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Abstract— In this paper the problem of localize two mobile
robots is considered. The robots are equipped with proprio-
ceptive sensors (like encoders) and exteroceptive sensors able
to provide relative observations between them. In these ob-
servations, one robot detects and identifies the other one and
measures some relative quantity. An observability analysis is
performed by taking into account the system nonlinearities
and for four different relative observations. The theoretical
results are validated by simulations and experiments carried
out on real platforms. In these experiments, an Extended
Kalman Filter is adopted to fuse the information coming from
the encoders and the sensors performing the observations.

I. I NTRODUCTION

Most of the localization methods have been devel-
oped for applications involving a single robot. Current
research investigates applications where a team of robots
collaborates to fulfill a mission. Single-robot localization
approaches are not optimized to estimate the positions of
all members of a team of collaborating robots. Indeed,
an optimal strategy must take advantage of relative ob-
servations (detection of other robots). In [12], an Extended
Kalman Filter (EKF) is used to fuse proprioceptive and
exteroceptive sensor data. The equations of this filter are
written in a decentralized form, allowing the decompo-
sition into a number of smaller communicating filters.
The approach relies on a particular relative observation,
that is the relative configuration (position and orientation)
between two robots. Experiments with a group of three
robots successfully validated the method.

Localization is an estimation problem. The first issue to
be addressed in any estimation problem is the observability
property of the system. In control theory, a system is
defined as observable when it is possible to reconstruct its
initial state by knowing, in a given time interval, the control
inputs and the outputs [7]. Usually, for the localization
problem, the control inputs are directly estimated by the
encoders and the outputs are the observations, as previously
defined. The observability property has a very practical
meaning. It is easy to realize from the definition that
when a system is observable it contains all the necessary
information to perform the estimation with an error which
is bounded [7]. Regarding the localization problem, this
means that the observability implies a bound error in the
localization. The value of this bound obviously depends
on the accuracy of the sensors. Regarding the localiza-
tion problem, the observability analysis was carried out
from several authors. Roumeliotis [12] presented it for a

multi robots system equipped with encoder and sensors
able to provide an observation consisting of the relative
configuration between each pair of robots. The analysis
was performed through the linear approximation. The main
result of this observability analysis was that the system is
not observable and it becomes observable when at least one
of the robots in the team has global positioning capabilities.
Bonnifait and Garcia considered the case of one robot
equipped with encoders and sensors able to provide the
bearing angles of known landmarks in the environment [3].
The observability analysis was carried out by linearizing
the system (as in the previous case) and by applying
the observability rank conditionintroduced by Hermann
and Krener in [6] for nonlinear systems. As in many
nonlinear systems, they found that in some cases while the
associated linearized system is not observable, the system
is observable. Bicchi and collaborators extended this result
to the SLAM problem ([2], [9]). They considered one robot
equipped with the same bearing sensors of the previous
case. They considered in the environment landmarks with a
priori known position and landmarks whose position has to
be estimated. They found that two landmarks are necessary
and sufficient to make the system observable. Furthermore,
they applied optimal control methods in order to minimize
the estimation error. In particular, in [9] they maximized
the Cramer-Rao lower bound as defined in [8].

In this paper we consider the case of two robots in an
environment where there isn’t any landmark. We assume
that both the robots are equipped with exteroceptive sensors
able to provide relative observations between them. In these
observations, one robot detects and identifies the other one
and measures some relative quantity. This quantity will
depend on both the robot configurations. We carry out the
observability analysis for four different observations: the
bearing of the second robot in the reference of the first
robot (B12), the bearing of the first robot in the reference of
second one (B21), the distance between the robots (D) and
the difference between the two absolute orientations (O).
These four observations contain the same information in
the observation considered in [12]. In section II we define
our system and the previous four observations. In section
III we carry out the observability analysis based on the
observability rank condition introduced by Hermann and
Krener in [6] for nonlinear system. In IV we validate our
theoretical results through simulations and real experiments
carried out on real platforms. We adopt anEKF to
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fuse the information coming from the encoders and the
sensors performing the observations. Finally, conclusions
are provided in section V.

