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ABSTRACT 

 
Recent studies on multi-robot localization have shown that 
the uncertainty of robot location may be considerably 
reduced by optimally fusing odometry and the relative 
angles of sight (bearing) among the team members. 
However, the latter requires the capability for each robot 
of detecting the other members up to large distances and 
wide field of view. Furthermore, robustness and precision 
in estimating the relative angle of sight is of great 
importance. 
In this paper we show how all of these requirements may 
be achieved by employing an omnidirectional sensor made 
up of a conic mirror and a simple webcam.  
We use different colored lights to distinguish the robots 
and optical defocusing to identify the lights. We show that 
defocusing increases the detection range by several meters, 
compensating the decay of resolution related to the 
omnidirectional view, without losing robustness and 
precision. To allow a real time implementation of light 
tracking, we use a recent tree-based union find technique 
for color segmentation and region merging. 
We also present a self-calibration technique based on an 
Extended Kalman Filter (EKF) to derive the intrinsic 
parameters of the robot-sensor system. The performance of 
the approach is shown through experimental results. 
 

1. INTRODUCTION 
 
     Many robotic applications require that robots work in 
collaboration in order to perform certain tasks. Therefore, 
precise relative localization (position and orientation) of 
each member is needed for mobile robot autonomy. In the 
last decades, several solutions for cooperative localization 
have been proposed (see [1], [2], [3], [4], [5] and [6]).  
      In general the relative observations among robots may 
be categorized into three special cases: relative bearing 
(i.e. the direction of the observed member in the reference 
of the observer); relative distance; relative orientation (i.e. 
the orientation of the observed in the reference of the 
observer). When the three observations are simultaneously 

combined, they contain all the necessary information to 
estimate the configuration of the observed in the reference 
of the observer.  
     Recently, in [7] it has been shown that the accuracy of 
the localization is strongly improved by only using the 
relative bearing rather than the whole relative 
configuration. Conversely, in [1], [2], [3], [4], [5] and [6], 
all global relative information is exploited.  
The generally adopted way to get the relative configuration 
of the observed in the reference of the observer is some 
combination of range sensors, like laser range finders,  
sonar (see [3]), and single or stereo cameras. Instead in [6] 
a fixed overhead camera with ground truth is exploited to 
estimate all robot configurations, but this is only possible 
for small environments. Other solutions use single frontal 
cameras but the robots need to move in such a way that 
they can see each other at all times. 
     As mentioned above, the configurations of all robots 
may be inferred by only fusing odometry and relative 
bearing. Therefore, instead of using expensive equipment 
to measure the distances, we only need a sensor to measure 
the bearing angle. In order to implement this strategy the 
robots are required to maintain visual contact among them. 
For this, a 360° omnidirectional camera seems to be the 
best solution with respect to a standard pinhole camera. 
Conversely, many problems occur because of field 
distortion and decay of visual resolution, since a larger 
region of space (6-9 times bigger) is projected in the same 
camera image plane. Because of this, standard object 
recognition techniques cannot be employed, nor can 
colored landmarks be used since their identification would 
be restricted to a smaller distance.  
     In the next section of this paper we show how some of 
these difficulties may be overcome employing an 
omnidirectional sensor composed of a conic mirror and a 
simple webcam. In section III we present the robot 
detection method, which uses different colored lights to 
distinguish the robots. Then we show how to take 
advantage of optical defocusing to identify the lights and 
increase the detection range by several meters. By doing 
so, we compensate the decay of resolution related to the 
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omnidirectional view without losing robustness and 
precision. In section IV we briefly describe a tree-based 
union find technique for color segmentation and region 
merging, which we used to allow a real time 
implementation of light tracking. In section V, we 
introduce an experimental self-calibration technique, based 
on EKF, to derive the intrinsic parameters of the robot-
sensor system; that is, how to automatically derive position 
and orientation of the camera in the robot reference frame.  
Finally, in the last section, the performance of the 
approach is shown through experimental results. 
 

