appear due to the 
environmental dynamics. When a feature is re-observed, the 
uncertainty of the feature from the map fingerprint is weight 
averaged with the uncertainty of the extracted one. The weight 
depends on the type of feature. Since the extraction of features 
with the laser scanner is more robust than the ones extracted 
with the camera, a higher weight is given to them. Otherwise, 
if the robot does not see an expected feature the uncertainty is 
decreased. When the uncertainty of a feature from a map 
fingerprint is below a minimum threshold, than the feature is 
deleted, allowing in this way for dynamics in the environment. 

D.   Closing the Loop 
One fundamental problem in SLAM is the identification of a 
place previously visited, if the robot returned to it. This is 
known as the closing the loop problem since the robot’s 
trajectory loops back on itself. Thus, for topological maps, this 
means that if a place (i.e. a node) has been visited before, and 
the robot returns to it, the robot should detect it (see Figure 1). 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 1: Loop Closing Problem. The robot starts in place A and after 
moving through the environment arrives in place Q. The question to answer is: 
Has the robot returned to an already visited place or not? (i.e. Is place A 
equivalent to place Q?) 

 
Contrary to other methods used for solving this problem, 

based usually on the perception, loops are identified and 
closed with the help of the localization techniques. In order to 
accomplish consistency of the topological map, a method 
similar to the one described in [16] is used. In this work the 
method employed is a non-explicit loop closing algorithm. 
Our loop closing method is based on the localizer (i.e. the 
POMDP). The robot is moving through the environment and 
incrementally builds the topological map. As soon as the robot 
returns in an already visited place (i.e. node) the probability 
distribution potentially should split up. Two candidates 
hypotheses should appear: one for the new place (i.e. node) 
currently created by the robot (e.g. in Figure 1, node Q) and 
another one for the previously created node already present in 
the map (e.g. in Figure 1, node A). As soon as the POMDP is 
unconfident, the algorithm tracks the two highest probability 
distributions showing that the distribution diverged in two 
peaks. A loop is thus identified if the probability distribution 



given by the localizer converges in two peaks that move in the 
same direction. In order to detect where the loop was closed, 
the two hypotheses are backtracked with localization until a 
single one remains. 

IV. EXPERIMENTAL RESULTS 

Our approach for topological SLAM using the fingerprint 
of places technique has been implemented and evaluated in 
various real world indoor and outdoor environments. In this 
section we present some of the indoor experiments carried out 
with our indoor robot, a fully autonomous mobile robot and 
the first attempts for outdoor topological mapping using the 
“SMART” vehicle (Daimler-Chrysler). Both mobile platforms 
(indoor and outdoor) are equipped with two 180° laser range 
finders and an omni-directional camera. The omni-directional 
camera system uses a mirror-camera system to image 360° in 
azimuth and up to 110° in elevation.  

The first set of experiments demonstrates the robustness 
of the mapping module in two indoor real world scenarios and 
the first attempts to map urban outdoor environments. In 
particular, it illustrates the construction of distinctive and 
compact maps (composed only of local features, which is an 
advantage of this fingerprint-based mapping technique).  

A.  Indoor Topological Mapping 

The first indoor experiment was conducted in a portion of 
our institute building shown in Figure 2 and the second 
experiment was performed in another building from our 
campus (see Figure 3(a)). The first test setup was the 
following: the robot started at the point S and ended at the 
point E, as illustrated in the Figure 2, the distance traveled 
being of 75m. For the second test the robot traveled a distance 
of 67m. While the robot explored the environment, it 
recorded, at every ∆d (distance) (e.g. in our case d =15cm), 
data readings from sensors (i.e. an image from the omni-
directional camera and a scan from the laser scanner) in order 
to extract the fingerprints. The robot has a ′mid-line 
following′ behavior in the hallways and ′center of the free 
space′ behavior in the open spaces. We assume that the 
position in the room with the maximum free space around it, 
is the one with the highest probability of extracting numerous 
and characteristic features. This ensures high distinctiveness 
of the observation. The map building process was performed 
off-line. The threshold θ, defined as the maximum allowable 
dissimilarity and used for automatic mapping is calculated 
experimentally. It is calculated for a small portion of the 
environment (i.e. 5 m), so that the map obtained matches the 
real structure of the environment. Once this threshold is 
determined, it is fixed for the rest of the indoor experiments.   