II. T HE SYSTEM

We consider two mobile robots in a2D-environment.
The configuration of this system can be characterized
through the vectorX = [x1, y1, θ1, x2, y2, θ2]T containing
the cartesian absolute coordinates of both the robots and
their absolute orientations. The dynamics of this configura-
tion is described through a non-linear differential equation
Ẋ = f (X,u) where u is the input control. We assume
that both the robots have a differential drive system. In
this case,u = [vR1 , vL1 , vR2 , vL2 ]

T where vRi and vLi

are respectively the right and left wheel velocities for
each robot (i = 1, 2). Usually, u is estimated during the
navigation at a very high frequency through the encoders.
The analytical expression for the functionf is:

ẋi = vi cosθi

ẏi = vi sinθi

θ̇i = ωi

i = 1, 2 (1)

where

vi =
vRi + vLi

2
ωi =

vRi − vLi

di
i = 1, 2 (2)

and di is the distance between the wheels for theith

mobile robot.
Our robots are equipped with one or more exteroceptive

sensors able to provide relative observations between them:

y = h (X) (3)

We will consider the following four relative observations
(see fig. 1):

• the bearing of the second robot in the reference of the
first one (B12 in fig. 1);

• the bearing of the first robot in the reference of the
second one (B21);

• the relative distance (D);
• the relative orientation (O i.e. the orientation of the

second robot in the reference of the first one which
is the same of the orientation of the first robot in the
reference of the second one a part the sign).

The previous four observations are chosen because of
the following two reasons:

• they can be easily implemented on real platforms with
good accuracy (in particular, for the bearing angle, a
camera can be used).

• when Bij , D and O are simultaneously combined
together they contain all the necessary information
to estimate the configuration of the robotj in the
reference of the other robot (this global observation
is the one considered in [12]);

In order to have simple expressions for the observation
functionh for the previous four cases, it is very convenient
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Fig. 1. The four considered observations

to adopt different parameters to characterize the config-
uration of the system. Indeed, the observability analysis
based on the observability rank condition introduced by
Hermann and Krener [6] for nonlinear systems, becomes
dramatically easier if the expression of the functionh is
simpler.

First of all, since the considered observations depend
on the relative robot configurations, it is convenient to
express the system configuration in terms of the absolute
configuration of one robot (for instance the first) and the
configuration of the other robot in the reference of the
former. In other words, the new configuration will be
Xn = [x1, y1, θ1, x, y, θ], where the last three components
are defined by the following expressions (see also fig 1):

x = cosθ1(x2 − x1) + sinθ1(y2 − y1)
y = −sinθ1(x2 − x1) + cosθ1(y2 − y1)
θ = θ2 − θ1

(4)

Finally, it is convenient to introduce polar coordinates
for the relative state[x, y, θ], namely:

ρ =
√

x2 + y2

φ = atan2(y, x)
(5)

By adopting the changes in (4) and in (5) the sys-
tem configuration is characterized through the stateR =
[x1, y1, θ1, ρ, φ, θ]T and the dynamics obtained from (1) is:

ẋ1 = v1 cosθ1

ẏ1 = v1 sinθ1

θ̇1 = ω1

ρ̇ = v2 cos∆− v1cosφ

φ̇ = v2
ρ sin∆− v1

ρ sinφ

θ̇ = ω2 − ω1

(6)

where∆ = θ − φ.
In these coordinates the analytical expression for the four

observations becomes:

yO = h (X) = θ (7)

yD = h (X) = ρ (8)



yB12 = h (X) = φ (9)

and

yB21 = h (X) = atan2 (sin∆, cos∆) (10)

III. O BSERVABILITY ANALYSIS

We consider separately the four systems defined by the
same dynamics in (6) and one of the observation among
the four in (7-10). For each system we individuate the
observable part, namely the largest subsystem having the
local distinguishability propertyas defined by Hermann
and Krener in [6]. In particular, we determine the dimen-
sion DObs of this subsystem and the dependence ofDObs

on the considered input controls (which means to compute
DObs for the system when we inhibit one or several input
controls). This kind of analysis was performed also in [3].

Note that a system contains the information to bound the
error on the robot configuration only for its observable part.
Since our systems are defined by changing the observation
for the same dynamics, this analysis allows to choose
an exteroceptive sensor instead of another one. Indeed,
the sensor providing the observation whose corresponding
system has the largestDObs, is preferable.