2. OMNIDIRECTIONAL CONIC SYSTEM 
 
     Omnidirectional imaging systems are typically arranged 
by positioning a standard camera below a convex 
reflective surface. The properties of the image and the 
magnitude of the field of vision will depend on the chosen 
mirror profile, which is usually spherical, parabolic [8], 
hyperbolic [9] or equiangular [10], [11]. These families of 
mirrors provide views with wide angles of elevation (e.g. 
130° in the equiangular one), which are well-suited to 
robot navigation, environment exploration and 
representation, but they are not appropriate for object 
detection and recognition because the objects would 
appear too small to be correctly identified. Moreover, 
because of the precision involved in their manufacturing, 
they can be very expensive, especially if many are needed, 
as in multi-robot tasks. 
     Yagi et al. [12] were the first to propose the use of a 
conic projection image sensor (COPIS) for vision-guided 
navigation. It consists of a conic mirror and a camera, with 
its optical axis aligned with the cone axis as shown in Fig. 
1. 

 
 
Figure 1: Arrangement of the cone-camera system. 
 
By this arrangement the visual field covers a range 
between two view angles 1α , 2α  which are determined 
from the visual angle γ  of the camera and the vertex angle 
δ  of the conic mirror as: 
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Thus the angle of sight provided by the sensor is 
2/21 γαα =− . Note that, because of the linear mirror 

profile, the visual space is not distorted along vertical 
planes passing through the cone axis. Conversely, the field 

of vision is smaller than other catadioptric configurations, 
but this leads to a greater angular resolution.  
Moreover, the advantages of using a conic mirror are its 
high quality, its inexpensiveness, and its easy manufacture. 
When the axes of the camera and the mirror are aligned, 
the real bearing angle can be directly computed from the 
image because there is an invariant relation with the 
distance from and the height of the object.      
     The parameters 21 ,αα  determine respectively the 
minimum and maximum distance from which objects can 
be seen. In order to have an angle of view independent of 
the visual angle of the camera (that generally ranges 
between °= 30γ  and °= 70γ  for different camera models) 
we set °== 921 δα , that is a cone with a 92° vertex angle. 
In this way, the sensor provides a field of vision extending 
from the horizon and upwards. In fact, °= 901α  would be 
sufficient to assure the desired field of vision, but by 
choosing °= 921α  we can prevent any manufacture errors 
or camera-mirror misalignments. The conic mirror that has 
been designed is shown in Fig. 2. 
 

a)                                              b) 
Figure 2: Our conic mirror placed above the webcam (a). Design 
parameters (b). 
 
This arrangement of course forces us to fix the landmark 
right above the mirror (see Fig. 4). As a result, its 
projection on the camera plane of another robot will 
appear at the edges of the image when the robots are close 
to each other and will approach the image center when 
they are far. In our arrangement we used a USB webcam 
with a horizontal field of vision of °= 40γ  and the 
minimum distance for which the object is detectable is 40 
cm.  
 

3. DETECTION 
 
3.1. Light Detection 
 )1(
     The decay of visual resolution and the distortion due to 
the non-planar mirror profile make standard object 
recognition techniques unsuitable for omnidirectional 
cameras. Similarly, colored blobs placed above the robot, 
such as the ones used in the RoboCup domain, are also 
inappropriate. Fig. 3 shows two pictures taken respectively 



by an equiangular (a) and a conic (b) sensor after 
unwrapping. The colored blobs (indicated by the arrows) 
are only 1 m away from the camera. Because of the major 
angular resolution of the conic mirror, in (b) the blobs are 
more detectable. However, because of different lighting 
conditions and shadows, the color intensity diffused by the 
blobs may change and, as a result, robustness is 
compromised. Moreover, the greatest distance for which 
the object is still visible is 2-3 m because the size of the 
object image decays inversely with the distance. 
 

 
a) 

 
b) 
Figure 3: Unwrapped images taken by means of an  equiangular (a) and 
a conic mirror (b). The colored blobs used are indicated by the arrows. 
They are located only 1 m away from the camera. 
 