Figure 2(b) shows the topological map obtained by the 
system in the first test environment (i.e. in our laboratory), 
superimposed on an architectural sketch of the environment. 
The resulting map is composed of 20 nodes as shown in the 
Figure 2. Each node is represented by a mean fingerprint 
which is an aggregation of all the fingerprints composing the 

respective node. Typically, the nodes are positioned in the 
rooms and in the hallway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) Floor plan of the first environment where the experiments have 
been conducted. The robot starts at the point S and ends at the point E. The 
trajectory length is 75 m. During this experiment, the robot collected 500 data 
sets (i.e. images and scans) from the environment. The extracted topological 
map is superimposed on an architectural sketch of the environment. (b) The 
extracted topological map given by our method, superimposed on the raw scan 
map. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3:  (a) The second test environment with the trajectory traveled by the 
robot. (b) The map of the second test environment with the graph representing 

the topological map. 
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The doors of some rooms remained closed at the time of 
experimentation; this explains why no node is present in front 
of the respective rooms (see Figure 2). 
Figures 3(a) - (b) show the second test environment with the 
corresponding topological map, formed using the approach 
outlined in this work. The mapping system added a new node 
automatically each time a very distinctive measure (i.e. 
distinctive fingerprint) was encountered. The graph-like map 
thus obtained contains 8 nodes, as shown in Figure 3(b). The 
same threshold used for the first test (threshold calculated 
experimentally) was employed here also, indicating the 
robustness of the overall method.  

The representations thus obtained (see Figure 2 and 3(b)) 
reproduce correctly the structure of the physical space, in a 
manner that is compatible with the topology of the 
environment. They also permit a distinctive modeling of it. It 
is important to mention that the maps are obtained by using 
only locally distinctive features composing the fingerprints of 
places. 

 B.  First Attempts to Outdoor Topological Mapping 

 Compared with indoor environments, urban outdoor 
environments present many challenges for an autonomous 
vehicle. Coarse localization is often available from GPS. Most 
of the time, it is more useful to know the position of the robot 
with respect to buildings, trees, intersections, etc., than the 
exact latitude and longitude. In order to validate and to show 
the robustness of our approach, we also tested it in an outdoor 
environment. The approach has been tested in a part of our 
campus (highly structured environment), shown in Figure 4, 
on a 1.65 km of trajectory. The system mounted on the 
“SMART” vehicle acquired data, both from the lasers and 
omni-directional camera every 110 ms. A new threshold for 
outdoor environments was calculated experimentally in a 
small portion of the campus. Different thresholds can be used 
in function of the granularity of the environment that it is 
desired. High granularity maps, with numerous nodes, may be 
obtained by setting small thresholds. Alternatively, setting 
high values for the threshold yields maps with fewer nodes 
(low granularity). The outdoor threshold for obtaining high 
granularity maps is the same as the one used for indoor 
environments. For getting maps with fewer nodes, the outdoor 
threshold is set three times bigger than the indoor threshold.  
We have obtained a map composed of 209 nodes for a high 
granularity and a map of 64 nodes containing only the big 
changes in the environment (i.e. intersections, new buildings, 
etc). A small example is depicted in Figure 6(b), which 
represents a low granularity topological map obtained for a 
200 m section of the environment (i.e. the zoomed view of the 
magnifying glass shown in Figure 4(a)). The map contains 7 
nodes. It can be noticed that the nodes are usually placed in 
front of buildings, at the crossings and when "big" changes 
occur (e.g. a building disappears from the field of view of the 
vehicle and driving signs, lamp-spots and trees appear). The 
map thus obtained for the entire trajectory shown in Figure 4 
is compatible with the structure of the outdoor environment, 
taking into account the trees, the buildings and the lamp-posts. 

 C.  Indoor Localization with POMDP 

The quality of the topological maps obtained with our 
fingerprint-based technique, can be evaluated by testing the 
localization on it. Localization experiments were conducted so 
as to show this. To test the localization, more than 1000 new 
fingerprint samples, acquired while the robot was travelling 
new paths of 250 m, were used to globally localize the robot 

 

 

 
 

 
 

Figure 4:  (a) The outdoor test environment (a part of the EPFL campus) with 
the trajectory of 1.65 km long traveled by the Smart vehicle. The magnifying 
glass represents the part of the environment used for the outdoor topological 
map exemplification; (b) The low granularity outdoor topological map 
superimposed on an architectural sketch of a part of the EPFL campus.  

with the POMDP. A mission is considered successful if the 
place found, which corresponds to the world state with the 
highest probability, is the same with the correct node in the 
real world.    
 