The dynamics in (6) is affine in the input variables, i.e.
the stateR = [x1, y1, θ1, ρ, φ, θ]T satisfies:

Ṙ =
4∑

k=1

fk(R)uk (11)

with u1 = v1, u2 = ω1, u3 = v2, u4 = ω2 and

f1(R) =
[
cosθ1, sinθ1, 0,−cosφ,−1

ρ
sinφ, 0

]T

(12)

f2(R) = [0, 0, 1, 0, 0,−1]T (13)

f3(R) =
[
0, 0, 0, cos∆,

sin∆
ρ

, 0
]T

(14)

f4(R) = [0, 0, 0, 0, 0, 1]T (15)

We remind some concepts in the theory by Hermann
and Krener in [6]. We will adopt the following notation.
We indicate theKth order Lie derivative of a fieldψ along
the vector fieldsvi1 , vi2 , ..., viK

with LK
vi1 ,vi2 ,...,viK

ψ. Note
that the Lie derivative is not commutative. In particular, in
LK

vi1 ,vi2 ,...,viK
ψ it is assumed to differentiate alongvi1 first

and alongviK at the end. Let us indicate withΩ the space
containing all the Lie derivativesLK

fi1 ,fi2 ,...,fiK
h(X)|t=0

(i1, ..., iK = 1, 2, 3, 4 and the functionsfij are defined
in (12-15)). Furthermore, we denote withdΩ the space
spanned by the gradients of the elements ofΩ. In this
notation, the observability rank condition can be expressed
in the following way:The dimensionDObs at a givenX0

is equal to the dimension ofdΩ. Finally, we will indicate
with Ωg the space containing all the Lie derivatives whose

order is less than or equal tog and with dΩg the space
spanned by the gradients of the elements ofΩg.

Before considering separately the four systems, we ob-
serve that the four observations in (7-10) only depend on
the last three components ofR. Furthermore, the four
vector fields in (12-15) have the last three components
only dependent on the same last three components ofR.
This means that the first three components ofR cannot
be observed in anyone of our four systems. In particular,
we can restrict our analysis to the observability of the last
three components ofR which are:ρ, φ, θ. Therefore, since
now, the gradients of the element ofΩ are computed by
differentiating only with respect toρ, φ, θ and instead of
the vector fields in (12-15) we consider the following ones
obtained by removing the first three components:

f1(R) =
[
−cosφ,−sinφ

ρ
, 0

]T

f2(R) = [0, 0,−1]T

f3(R) =
[
cos∆,

sin∆
ρ

, 0
]T

(16)

We removed alsof4(R) since is equal to−f2(R). We
consider now the four systems separately.

A. Relative Orientation

The observation is defined in (7). Let us compute the
Lie-derivatives along the three vector fields in (16).

We have:

L0h = θ

L1
f1

h = 0 L1
f2

h = −1 L1
f3

h = 0

Since they are constant, all the subsequent Lie deriva-
tives are equal to0. In this case the spacedΩ will be
the space spanned by the vectordL0h = [0, 0, 1]T , and
thereforeDObs = 1. In particular, this result is independent
of the considered input controls (i.e. on the vector fields
in (16)).

B. Relative Distance

From (8) we obtainh = ρ. Let us compute the elements
of the associatedΩ0. We have

L0h = ρ

and the spacedΩ0 will be the space spanned by the
vector

w1 = [1, 0, 0]T

The first order Lie derivatives are:

L1
f1

h = −cosφ L1
f2

h = 0 L1
f3

h = cos∆

The spacedΩ1 is spanned by the vectors:

w2 = [0, sinφ, 0]T w3 = [0, sin∆,−sin∆]T

andw1.
It is easy to realize that the dimension of this space is

three. Furthermore, by computing only the Lie derivatives



alongf2(R) (i.e. by inhibiting both the tangential veloci-
ties), we getDObs = 1.

Let us consider the case when only one of the two
tangential velocities is inhibited. Note that, due to the
symmetry of the distance with respect to the change
Robot1 ↔ Robot2, DObs does not depend on the chosen
velocity.

If we consider onlyv1 6= 0 (i.e. we compute the Lie
derivatives only along the vectorf1(R)) we obtainDObs =
2. Indeed, the spaceΩ will contain only function ofρ and
φ.

By concluding, we found thatDObs = 1 when only the
angular velocities are considered,DObs = 2 when one of
the two tangential velocities is considered andDObs = 3
if both v1 andv2 are different from0.

C. Relative Bearing

In contrast to the previous cases, the bearing observation
changes with the changeRobot1 ↔ Robot2. In particular,
we have the two distinct expressions given respectively
in (9) and (10). On the other hand, the dimensionDObs

obtained by consideringBij and some controlp for the
robot i and some controlq for the robot j is the same
obtained by consideringBji and the controlp for the robot
j and the controlq for the roboti. Therefore, we can restrict
the analysis by only considering the bearingB12 in (10)
and the three vector fields in (16).