For our purposes, the robots should maintain visual contact 
with one another for several meters and with the minimum 
number of false positives. Thus, the above strategy is not 
practical.  
     Instead of using colored blobs we exploited colored 
lights placed on the robot mirror. Each of these consists of 
a set of 24 high luminosity and monochromatic LED 
emitters (2 V, 20 mA), having 20° of directivity. They are 
positioned along the perimeter of a circle in order to have 
an omnidirectional beam (Fig. 4). Different colored lights 
are used to distinguish more robots. 
 

 
 
Figure 4: The circular set of LEDs forming the light source, positioned 
on the mirror. 
 
3.2. CCD Saturation 
 
     The biggest difficulty that we found using colored light 
detection was CCD saturation. Saturation is a normal part 
of CCD operation. Each pixel of the CCD can only contain 

several hundred thousand electrons. Once this capacity is 
exceeded, these excess electrons begin to pour over the 
potential barriers that define the pixel and into adjacent 
pixels [13]. Consequently, the values associated to the 
saturated pixels reach the maximum (e.g. 255 for standard 
24 bit RGB cameras) and appear white. As a result, color 
information is lost. Moreover, these saturated white pixels 
are surrounded by a glow or a halo, due to other optical 
phenomena like the internal reflection of the camera lens 
and the aperture of the iris. 
This was exactly the problem we encountered in our 
system, because the bright light coming from the LED 
beam points directly towards the conic mirror, thus 
saturating the camera (Fig. 5). 
 

 
 
Figure 5: The light source used in our experiments (pointed to by the 
arrow) as seen through the conic mirror. It appears white because of 
saturation. The source is located 5 meters away from the sensor. 
 
3.3. Optical Defocusing 

 
Figure 6: The camera geometry and camera parameters. 

 
     Because of saturation, standard color detection 
techniques cannot be applied. In order to have the original 
light color correctly reproduced into the CCD, the light 
should be very far from the camera. Thus, to avoid the 
saturation problem, we experimented the optical 
defocusing, that is, we only modify the distance between 
CCD and lens, by acting manually on the camera 
objective. The intuitive reason for doing so is that 
defocusing spreads the light coming into the CCD into a 
larger region with less intensity. Theoretically, this may be 
explained in terms of spatial convolution. In fact, in optics, 
the blur of an image due to defocusing can be described by 
a point spread function [14]. Let P be a point in the scene 
and let p’ be its focused image (Fig. 6).  If P is not in focus 
then the image of P becomes a circular image p called the 
blur circle. The point spread function represents the 
precise structure of the blur circle. Due to diffraction, 
variations of light wavelength and other optical 



phenomena, this is usually described using a two-
dimensional Gaussian function, which can be thought as 
the impulse response of the lens system (i.e. the blurring 
filter): 
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Where σ  is the spread parameter, which depends on the 
focal length f, the lens diameter D, the real distance s of 
the image from the lens, and the distance u from the real 
object [14]: 
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     So, if  is the observed image of an object on the 
screen and  is the corresponding focused image, 
then g is given by the convolution 
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In the presence of saturation,  tends to a Dirac 
function. The more we increase the defocusing (and 
therefore 

),( yxf

σ ) the more the saturation degrades. At a certain 
level of defocusing and at a given distance from the light 
source, it completely vanishes (see Fig. 7).  
 

 
 
Figure 7: The same image as in Fig. 5 but after defocusing. Now the light 
source (pointed to by the arrow) appears in its original color. It also 
looks like an ellipse. The source is located 5 meters away from the sensor. 
 
Fig. 7 is the same as Fig. 5 but after defocusing. Observe 
that the image of the light source has been spread into an 
ellipse; this may be easily explained by observing that the 
ellipse is the convolution of a rectangle (the previous 
saturated image) and the Gaussian impulse response. Note 
that now saturation is annihilated. The light source clearly 
appears in its original color (red) and its edges are also 
well defined.  
This technique of avoiding saturation via defocusing has 
proved to correctly and robustly identify the light source 
within a range between 40 cm and 5 meters. In fact, 
because of the spreading, the bright point appears larger 
and thus may be identified up to several meters. For 
instance, the picture depicted in Fig. 7 was obtained with 
the light source located 5 meters away from the vision 
sensor.  
 

