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ABSTRACT

In this paper, a probabilistic measure for reliability oéager
verification under noisy acoustic conditions is proposedBa
yesian network is used to estimate a probability for verifica
errors, given the GMM-based speaker verification systemubut
and additional information about the level of acoustic aoisn
particular, the log-likelihood ratio and a signal-to-reiglated fea-
ture are used to account for the adverse acoustic conditibimes
probabilistic measure is subsequently employed in gomgraire-
pair sequence of trials for acquiring additional speectsgmta-
tions which are less likely to lead to unreliable verificatiorhe
potential of the proposed method is tested through croédati@n
experiments. Finally, the benefits of the repair sequentins of
verification accuracy is evaluated on a noisy environmee&kgr
verification task.

1. INTRODUCTION

The goal of biometric identity verification is to assert wiesta

system may not be sufficiently robust against a noisy environ
ment, and a reliability measure incorporating informataiout
the acoustic environment and the classifier behaviour ghbel
integrated into the overall verification scheme.

This reliability measure can be used in several ways: in the
case of a multimodal biometric system it can be used to wéigh t
speech modality classifier output with respect to other ritbek
immune to acoustic noise. In a single-modality speechéhie
metric system, the reliability measure can be used in a s¢iglie
manner to reject presentations for this measure is too lowo o
weigh the classifier output scores for several presentstiefore
combining them. It should be noted that in our case the input t
the “fusion” decision rule would not directly be the classifscore
as is the case in fixed rules [4], but the modality reliabititga-
sure obtained through the training process. Recent rds@asatlis
direction has explored the use of quality measures for impgo
speaker verification accuracy, using either signal feattoeveigh
a score in verification [5], or score-related quantitiesf@@lenroll-
ment quality measure.

Our approach combines information about both the acoustic

certain person is indeed whom she claims to be, based on-ehavenvironment and the classifier behaviour in order to promidéal-

ioural or biological traits, also known as modalities. Spees a
personal trait that can be used for biometric user verificaéind

ity reliability information in verification. In this contéxthe result
of speaker verification is directly influenced by the realestd the

benefits from ease of use for the end user and cheap senser hardiser identity (client or impostor) and the state of the mibgladli-

ware, and can be deployed in a variety of environments. Speak
verification performance is however very dependent on envir
mental acoustic conditions, in addition to intra-spealeiability
which is strongly influenced by health factors, emotionatestand
inter-session time.

It is well known that the statistical distribution of common
speech features such as MFCCs is significantly distortechwhe
the original clean speech signal is subjected to additiveend].
Thus, the scores output from the classifier of a speaker cerifi
tion system based on models of statistical distributioneatttires
in clean acoustic conditions will notably change when pmies
with feature vectors corrupted by noise. In this situatioms im-
postors will be able to obtain higher scores, and respédgtmme
clients will obtain lower scores, hence increasing falsept(FA)
or false reject (FR) rates.

It has been shown that combining scores for multiple presen-

tations of the same biometric modality (for example facege®
reduces the overall verification error rate [2]. Other apphes
have combined repeated measurements of the same modality, m
tiple classifiers on the same modality, and different maigalin a
sequential fashion, exploiting the combination of the absivate-
gies until the system performance is sufficient [3].

Accurate verification depends on good data quality. Conse-

quently, the output from the classifier of a speaker verificat

ability measure, given additional evidence about the envéntal
acoustic conditions. Since the intercausal relations e$ehtwo
factors cannot be established deterministically, the gsed prob-
abilistic reliability measure is justified. Instead of bgimssigned a
particular value, a probabilistic reliability measure &fided by a
distribution over its possible values. In this paper we repn the
use of Bayesian networks for inferring the the modalityaieili
ity distribution in a speaker verification task under noispuastic
conditions.

The paper is structured as follows: Section 2 describes-Baye
sian networks for modelling the distribution of the modati¢lia-
bility mesure. Section 3 demonstrates the potential of tethod
through cross-validation experiments. In Section 4 théaldis-
tic measure is applied to a speaker verification task, inireyga
guences for acquiring speech presentations which ardakesstio
lead to unreliable verification.