We have

L0h = φ

and the spacedΩ0 will be the space spanned by the
vector

w1 = [0, 1, 0]T

The first order Lie derivatives are:

L1
f1

h = −sinφ

ρ
L1

f2
h = 0 L1

f3
h =

sin∆
ρ

The spacedΩ1 is spanned by the vectors:

w2 = [
sinφ

ρ2
,−cosφ

ρ
, 0]T w3 = [−sin∆

ρ2
,−cos∆

ρ
,
cos∆

ρ
]T

andw1.
It is easy to realize that the dimension of this space is

three. Furthermore, by computing only the Lie derivatives
alongf2(R) (i.e. by inhibiting both the tangential veloci-
ties), we getDObs = 1.

If we consider onlyv1 6= 0 (i.e. we compute the Lie
derivatives only along the vectorf1(R)) we obtainDObs =
2 as in the previous case. On the other hand, if we consider
v2 6= 0 (i.e. we compute the Lie derivatives only along
the vectorf3(R)) it is possible to verify thatDObs = 3
(provided thatθ 6= φ).

We conclude this section by observing that the bearing
angle contains more useful information than the other
observations. This is due not only to the fact that in this
case it exists one velocity able alone to makeDObs = 3 but
also because if each robot is equipped with sensors able to

Controls 6= 0 O D B12 B21 B12 + B21

anyone 1 1 1 1 2
v1 1 2 2 3 3
ω1 1 1 1 1 2
v2 1 2 3 2 3
ω2 1 1 1 1 2

v1 & v2 1 3 3 3 3
All 1 3 3 3 3

TABLE I

DIMENSION OF THE OBSERVABLE PART OF THE SYSTEM(DObs) VS

THE INPUT CONTROLS DIFFERENT FROM0

provide the bearing angle of the other one, the two distinct
measurements contain some complementary information.
In particular, following similar computation, it is possible
to verify that the dimensionDObs of the system defined
with both the observationsB12 and B21 is always larger
or equal to2 (even when all the controls are inhibited) and
becomes3 as soon as one of the two tangential velocities
is set different from zero.

The results of this section are resumed in table I.

IV. RESULTS

We validated the previous theoretical results through
simulations (sect. IV-A) and experiments carried out on
real platforms (sect. IV-B). As stated in section II, in IV-A
and in IV-B our robots are equipped with sensors able to
estimate the controlu (encoder sensors) and to perform the
observations defined in II. Actually, in the real experiments,
we only consider the two type of bearings (B21 andB12).

We adopted an Extended Kalman Filter (EKF ) to
fuse the information coming from the encoders and the
observations. The equations of this filter applied to the
multi robot localization can be found in [11].

A. Simulations

We performed severalMATLAB simulations by con-
sidering different types of robot trajectory. Although in
a simulation the unities are not important in an absolute
sense, we adopted the values we get from previous experi-
ments in our lab to be close to the reality (e.g. see [1] and
[10]). The entire robot motion takes200sec. The encoders
data are delivered at100 Hz while the observations data
at 1 Hz for all the considered four observations.

The error on the encoder data are characterized with the
model introduced by Chong and Kleeman for a differential
drive system [5], where the error in the wheel displace-
ments is assumed gaussian with a variance increasing
linearly with the distance travelled by each wheel. In
particular, we set the parameter characterizing this propor-
tionality equal to the value we found through experiments
in our lab, [10], i.e.5 10−5 m.

Regarding the observations, we adopted the following
variances to characterize the error (assumed to be zero
mean with gaussian distribution and varianceR) for the
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Fig. 2. The simulated robot motions for the two robots
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Fig. 3. The error for the estimated position vs the distance travelled
by each robot when the estimation is carried out with only odometry
(red .), fusion of odometry with the relative distance (green.), fusion of
odometry with the relative orientation (sky-blue+), fusion of odometry
with both the relative bearings (blue×) and fusion of odometry with all
the relative observations together (black.). The plotted error is averaged
over the two robots.

four considered observations:R = σ2
D = (0.02m)2 and

R = σ2
O = σ2

B12
= σ2

B21
= (1 deg)2.

Figure 3 illustrates the results for the simulated experi-
ment with the two robots moving along the straight lines
in fig 2. We conclude that the accuracy on the localization
is strongly improved by using the relative bearing. The
result obtained by fusing all the relative observations with
odometry is slightly better than the one obtained by fusing
only both the relative bearings with the odometry (in
particular the final position error after30m of navigation is
0.0175m when all the relative observations are integrated
and0.0356m when only the relative bearings are adopted).

