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ABSTRACT

In this paper, a probabilistic measure for reliability of speaker
verification under noisy acoustic conditions is proposed. ABa-
yesian network is used to estimate a probability for verification
errors, given the GMM-based speaker verification system output
and additional information about the level of acoustic noise. In
particular, the log-likelihood ratio and a signal-to-noise related fea-
ture are used to account for the adverse acoustic conditions. The
probabilistic measure is subsequently employed in governing a re-
pair sequence of trials for acquiring additional speech presenta-
tions which are less likely to lead to unreliable verification. The
potential of the proposed method is tested through cross-validation
experiments. Finally, the benefits of the repair sequence interms of
verification accuracy is evaluated on a noisy environment speaker
verification task.

1. INTRODUCTION

The goal of biometric identity verification is to assert whether a
certain person is indeed whom she claims to be, based on behav-
ioural or biological traits, also known as modalities. Speech is a
personal trait that can be used for biometric user verification and
benefits from ease of use for the end user and cheap sensor hard-
ware, and can be deployed in a variety of environments. Speaker
verification performance is however very dependent on environ-
mental acoustic conditions, in addition to intra-speaker variability
which is strongly influenced by health factors, emotional state, and
inter-session time.

It is well known that the statistical distribution of common
speech features such as MFCCs is significantly distorted when
the original clean speech signal is subjected to additive noise [1].
Thus, the scores output from the classifier of a speaker verifica-
tion system based on models of statistical distribution of features
in clean acoustic conditions will notably change when presented
with feature vectors corrupted by noise. In this situation some im-
postors will be able to obtain higher scores, and respectively some
clients will obtain lower scores, hence increasing false accept (FA)
or false reject (FR) rates.

It has been shown that combining scores for multiple presen-
tations of the same biometric modality (for example face images)
reduces the overall verification error rate [2]. Other approaches
have combined repeated measurements of the same modality, mul-
tiple classifiers on the same modality, and different modalities in a
sequential fashion, exploiting the combination of the above strate-
gies until the system performance is sufficient [3].

Accurate verification depends on good data quality. Conse-
quently, the output from the classifier of a speaker verification

system may not be sufficiently robust against a noisy environ-
ment, and a reliability measure incorporating informationabout
the acoustic environment and the classifier behaviour should be
integrated into the overall verification scheme.

This reliability measure can be used in several ways: in the
case of a multimodal biometric system it can be used to weigh the
speech modality classifier output with respect to other modalities
immune to acoustic noise. In a single-modality speech-based bio-
metric system, the reliability measure can be used in a sequential
manner to reject presentations for this measure is too low, or to
weigh the classifier output scores for several presentations before
combining them. It should be noted that in our case the input to
the “fusion” decision rule would not directly be the classifier score
as is the case in fixed rules [4], but the modality reliabilitymea-
sure obtained through the training process. Recent research in this
direction has explored the use of quality measures for improving
speaker verification accuracy, using either signal features to weigh
a score in verification [5], or score-related quantities [6]for enroll-
ment quality measure.

Our approach combines information about both the acoustic
environment and the classifier behaviour in order to providemodal-
ity reliability information in verification. In this context the result
of speaker verification is directly influenced by the real state of the
user identity (client or impostor) and the state of the modality reli-
ability measure, given additional evidence about the enviromental
acoustic conditions. Since the intercausal relations of these two
factors cannot be established deterministically, the proposed prob-
abilistic reliability measure is justified. Instead of being assigned a
particular value, a probabilistic reliability measure is defined by a
distribution over its possible values. In this paper we report on the
use of Bayesian networks for inferring the the modality reliabil-
ity distribution in a speaker verification task under noisy acoustic
conditions.

The paper is structured as follows: Section 2 describes Baye-
sian networks for modelling the distribution of the modality relia-
bility mesure. Section 3 demonstrates the potential of the method
through cross-validation experiments. In Section 4 the probabilis-
tic measure is applied to a speaker verification task, in repair se-
quences for acquiring speech presentations which are less likely to
lead to unreliable verification.