2. ABAYESIAN NETWORK FOR SPEECH MODALITY
RELIABILITY MEASUREMENT

Bayesian Networks (BNs) are graphical models used to desari
joint probability distribution (pdf) over a finite set of rdom vari-
ables [7], and are completely defined by the trifie A, CPD),
whereV is the set of nodes associated with the random variables,
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A'is the set of arcs an@' P D is the set of conditional probability
distributions associated with the nodes’ variables. Tlos de-
tween the nodes point from all parent variables to theirdchit
variables. The intuition behind directionality represetite fact
that the parent variables can directly influence their chaitdand
this influence can be interpreted as a cause-effect redtipnThe
joint pdf represented by the BN can be written as a productlof a
nodes’ CPDs (conditional probability densities of eachengiden
its parents). Finally, the basic task for any BN is to perfamnm
ference, that is to compute the posterior distribution faet of
"query” variables, given some observed event, i.e. evideoc
some observed variables.

In our case, in order to represent the real state of the ueer id
tity and the verification result we introduce two binary ednles:
True User identity T/ D) and Classified User identity({I D).
T1D = 1 represents the event "the system user is a client”, while
TID = 0 corresponds to the event "the system user is an im-
postor”. CID = {0, 1} corresponds to the events "the speech-
based classifier accepts the identitity clair@”I(D = 1) and "the
speech-based classifier rejects the identity clai@r D = 0). To
define the reliability measure we introduce another binarjable
MR, where MR = 1 represents that the "modality is reliable”
and M R = 0 represents the opposite statement.

The Bayesian network in Fig. 1 (a) depicts a causal model
for the variablesTID,CID and MR. In this network the True
User Identity can be seen as the cause of a particular Céasssifi
User Identity value, and the Modality Reliability can berses an
alternative cause that might also point at errors in@dtieD value.

For exampleC'I D=1 can be explained by /D = 1 and M R =
1 (the classifier makes a correct verification decision bexgus
modality is reliable and the user is a client) B D = 0 and
MR = 0 (the classifier makes a wrong verification decision even
though the user is an impostor because the modality is abie)i
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| 7D | [ MR | | iD >

a

Fig. 1. Bayesian networks for estimation of modality reliability

Inthis casey = (T'ID,CID, M R), and taking into account
the arcs defined in Fig. 1(a), the joint pdf owércan be written as:

P(TID,CID,MR) =

P(MR)P(CID|MR,TID)P(TID)- 1)

Since the variable¥'I D and M R are not observable during
speaker verification, we need to provide additional souofes-
formation that can be observed and can provide evidenceaufa
of particular (71D, M R) values. The verification score (likeli-
hood ratio) is known to carry information about the statetef t
user identity (client/impostor), while a signal quality aseire can
be used to provide evidence for théR variable. For example the
signal-to-noise § N R) ratio of the speech signal can be used to
measure the level of the acoustic noise. Therefore, we diéfine
two continuous variableSc and@Q M, corresponding to the Score
of the verification and the Quality Measure for the given niitgla
(SNR in the case of speechM R, CID andTID can be seen

as causes for the observ8d value, while MR can be seen as the
cause forQ) M values.

The final version of the BN incorporating all these variables
V = (TID,CID,MR,Sc,QM) is depicted in Fig. 1 (b). Dis-
crete variables are drawn as squares, and circles are us#tefo
continuous ones. The CPD of a discrete variables is reptecséy
a probability table, while continuous variables make usarbf-
trary parametric CPDs. In this paper, we use conditionalsSian
distributions.

In our case the posterid?(M R|CID, Sc,QM) is the dis-
tribution of modality reliability measure. To mark an obsst
variable in the Bayesian network we use shading, and unedxer
variables are left white. Once the CPD functions for all tbeles
given their parents are defined, an exact or approximateecinte
on each node in the network can be performed. Since the number
of variables in our case is small, exact inference on a jondtiee
algorithm can be applied [7].

3. EXPERIMENTS - MODALITY RELIABILITY

3.1. BN Training strategy

In order to perform consistent inference BAM R|CID, Sc, QM),
the conditional probability distribution parameters foe hetwork
variables have to be learned from training examples. Inglse of
fully observable variables in the training set, the estioratan be
done with random initialization and a maximum likelihood M
training technique [7]. After the training, the posterigstdbution
P(MR|CID, Se, QM) can be used as a probabilistic mesure of
speech modality reliability.