Regarding other robot trajectories, similar results can be
obtained when one robot in the team perform pure rotations
(i.e. vR = −vL) and the other one moves along a straight
line. On the other hand, for more general robot trajectories
(obtained by setting at each time step the value ofvR

andvL randomly), the results can be sometimes different.
Indeed, the relative bearing usually shows slightly better
performances with respect to the other relative observations
but it is not always the case. However, simulations tend to
indicate that the relative bearing clearly outperforms other
relative observations whenever the robot trajectories are
similar as the one presented on figure 2.

B. Real Experiments

For the real experiments we adopted the smartease
robots [13] equipped with encoders and linear camera. This
second sensor was adopted to get the bearing angle of the
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Fig. 4. a: The real experiment in the case of one moving robot. The
motion of the second robot consisted of three loops passing over the
indicated points while the first robot was standing at the origin.b: The
first set of experiments consisting only of one trial. The robot position is
estimated using only the encoder data.
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Fig. 5. Second set of experiments, first trial (a) and second trial (b).
The robot position of the moving robot is estimated by fusing the encoder
data with the data coming from the bearing of the robot standing at the
origin in the reference of the other one (B21) through anEKF .

other robot. We performed two types of experiments. In
the former, only the second robot was moving while the
first one was standing at the origin of the reference frame,
in the latter both the robots were moving simultaneously.

1) Moving only the second robot:We performed three
sets of experiments. In the first experiment we only used
the odometry to localize the moving robot. In the second set
of experiments, we fused the encoder data with the obser-
vation data consisting of the bearingB21 (i.e. the bearing
of the robot at the origin in the reference of the moving
robot). Finally, in the third one, the observation consisted
of the bearing of the moving robot in the reference of the
robot at the origin (B12). We moved the robot along a
trajectory passing through the points indicated in fig. 4a.
Each experiment consisted of three loops passing through
these points. The observations were performed when the
robot was standing on the previous points.

In figures 4b-6 we have to consider the estimated robot
position only in the points displayed in fig. 4a. Indeed,
the ground truth is only almost known there. In the other
points, the real robot trajectory is different for any loop and
for any trial. We conclude that, while the estimation error
becomes divergent in the case of theB21 it is constant in
the case ofB12, accordingly with the theory. Indeed, the
theory proved that in the first caseDObs = 2 while in the
second oneDObs = 3. Since one robot does not move, the
dimension of the space to be estimated is3 and therefore
only in the second case this space is observable.
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Fig. 6. Third set of experiments, first trial (a) and second trial (b). The
robot position of the moving robot is estimated by fusing the encoder
data with the data coming from the bearing of the moving robot in the
reference of the other one (B12) through anEKF .
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Fig. 7. The experiment with both the robots moving.a The estimated
robot trajectories, blue for the first robot, red for the second one.b The
estimated position error for the first robot during the motion.

2) Moving both the robots simultaneously:The initial
robot configurations are respectively for the first and the
second robot,[2, 0, 0] and [0, 2, π]. The robots moved
simultaneously along the same trajectory represented in
fig. 4a (counterclockwise for both the robots), being the
starting points the8th and the4th respectively for the
first and the second robot. Each robot made one loop.
The relative observations (consisting of bothB12 andB21)
occurred each meter of navigation. In fig. 7a we plot
the estimated robot trajectories and in fig. 7b we show
the estimated position error for the first robot during the
motion. In agreement with the theory, the error in this case
is not bounded. Indeed, the configuration of the system has
6 independent parameters whileDObs = 3. Anyway, the
error reduces in correspondence of each relative observa-
tion.

V. CONCLUSION

In this paper we considered the problem of localize
simultaneously two mobile robots able to perform relative
observations among them and equipped with proprioceptive
sensors like encoders. We carried out an observability anal-
ysis based on theObservability rank Conditionintroduced
by Hermann and Krener in [6] for nonlinear systems.
This analysis showed us the relative bearing as the best
observation between the robots. Indeed, the part of the
system which is observable is in general larger than for the
other relative observations (relative distance and relative
orientation).

Several simulations and experiments carried out on a
real platform validated our theoretical results. In these
experiments, an Extended Kalman Filter was adopted to
fuse the information coming from the encoder and the
observation data.

Currently, we are considering the case of a mobile
robot whose odometry is not calibrated. In this case,
the observability analysis will extend to the parameters
characterizing the odometry error (e.g. wheel diameters,
distance between the wheel). It would be interesting to
find optimal trajectories as in [9] in order to minimize
the error on the estimation of these parameters. In this
way, it would be possible to obtain a natural generalization
of the UMBmark method introduced by Borenstein and
collaborators [4].
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