2. A BAYESIAN NETWORK FOR SPEECH MODALITY
RELIABILITY MEASUREMENT

Bayesian Networks (BNs) are graphical models used to describe a
joint probability distribution (pdf) over a finite set of random vari-
ables [7], and are completely defined by the triple(V, A, CPD),
whereV is the set of nodes associated with the random variables,
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A is the set of arcs andCPD is the set of conditional probability
distributions associated with the nodes’ variables. The arcs be-
tween the nodes point from all parent variables to their children
variables. The intuition behind directionality represents the fact
that the parent variables can directly influence their children and
this influence can be interpreted as a cause-effect relationship. The
joint pdf represented by the BN can be written as a product of all
nodes’ CPDs (conditional probability densities of each node given
its parents). Finally, the basic task for any BN is to performin-
ference, that is to compute the posterior distribution for aset of
”query” variables, given some observed event, i.e. evidence for
some observed variables.

In our case, in order to represent the real state of the user iden-
tity and the verification result we introduce two binary variables:
True User identity (TID) and Classified User identity (CID).
TID = 1 represents the event ”the system user is a client”, while
TID = 0 corresponds to the event ”the system user is an im-
postor”. CID = {0, 1} corresponds to the events ”the speech-
based classifier accepts the identitity claim” (CID = 1) and ”the
speech-based classifier rejects the identity claim” (CID = 0). To
define the reliability measure we introduce another binary variable
MR, whereMR = 1 represents that the ”modality is reliable”
andMR = 0 represents the opposite statement.

The Bayesian network in Fig. 1 (a) depicts a causal model
for the variablesTID,CID and MR. In this network the True
User Identity can be seen as the cause of a particular Classified
User Identity value, and the Modality Reliability can be seen as an
alternative cause that might also point at errors in theCID value.
For exampleCID=1 can be explained byTID = 1 andMR =
1 (the classifier makes a correct verification decision because the
modality is reliable and the user is a client) orTID = 0 and
MR = 0 (the classifier makes a wrong verification decision even
though the user is an impostor because the modality is unreliable).

Fig. 1. Bayesian networks for estimation of modality reliability

In this case,V = (TID, CID, MR), and taking into account
the arcs defined in Fig. 1(a), the joint pdf overV can be written as:

P (TID,CID, MR) =

P (MR)P (CID|MR,TID)P (TID)· (1)

Since the variablesTID andMR are not observable during
speaker verification, we need to provide additional sourcesof in-
formation that can be observed and can provide evidence in favour
of particular(TID,MR) values. The verification score (likeli-
hood ratio) is known to carry information about the state of the
user identity (client/impostor), while a signal quality measure can
be used to provide evidence for theMR variable. For example the
signal-to-noise (SNR) ratio of the speech signal can be used to
measure the level of the acoustic noise. Therefore, we definethe
two continuous variablesSc andQM , corresponding to the Score
of the verification and the Quality Measure for the given modality
(SNR in the case of speech).MR, CID andTID can be seen

as causes for the observedSc value, while MR can be seen as the
cause forQM values.

The final version of the BN incorporating all these variables
V = (TID,CID, MR, Sc, QM) is depicted in Fig. 1 (b). Dis-
crete variables are drawn as squares, and circles are used for the
continuous ones. The CPD of a discrete variables is represented by
a probability table, while continuous variables make use ofarbi-
trary parametric CPDs. In this paper, we use conditional Gaussian
distributions.

In our case the posteriorP (MR|CID,Sc, QM) is the dis-
tribution of modality reliability measure. To mark an observed
variable in the Bayesian network we use shading, and unobserved
variables are left white. Once the CPD functions for all the nodes
given their parents are defined, an exact or approximate inference
on each node in the network can be performed. Since the number
of variables in our case is small, exact inference on a junction tree
algorithm can be applied [7].