World model
User model

True identity (TID)
Front- GMM [only in training]
end | 7] Speg!(er Verification
verifier result (CID)
Score (Sc)
Speech Modality
data Bayes net —» Reliability
P(MR|evidence)

- Quality measure
Acoustic (Qm)
I

conditions
measurer

Fig. 2. Combined speaker verification and modality reliability es
timation systems

The training setup for the Bayesian network is depicted in
Fig. 2. A speaker verification system provides values fo(ii@®,
Sc variables, and an acoustic environmental condition measur
provides the quality measur@{/) values. We use an SNR-related
measure described in section 3.3. To simulate the effecsdef
graded acoustic environment, babble-type noise correlpgro
a possible deployment environment witiv Rs following a ran-
dom uniform distribution from 5 to 55 dB is added to about 12 s
of held-out data for each user. This noisy speech data is-an in
put source for the verification system, which calculatesand
setsC'1D according to the threshold for that user. According to
the match between the true identity of the spealt&ri) and the
speaker verifier output{I D), we labelM R in the BN training
data as being “true"{ID = CID then MR = 1) or “false”
(TID # CIDthenMR = 0). In that way, we aim to model the



relationship between verification errors and environmiestgadi-
tions. Thus, we assume the speaker verification classifiésrpes
above chance level in clean conditions.

3.2. Speaker verification system

The database used for experiments is a 258-users subs&f, Tl
divided in 186 males and 72 females. Approximately 20 sesond
of data in 6 presentations (phonetically rich read sen®nfo
each user is used to train the user models. The remainingt cli
presentations per user are held out for modality religbditper-
iments. In verification, no separation is made between nmade a
female pool.

The speaker verification system uses voice activity detetti
remove pause-related portions of speech, after which 12 G4C
with first and second order time derivatives are extracted egép-
stral mean normalisation. The features are modelled by G&Ga
sian components models with diagonal covariance matrlosg-
likelihood ratio scores are produced using a 64 Gaussiamkl wo
model for normalisation.

Speaker-dependent thresholds are obtained a priori irothe f
lowing manner: the 6 presentations used for model trainieg a
used to obtain 6 client scores. 100 randomly selected iropost
presentations are used to produce 100 impostor scorese Biac
client presentations used to obtain verification scoregwkeady
used for training, the client scores will be over-optindstnd will
result in a very high number of false rejects. This is adb¢se
assuming that the scores of the 2 best impostor presergadien
close to the worse client scores that will be obtained inrtgsand
adding the former to the client scores pool. Then, a Gauskn
tribution is estimated from “impostors only” and “clien®&-best
impostors” scores and the intersection point between theesus
taken as threshold. This has the disadvantage of overdstgma
the variance of the client distribution.

3.3. Acoustic environmental conditions quality measure

To measure the acoustical conditions for the speech mpdedit
use a signal-to-noise ratics(VR) -related measure. ThENR
can be defined as the ratio of the average energy of the spigech s
nal divided by the average energy of the acoustic noise inAsB.

An additional source of imbalance is that for most biomedeta-
bases, the size of client datA{D = 1) is smaller than impostor
data "I D = 0); with the random impostors technique (“pseudo-
impostors”) any other user can serve as an impostor to apkati
user.

During training of the Bayesian network the prior probabili
ties over theM R and T'I D variables are assigned according to
the counts of data samples corresponding to the diffefdtit
or TID variable realisations. Thus, if the Bayesian network is
trained without special care, the learned prior probaédlion the
M R andT'I D variables will be mismatched for client and impos-
tor access because the counts for impostor accesses wilible m
higher. Since we do not want to bias the final posteriors dver t
M R values on the number of data counts, it is important to bal-
ance the number of examples for client and impostor acdekb (
variable). In addition, becausel R is a competing cause for the
explanation ofC'I D it is also important to balance the number of
examples with respect to the R values.

Therefore the portion of the noisy TIMIT database dedicated
to the BN training and testing is balanced accordingly: 8&6 s
quences ofthefor/ R, TID,CID, Sc, QM are used, uniformly
distributed with respect to th&/ R andT'I D values.

3.5. Experimental results

To test the BN accuracy in predicting modality reliabilitgvaer-
form a series of cross-validation experiment using the rizzde
database described above. The experiments are done assfollo
1) generate a balanced training data set containing a raiséem
lection of 2/3 of all the database examples, 2) use the remain
ing part as testing data, 3) train and test the BN with theecorr
sponding training and testing data set, 4) iterate the psd€0
times. During testingl'/ D and M R variables are unobserved,
while CID, Sc, QM are observed (Fig. 1). In these conditions,
acccording to thel-separation rules [97'TD and M R become
dependent through their common observed childré® andSc.
We calculate the posterid?(M R|CID, Sc, QM) using the junc-
tion tree algorithm. To select the most likely value fafR we use
an argmax criterion.