4. FAST COLOR SEGMENTATION AND MERGING 
 
     The most important steps in our color vision task are 
segmentation and merging. The first one classifies each 
pixel in an image into one of a discrete number of color 
classes. The other one merges pixels belonging to the same 
color class into connected regions. Since these operations 
are crucial in real-time mobile robot applications, we 
implemented the tree-based union find strategy described 
in [15]. In this approach, very fast color segmentation is 
performed by using look-up-tables. Then, the first stage is 
to compute a run length encoded version of the segmented 
image. This is done by scanning horizontal rows and 
searching for a run of adjacent pixels of the same color 
class (see Fig. 8).  
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Figure 8: The process of region merging by addressing the run’s parent 
elements. Each rectangle represents a run that is a set of adjacent pixels 
of the same color class. 
 
Subsequently, a second pass is needed to merge the 
classified runs. This is performed by assigning to each run 
an identifier indicating the run’s parent element, that is, the 
upper leftmost member of the region. Initially, each run 
labels itself as its parent. Then the merging procedure 
scans all runs and merges those which are of the same 
color class and which overlap under four-connectedness. 
At the same time, it updates the run’s parent element 
identifier by pointing it towards the upper leftmost 
member of the same color region. The process is illustrated 
in Fig. 8. In our equipment (Pentium IV, 1.7 GHz), this 
algorithm takes about 7 ms to segment and merge up to 32 
different color regions for images of size 640x480 pixels. 
 

5. SELF CALIBRATION BASED ON EKF 
 
     As we said at the beginning, the bearing angle 
measurements in the local robot frame can be directly 
inferred from the angle of each light source in the 
defocused image. The camera reference frame is chosen 
with the x and y axes parallel to the horizontal and vertical 
borders of the image. The axes origin is fixed at the 
intersection of the radial edges in the omnidirectional 
image because we assume that the axes of the camera and 
the cone are perfectly aligned. We verified this hypothesis 
to be satisfied. 
In order to measure the angle, we actually compute the 
barycentre of each color blob in the omnidirectional 
image. In fact, recall that due to defocusing, the color blob 
appears as an ellipse, thus, the angle to the barycentre is 
the same as the departure direction of the light. However, 
we also have to take into account the position and 
orientation of the sensor in the robot reference frame (see 



Fig. 9). In fact, an error of 1 cm in estimating the position 
of the camera with respect to the robot’s frame would 
produce a bearing error of 0.2° if the distance between the 
robots is 3 m. 
Furthermore, regarding the observed robot, we have to 
consider the position of the light source in its own 
reference frame, which is in general not exactly at the 
origin. However, we fixed the light source on the sensor 
mirror and therefore only three parameters (φο , ρo , θο  in 
Fig. 9) need to be estimated. To this end, we introduce a 
method based on an EKF.  In particular, we describe a 
simple procedure to estimate the parameters characterizing 
the transformation between two reference frames, 
respectively attached to the robot and to the camera. Since 
we assume that the mirror axis is aligned with the camera’s 
optical axis, this transformation is between two 2D 
references and therefore is fully characterized by the three 
parameters φο , ρo  and  θο. The two reference frames are 
shown in Fig. 9. To evaluate the three parameters, we 
introduce an EKF, which simultaneously estimates the 
state (d, θ , φο , ρo , θο )T, where d and θ  are respectively 
the distance between the robot center and the light source 
and the angle between the robot orientation and the line 
connecting the light source with the robot center (see Fig. 
9).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: The two reference frames respectively attached to the robot and 
to the camera. The five parameters estimated through an EKF and the 
bearing observations β are also indicated. 