3. EXPERIMENTS - MODALITY RELIABILITY

3.1. BN Training strategy

In order to perform consistent inference onP (MR|CID, Sc, QM),
the conditional probability distribution parameters for the network
variables have to be learned from training examples. In the case of
fully observable variables in the training set, the estimation can be
done with random initialization and a maximum likelihood (ML)
training technique [7]. After the training, the posterior distribution
P (MR|CID, Sc, QM) can be used as a probabilistic mesure of
speech modality reliability.
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Fig. 2. Combined speaker verification and modality reliability es-
timation systems

The training setup for the Bayesian network is depicted in
Fig. 2. A speaker verification system provides values for theCID,
Sc variables, and an acoustic environmental condition measure
provides the quality measure (QM ) values. We use an SNR-related
measure described in section 3.3. To simulate the effects ofa de-
graded acoustic environment, babble-type noise corresponding to
a possible deployment environment withSNRs following a ran-
dom uniform distribution from 5 to 55 dB is added to about 12 s
of held-out data for each user. This noisy speech data is an in-
put source for the verification system, which calculatesSc and
setsCID according to the threshold for that user. According to
the match between the true identity of the speaker (TID) and the
speaker verifier output (CID), we labelMR in the BN training
data as being “true” (TID = CID thenMR = 1) or “false”
(TID 6= CID thenMR = 0). In that way, we aim to model the



relationship between verification errors and environmental condi-
tions. Thus, we assume the speaker verification classifier performs
above chance level in clean conditions.

3.2. Speaker verification system

The database used for experiments is a 258-users subset of TIMIT,
divided in 186 males and 72 females. Approximately 20 seconds
of data in 6 presentations (phonetically rich read sentences) for
each user is used to train the user models. The remaining 4 client
presentations per user are held out for modality reliability exper-
iments. In verification, no separation is made between male and
female pool.

The speaker verification system uses voice activity detection to
remove pause-related portions of speech, after which 12 MFCCs
with first and second order time derivatives are extracted with cep-
stral mean normalisation. The features are modelled by 64 Gaus-
sian components models with diagonal covariance matrices.Log-
likelihood ratio scores are produced using a 64 Gaussians world
model for normalisation.

Speaker-dependent thresholds are obtained a priori in the fol-
lowing manner: the 6 presentations used for model training are
used to obtain 6 client scores. 100 randomly selected impostors
presentations are used to produce 100 impostor scores. Since the
client presentations used to obtain verification scores were already
used for training, the client scores will be over-optimistic and will
result in a very high number of false rejects. This is adressed by
assuming that the scores of the 2 best impostor presentations are
close to the worse client scores that will be obtained in testing, and
adding the former to the client scores pool. Then, a Gaussiandis-
tribution is estimated from “impostors only” and “clients+2 best
impostors” scores and the intersection point between the curves is
taken as threshold. This has the disadvantage of overestimating
the variance of the client distribution.

3.3. Acoustic environmental conditions quality measure

To measure the acoustical conditions for the speech modality we
use a signal-to-noise ratio (SNR) -related measure. TheSNR

can be defined as the ratio of the average energy of the speech sig-
nal divided by the average energy of the acoustic noise in dB.As
in our case we have a single channel speech signal we estimate
these energies based on a voice activity detection (VAD) andsub-
sequent pause/speech segmentation. The VAD algorithm is based
on the ”Murphy algorithm” described in [8]. We then assume
that the average energy of pauses is associated with that of noise.
Our SNR-related modality quality measure (QM ) is given by the
formula:

QM = 10 log
10

P
N

i=1
Is(i)s2(i)P

N

i=1
In(i)s2(i)

(2)

where{s(i)}, i = 1, . . . , N is the acquired speech signal con-
tainingN samples,Is(i) andIn(i) are the indicator functions of
the current samples(i) being speech or noise during pauses (e.g.
Is(i)=1 if s(i) is a speech sample,Is(i)=0 otherwise) as reported
by the voice activity detector.

3.4. Dataset balancing

Assuming the speaker verification classifier performs well,the data
set used for BN training will by definition always contain less data
labelledMR = 0 (TID 6= CID) than data labelledMR = 1.

An additional source of imbalance is that for most biometricdata-
bases, the size of client data (TID = 1) is smaller than impostor
data (TID = 0); with the random impostors technique (“pseudo-
impostors”) any other user can serve as an impostor to a particular
user.

During training of the Bayesian network the prior probabili-
ties over theMR andTID variables are assigned according to
the counts of data samples corresponding to the differentMR

or TID variable realisations. Thus, if the Bayesian network is
trained without special care, the learned prior probabilities on the
MR andTID variables will be mismatched for client and impos-
tor access because the counts for impostor accesses will be much
higher. Since we do not want to bias the final posteriors over the
MR values on the number of data counts, it is important to bal-
ance the number of examples for client and impostor access (TID
variable). In addition, becauseMR is a competing cause for the
explanation ofCID it is also important to balance the number of
examples with respect to theMR values.

