
Ball Detection and Predictive Ball Following
Based on a Stereoscopic Vision System

Davide Scaramuzza, Stefano Pagnottelli and Paolo Valigi
Dipartimento di Ingegneria Elettronica e dell’Informazione

Università di Perugia
Via G. Duranti, 93 - 06125 Perugia – Italy

davsca@inwind.it [pagnottelli,valigi]@diei.unipg.it

Abstract— In this paper we describe an efficient software
architecture for object-tracking, based on a stereoscopic vision
system, that has been applied to a mobile robot controlled
by a PC. After analyzing the epipolar rectification required
to correct the original stereo-images, it is described a new
valid and efficient algorithm for ball recognition (indeed
circle detection) which is able to work in different lighting
conditions and in a manner faster than some modified versions
of Circle Hough Transform. Then, we show that stereo vision,
besides giving an optimum estimation of the 3D position of
the object, is useful to remove lots of the false identifications
of the ball, thanks to the advantages of epipolar constraint.

Finally, we describe a new strategy for ball following, by a
mobile robot, which is able to ”look for” the object whenever
it comes out of the cameras view, by taking advantage of a
”block matching” method similar to that of MPEG Video.

Index Terms— ball detection, ball tracking, following, pre-
dictive, stereoscopic vision

I. INTRODUCTION

Stereoscopic vision is a technique for inferring the 3D
position of objects from two (or more) simultaneous views
of the scene. Its advantages are that it offers a cheap
solution for 3D reconstruction of an environment, it is a
passive sensor and thus it does not introduce interferences
with other sensor devices; finally, it can be integrated
with other vision routines (such as object recognition and
tracking) that we will describe.

In view of this application, we have realized a software
architecture for recognizing a ball moving in front of
two cameras and inferring its 3D position with respect to
the cameras reference system. By using the information
provided by the binocular vision, the algorithms have been
applied to a mobile robot endowed with the above stereo rig
and have allowed it to follow a ball rolling on the floor and
to look for the object whenever it falls out of the cameras
view.

A new technique for ball detection and an experimented
strategy for looking for the ball are the objectives of this
research.

The hardware is composed of a Pentium IV, 1,7 GHz,
that manages the video acquisition of stereo pair, the
processing of the two digital images and the digital signals
to control the robot. Because of the computational burden
required to process and rectify the original images via PC,
the stereo images are captured at a frame rate of 6 Hz.
So it has been developed a new and efficient algorithm
for ball recognition that considers only those points of the
edge maps of the images which are effectively candidate to

belong to an arc and therefore to the contour of a possible
ball.

This paper is organized as follows: first the software
architecture for inferring the 3D position of the ball will be
introduced, then we will describe how the new circle detec-
tion algorithm works. Finally, we will show the strategies
for the ball following and the ball searching tasks.

II. 3D RECONSTRUCTION ARCHITECTURE
In general the reconstruction of the world seen through

a stereo camera can be divided in two stages:
1) Correspondence problem: for every point in one

image find out the correspondent point, on the other
image, that is the projection of the same 3D point.

2) Stereo-Triangulation: derived the intrinsic and extrin-
sic parameters of the cameras and given the corre-
sponding points, compute the (X, Y, Z) coordinates
of the 3D point they refer to.

Both of the above tasks are easier to realize when cam-
eras are in a standard setting, that is with parallel optical
axes and coplanar image planes. In this setting epipolar
lines correspond to the same horizontal rows in the two
images and point correspondences are searched over these
rows. Obviously the standard setting cannot be obtained
with real cameras but, if we know the cameras calibration
parameters (e.g. the focal distance of the two cameras,
the entity of lens distortion and the relative position and
orientation of the cameras) this problem may be overcome
through the so called Epipolar Rectification.

Rectification determines a transformation of each image
plane so that pairs of conjugate epipolar lines become
collinear and parallel to one of the image axes (usually
the horizontal one) [7].

Figures 1(a),1(b) show two epipolar lines before and
after the images have been rectified. The rectification
task precedes 3D reconstruction and may be divided into
three main stages: perspective correction (which considers
the relative position and orientation of the cameras), lens
distortion compensation and bilinear interpolation (needed
to map the two final images with respect to the original
ones, whose indexes of the texture map are stored in a
Look-Up-Table).