The filter uses the encoder readings as inputs and the 
bearing angles of the light source in the camera reference 
as outputs. We chose to characterize the system with a 
state containing the previous five parameters since it can 
be proved that, with the previous inputs and outputs, this 
state is observable [16]. On the contrary, the state 
containing the whole robot configuration together with the 
three parameters φο , ρo , θο is not observable [17]. The 
dynamics of our system are described through the 
following equations: 

 

 
 

 
 
 

 
 
 

where δρi and δθi are respectively the robot translation 
and rotation. Since our robot is equipped with a 
differential drive system, their expressions are: 
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where δρR and δρL are the right and left wheel 
translations, directly returned by the encoders, and b  is the 
distance between the wheels. 
The bearing angle of the light source in the camera 
reference frame corresponding to the available 
observations has the following analytical expression: 
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The EKF estimates the state (d, θ , φο , ρo , θο ) by fusing 
the information coming from the encoder data and the 
bearing angle observations. In order to implement the 
standard equations of this filter we need to compute the 
two Jacobians Fx and Fu of the dynamics in (5) 
respectively with respect to the state and with respect to 
the encoder readings (δρR , δρL). Finally, we need to 
compute the Jacobian (H) of the observation function in 
(7) with respect to the state [18]. By a direct computation 
we obtain: 
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6. EXPERIMENTAL RESULTS 
 
     Before applying the calibration procedure described 
above, we needed to estimate the precision of our sensor in 
measuring angles from the light source. In order to do so, 
we moved the light along a circle centered on the sensor 
and compared the real displacement with the displacement 
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inferred from the bearing given by the sensor. We obtained 
very good precision with uncertainty less than 0.25°. 
     In the calibration phase, we set our sensor on the robot 
with the following settings: πφ −≈ , 07.0≈ρ  m, and 

2/πϑ −≈ , all of which we measured manually. Then, we 
let the robot move randomly along a winding trajectory of 
about 4.5 m. Finally, the encoder data and bearing 
measurements were fused according to the calibration 
procedure above. The values of the three parameters 
estimated during motion are plotted versus distance in Fig. 
10. As you can see, after 3 meters of navigation they start 
to converge to a stable value. 
Finally, the estimated parameters were 11.30 −=φ  rad, 

074.00 =ρ  m and 58.10 −=ϑ  rad. Note that they are 
consistent with the values measured manually. Also, 
observe in Fig. 10 that the plot of 0ρ  starts at 0 since we 
took the robot origin as the initial value in the EKF. 
Nevertheless, its estimation converges to the expected 
value. 

 
Figure 10: The estimated φο , ρo , θο during motion, plotted versus 
distance. 
 
7. CONCLUSIONS 
 
     In this paper we introduced a new approach for 
estimating the bearing angle of a robot in the local 
reference frame of another robot. The proposed method 
uses an omnidirectional sensor made up of a conic mirror 
and a simple webcam. The design of this sensor is also 
described in the paper.  
With the aim of an application for multi-robot localization, 
we used colored light sources to distinguish the robots, and 
optical defocusing to identify the lights. We showed that 
defocusing allows us to avoid CCD saturation and to 
increase the detection range by several meters, 
compensating the decay of resolution related to the 
omnidirectional view, without losing robustness and 
precision. To allow a real time implementation of light 
tracking, we used a fast technique for color segmentation 
and region merging. 

We also presented a self-calibration technique, based on an 
extended Kalman filter, to derive the intrinsic parameters 
which describe position and orientation of the camera in 
the robot system. The performance of the approach was 
shown through experimental results. 
 
8. REFERENCES 
 
[1] D. Fox, W. Burgard, H. Kruppa, S. Thrun, Autonomous Robots 8, 

325-344, 2000. 
[2] R. Kurazume, S. Nagata, and S. Hirose, “Cooperative positioning 

with multiple robots,” in Proc. 1994 IEEE Int. Conf. Robotics and 
Automation, vol. 2, Los Alamitos, CA, pp. 1250–1257, May 8–13, 
1994. 

[3] R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis, and P. K. 
Khosla,“Heterogeneous teams of modular robots for mapping and 
exploration,” Auton. Robots, vol. 8, no. 3, pp. 293–308, June 2000. 

[4] I. M. Rekleitis, G. Dudek, and E. E. Milios, “Multi-robot 
exploration of an unknown environment, efficiently reducing the 
odometry error,” in Proc. 15th Int. Joint Conf. Artificial Intelligence 
(IJCAI-97), vol. 2, M. Pollack, Ed., Nagoya, Japan, pp. 1340–1345, 
Aug. 23–29, 1997. 