Therefore the portion of the noisy TIMIT database dedicated
to the BN training and testing is balanced accordingly: 876 se-
quences of the formMR, TID,CID, Sc, QM are used, uniformly
distributed with respect to theMR andTID values.

3.5. Experimental results

To test the BN accuracy in predicting modality reliability we per-
form a series of cross-validation experiment using the balanced
database described above. The experiments are done as follows:
1) generate a balanced training data set containing a randomse-
lection of 2/3 of all the database examples, 2) use the remain-
ing part as testing data, 3) train and test the BN with the corre-
sponding training and testing data set, 4) iterate the process 100
times. During testingTID and MR variables are unobserved,
while CID, Sc, QM are observed (Fig. 1). In these conditions,
acccording to thed-separation rules [9]TID and MR become
dependent through their common observed childrenCID andSc.
We calculate the posteriorP (MR|CID, Sc, QM) using the junc-
tion tree algorithm. To select the most likely value forMR we use
an argmax criterion.

This value is then matched over the test setMR labels and
accuracies are calculated accordingly. Fig. 3 shows a graphical
representation of the posteriorP (MR|CID, Sc, QM) resulting
from the last experiment iteration. The first graph shows thela-
beling of the 292 testing examples, where the y-axis value ofone
corresponds toMR = 1, and the y-axis value of zero toMR = 0.
The second graph corresponds to the hard decision made onMR

by theargmax criterion. The third graph depicts the values for
P (MR = 1|CID, Sc, QM).

Table 1 presents the results for the client and impostor accu-
racy along with their standard deviation over 100 runs.

100 trials clients impostors overall

mean accuracy 82.6 % 76.2% 79.4%
σ 2.9% 2.6% 2.1%

Table 1. Accuracy of modality reliability estimation for clients
and impostors

4. EXPERIMENTS - IMPROVING SPEAKER
VERIFICATION PERFORMANCE

To assess the potential of the reliability measure in improving spea-
ker verification performance, we compare the performance oftwo



Fig. 3. Graphical representation forP (MR|CID, Sc, QM)

speaker verification systems. The baseline system described in
subsection 3.2 is forced to take all testing presentations and give a
score and accept/reject decision (CID). The improved system im-
plements a simple repair sequence: it is allowed to request another
presentation in substitution if it estimates that the modality is unre-
liable for this presentation (P (MR = 1|CID, Sc, QM) < 0.5).
If the second presentation also has low reliability, the system picks
the presentation with highest modality reliability to produce the fi-
nal score and accept/reject decision. In this case the behaviour is
similar to amax rule onMR for intra-modality fusion.

For the experiment the Bayesian network was trained as de-
scribed in subsection 3.1, using 248 examples of noisy client pre-
sentations and 248 examples of noisy impostor presentations. The
test set held out to test the baseline and improved speaker verifi-
cation systems consists of 258 client presentations and 12900 im-
postor presentations. In addition, the improved system hadanother
pool of 258 client presentations and 12900 impostor presentations
available for re-presentation requests as described above.

As shown in Fig. 4, incorporating modality reliability infor-
mation lowers the probability of error over most of the operating
range and results in the EER dropping from 9.3% to 2.8%.
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5. CONCLUSIONS

We have presented a probabilistic measure of modality reliabil-
ity taking into account a signal-domain measure and information
about the speaker verification classifier behaviour. Bayesian net-
works were used to model the dependencies between these sources
of information in order to infer the a posteriori distribution over the
possible reliability measure values. It was found that balancing the
Bayesian network training set is important in order not to bias the
reliability measure in the case of clients or impostors. Thereliabil-
ity measure was then applied to a speaker verification task toman-
age a repair sequence which requests an additional presentation if
the initial presentation is of insufficient reliability. Itwas shown
that a significant gain in terms of verification error rate could be
obtained by rejecting low-reliability user presentationsaccording
to the reliability measure. Future work includes applying the re-
liability measure in parallel, rather than sequential, combination
strategies, and applying it to the multimodal identity verification
problem.
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