TABLE 1: Summary of the indoor localization experiments. 
 

The results are summarized in Table 1. It can be noticed that 
the results with the POMDP localization have given for the set 
of scenarios tested in this work a percentage of successful 
matches of 100%. The kidnapping problem (i.e. recovering 
from a lost position – the robot thinks that it is in a position 
where it is not) has also been tested. This was performed 
seven times and the robot succeeded to recover all the seven 
times, after one or two steps because of the very distinctive 
observations that corresponds to the fingerprints. 
D.  Closing the Loop 

The localization with POMDP is also used for 
identification of loops. As explained earlier, the robot moves 
through the environment and incrementally builds the 
topological map. The loop closing problem was tested 5 times 
in different situations within the environment. The robot 
succeeded to close the loop in all the situations. Figure 5 
shows only a simple example that is explained below. In 
Figure 5, it can be noticed that the robot started in the 
corridor, in point S. It traveled in the corridor till the door that 
separates the two hallways was detected (i.e. important change 
into the environment - node N1), continued in the corridor (i.e. 
node N2), then entered and went out the Room 3 (i.e. node 
N3). Once it returned in the corridor, the robot turned left and 

Fingerprints 1024 samples 

Distance Travelled 250 m 

Scenarios 10/10 
Kidnapping 7/7 
Fingerprint Matching (GA) 81% 
POMDP localization 100% 

(a) (b)



entered in an already visited place, corresponding to node N2. 
The robot temporarily creates a new node N4. As soon as the 
robot returned in an already visited place, the POMDP became 
unconfident and the probability distribution divided in two 
possible candidate states. Two hypotheses appeared: one for 
the new place (i.e. node N4 circled in red on Figure 5) 
currently created by the robot and another one for the 
previously created node already present in the map (i.e. node 
N2). The automatic mapper is turned off. The robot moved 
toward node N1 and labels it at node N5. Node N5 was very 
similar to node N1, and the correct match is made. A loop is 
thus identified if the probability distribution given by the 
localizer converges in two peaks. In order to detect where the 
loop is closed, the automatic mapping system is turned off and 
the two hypotheses are backtracked with localization until a 
single one remains. In the present case, this occurred when 
node N5 was detected. At that point the robot realized that 
node N4 is node N2 and that node N5 is node N1. Thus, the 
loop was closed correctly. In order to make use of the 
information obtained when a place is revisited, the map is 
updated. The nodes N1 and N2 are updated with the data 
brought by the revisited nodes N5 and N4, respectively. 

 

 

 

 

 

 

 
 

 
Figure 5: Loop Closing: Shows the directed path that the robot traveled. The 

robot starts in point S. It can be noticed that the robot arrives in a visited place 
(i.e. node N4) once it goes out the office (ROOM 3) and goes to the left, re-

visiting again node N4. 

As explained earlier, due to the fact that the offices are quite 
small, the fingerprints of places are very similar, and thus a 
single node per room is enough. Since a node contains a 
posterior knowledge about its environment and is the 
aggregation of all the fingerprints of places between the last 
node and the current place where an important change into the 
environment occurred, closing the loop problem does not 
appear in these cases (i.e. when one node per office is 
sufficient). 

V. CONCLUSIONS AND FUTURE WORKS 

 This paper presented a new technique for topological 
SLAM using fingerprints of places. A fingerprint of a place 
provides a compact and distinctive methodology for space 
representation and place recognition – it permits encoding of a 
huge amount of place-related information in a single circular 
sequence of features. This representation is suitable for both 
indoor and outdoor environments. The experiments verify the 
efficacy and reliability of our approach. The POMDP 
localization shown here improves the previously results 
obtained. Adding the motion of the robot enables to decrease 

further the pose uncertainty to a level that could never be 
reached by fingerprint matching alone. A success rate of 
100% was obtained for the tests performed in this work. 
However, the approach has to be more extensively tested in 
different types of environment in order to make a real 
estimation of the quality of the method. In this work, low-
level features (such as vertical edges) have been used. An 
interesting extension of the model is the addition of other 
modalities and features to the fingerprint framework (e.g. 
auditory, smell, or higher level features such as doors, table, 
fridge, etc). This will help to improve the reliability and 
accuracy of the method and to add semantics to it. 
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