[5] I. M.Rekleitis, G.Dudek, and E. E.Milios, “On multiagent 
exploration,” in Proc. Vision Interface Vancouver, BC, Canada, pp. 
455-461, 1998. 

[6] S.I. Roumeliotis and G.A. Bekey, Distributed Multirobot 
Localization, IEEE Transaction On Robotics And Automation, Vol 
18, No.5, October 2002. 

[7] Martinelli, A., Pont, F. and Siegwart, R., Multi-Robot Localization 
Using Relative Observations, in Proc. 2005 IEEE Int. Conf. 
Robotics and Automation, (ICRA05), 2005. 

[8] S. K. Nayar, "Catadioptric Omnidirectional Camera,", Proc. of IEEE 
Conference on Computer Vision and Pattern Recognition, Puerto 
Rico, June 1997. 

[9] T. Svoboda, T. Pajdla, V. Hlavac, Central Panoramic Cameras: 
Design and Geometry, In proceedings of the 3rd Computer Vision 
Winter Workshop, Gozd-Martuljek, Slovenia, February 1998.  

[10] J. S. Chahl, M. V. Srinivasan, “Reflective surfaces for panoramic 
imaging,” Applied Optics, vol. 36, no. 31, pp. 8275–8285, 1997. 

[11] M. Ollis, H. Herman, S. Singh, Analysis and Design of Panoramic 
Stereo Vision Using Equi-Angular Pixel Cameras, tech. report 
CMU-RI-TR-99-04, Robotics Institute, Carnegie Mellon University, 
January, 1999. 

[12] Y. Yagi, Y. Nishizawa, M. Yachida, Map Based Navigation of the 
Mobile Robot Using Omnidirectional Image Sensor COPIS, 
Proceedings IEEE the International Conference on Robotics and 
Automation (R&A-92),pp.47-52,Vol.1,No.5,1992. 

[13] J.A. Conchello, Image Collection and Correction for Computational 
Optical Sectioning Microscopy, Anatomy and Neurobiology 
Department, Washington University, National Institutes of General 
Medical Sciences, National Institutes of Health, 2000. 

[14] A. Horii, ``Depth from defocusing'', technical report, ISRN 
KTH/NA/P--92/16--SE, June 1992. 

[15] J. Bruce, T. Balch, M. Veloso, Fast and Inexpensive Color Image 
Segmentation for Interactive Robots. In Proceedings of IROS-2000, 
Japan, October 2000. 

[16] A. Martinelli, D. Scaramuzza, R. Siegwart, Camera Extrinsic 
Parameters Estimation during Robot Motion, in preparation. 

[17] A. Martinelli, R. Siegwart, Observability analysis for Robot 
Localization, in Proceedings of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems, IROS, Edmonton, 
Canada. 

[18] Y.Bar-Shalom, T.E.Fortmann, “Tracking and data association, 
mathematics in science and engineering”, Vol 179, AcademicPress, 
New York, 1988. 

http://asl.epfl.ch/member.php?SCIPER=155767
http://asl.epfl.ch/member.php?SCIPER=103159
http://asl.epfl.ch/member.php?SCIPER=112562
http://cmp.felk.cvut.cz/~svoboda
http://cmp.felk.cvut.cz/~pajdla
http://cmp.felk.cvut.cz/~hlavac
http://www.ri.cmu.edu/people/ollis_mark_text.html
http://www.ri.cmu.edu/people/herman_herman_text.html
http://www.ri.cmu.edu/people/singh_sanjiv_text.html
http://www.nada.kth.se/cvap/abstracts/cvap106.html
http://www.cs.cmu.edu/~jbruce

	PRECISE BEARING ANGLE MEASUREMENT BASED ON OMNIDIRECTIONAL C
	ABSTRACT
	7. CONCLUSIONS

	J. Bruce, T. Balch, M. Veloso, Fast and Inexpensive Color Im