This value is then matched over the test 3€R labels and
accuracies are calculated accordingly. Fig. 3 shows a graph
representation of the posteriét(M R|CID, Sc, QM) resulting

in our case we have a single channel speech signal we estimatérom the last experiment iteration. The first graph showslghe

these energies based on a voice activity detection (VAD)said
sequent pause/speech segmentation. The VAD algorithnsexba
on the "Murphy algorithm” described in [8]. We then assume
that the average energy of pauses is associated with thais#.n
Our SNR-related modality quality measu@X/) is given by the
formula:

N N\ 20
QM = 10log,, 2= 150 (1) 2)
Yoieq In(i)s2(3)
where{s(¢)},7 = 1, ..., N is the acquired speech signal con-

taining N samples/s(:) andIn(i) are the indicator functions of
the current sample(7) being speech or noise during pauses (e.g.
Is(i)=1 if s() is a speech samplés(:)=0 otherwise) as reported
by the voice activity detector.

3.4. Dataset balancing

Assuming the speaker verification classifier performs wledl data
set used for BN training will by definition always containdefata
labelledM R = 0 (TID # CID) than data labelled/R = 1.

beling of the 292 testing examples, where the y-axis valuenef
corresponds td/ R = 1, and the y-axis value of zerofd R = 0.
The second graph corresponds to the hard decision madéR®n
by the argmax criterion. The third graph depicts the values for
P(MR =1|CID, Sc,QM).

Table 1 presents the results for the client and impostor-accu
racy along with their standard deviation over 100 runs.

[ 100 trials | clients | impostors| overall |
mean accuracy 82.6 % | 76.2% 79.4%
o 2.9% 2.6% 2.1%

Table 1. Accuracy of modality reliability estimation for clients
and impostors

4. EXPERIMENTS - IMPROVING SPEAKER
VERIFICATION PERFORMANCE

To assess the potential of the reliability measure in imimgspea-
ker verification performance, we compare the performande/of
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Fig. 3. Graphical representation fét(M R|C 1D, Sc, QM)

speaker verification systems. The baseline system dedciibe

subsection 3.2 is forced to take all testing presentatiodspéve a
score and accept/reject decisi@/(D). The improved system im-
plements a simple repair sequence: it is allowed to requeshar
presentation in substitution if it estimates that the mibgled unre-
liable for this presentation{(M R = 1|CID, Sc,QM) < 0.5).
If the second presentation also has low reliability, theesyspicks
the presentation with highest modality reliability to puoeé the fi-
nal score and accept/reject decision. In this case the mhag
similar to amax rule on M R for intra-modality fusion.

For the experiment the Bayesian network was trained as de-

scribed in subsection 3.1, using 248 examples of noisy tqties
sentations and 248 examples of noisy impostor presengatidre

test set held out to test the baseline and improved speakiér ve

cation systems consists of 258 client presentations and0Li29-
postor presentations. In addition, the improved systenahather
pool of 258 client presentations and 12900 impostor presens
available for re-presentation requests as described above

As shown in Fig. 4, incorporating modality reliability info
mation lowers the probability of error over most of the opieg
range and results in the EER dropping from 9.3% to 2.8%.

baseline (9.3% EER) and improved (2.8% EER) speaker verification systems
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—— with reliability measure
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Fig. 4. DET curve for baseline and improved speaker verification [l

systems on noisy data

5. CONCLUSIONS

We have presented a probabilistic measure of modalityhiélia
ity taking into account a signal-domain measure and inftiona
about the speaker verification classifier behaviour. Bayeset-

works were used to model the dependencies between thesesour
of information in order to infer the a posteriori distribariover the
possible reliability measure values. It was found thateiteg the
Bayesian network training set is important in order not tstithe
reliability measure in the case of clients or impostors. fihiabil-

ity measure was then applied to a speaker verification tasiate

age a repair sequence which requests an additional préearifa
the initial presentation is of insufficient reliability. Was shown
that a significant gain in terms of verification error rate ldooe

obtained by rejecting low-reliability user presentati@tsording
to the reliability measure. Future work includes applyihg te-
liability measure in parallel, rather than sequential, boration

strategies, and applying it to the multimodal identity fiedtion

problem.
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