The second stage in view of 3D reconstruction is to find
the correspondent points relative to the object we want to
localize. This is possible by applying the circle detection

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 1573

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147923187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a)

(b)

Fig. 1. a) A stereo pair before being rectified. b) A stereo pair after
rectification.

algorithm to each single image. When the algorithm stops,
the locations of the circle centers in the images are ob-
tained.

At this point it is to be noted that, if a ball is really
present in front of the cameras, the centers coordinates
must belong to the same horizontal line in order to satisfy
the epipolar constraint, that is they must have the same
y coordinate. So any violation of this law may be used
to infer that the ball is absent. In practice, as the centers
coordinates are real, due to interpolation, we have set
the algorithm to reject those locations whose difference
between the two ordinates is greater than 2 pixels. In this
case the average value of the ordinates is assumed as a new
y coordinate.

Derived the intrinsic and extrinsic parameters of the cam-
eras and the correspondent points, it is possible, through
triangulation, to compute the 3D position of the object
in the real world. Thanks to an excellent calibration of
the cameras we have obtained an accuracy lying between
1/1000 and 2%, respectively for 1 and 2 meter distances.

III. CIRCLE DETECTION

A. Overview of existing versions

The detection of the circles in digital images is one of the
most important problems in visual industrial applications
as circular objects frequently occur in many natural and
manmade scenes. So far many circle-extraction methods
have been developed [2],[3]. The Circle Hough Transform
(CHT) [4] is one of the best known algorithms which aims
at finding circular shapes with a given radius r within
an image. Usually edge map of the image is calculated,
then each edge point contributes a circle of radius r to an
output accumulator space. For unknown circle radiuses, the

algorithm should be run for all possible radiuses to form
a 3-dimensional parameter space, where two dimensions
represent the position of the center and the third one
represents the radius. The output accumulator space has a
peak where these contributed circles overlap at the center
of the original circle.

In spite of its popularity, the large amount of storage
and computing power required by the CHT and the inac-
curacy in case of excessively noisy images are the major
disadvantages of using it in real-time applications. So a
number of modifications have been widely implemented in
the last decade in order to reduce the computational burden
and the number of false positives typical of the CHT. Use
of the edge direction was first suggested by Kimme et al.
[5], who noted that the edge direction, on the boundary
of a circle, points towards or away from the circle center.
This modification reduced the computational requirements
as only an arc needed to be plotted perpendicular to
the edge orientation at a distance r from the edge point.
Subsequently, Minor and Sklansky [6], and recently Faez
et al. [1], extended the use of edge orientation, by plotting
a line in the edge direction. This has the added advantage
of using a two rather than a three-dimensional parameter
space. In this case the output accumulator space has a peak
where these contributed lines overlap at the center of the
original circle.

B. Limits of the last version

The limits of this last version are that:

1) Each edge point contributes a line to the parameter
space independently of its neighbours. This results in
an useful increase of computational burden (see fig.
3).

2) Edge orientation is taken equal to gradient direction
that is calculated by applying a spatial differentiation
operator to the original image. But this is true only
for one color circles. Consequently gradient direction
rarely coincides with the arc direction as depends on
lighting conditions, color changes and shadows (see
fig. 4).

Figure 2 shows the original color image used to test the
algorithm and its relative edge map. As an accumulator
space we have defined a 2D-matrix the size of the edge
map. Drawing a line in the accumulator matrix means to
increase by one the current value of each interested cell.

Fig. 2. a) Edge map of test image , b) Original test image.

1574

The result of this process, iterated for every edge point,
is shown in fig. 3, where hot colors correspond to greater
values and vice-versa.

Fig. 3. Accumulator or parameter space.

The darker point in fig. 3 corresponds to the center
location. However, as the line direction coincides with the
gradient direction, these lines do not intersect all around
an average point but a wider region (see fig. 4 where only
some of radial lines are superimposed on the edge map).

Fig. 4. Some lines plotted on the edge map.

C. The new algorithm

We have developed an innovative and efficient algorithm
that computes the edge direction related to each edge point
taking into account spatial distribution of its neighbours.
Thanks to the major precision in estimating the edge
direction, if a circle is present lines intersect in a smaller
region and the peak in the accumulator space has a higher
value. In addition, our algorithm also considers only those
points in the edge map which are effectively candidate to
belong to an arc and therefore to the contour of a possible
circle. In particular the algorithm is able to (see fig. 5):
reject angular points (1 in the figure), ignore isolated points
(2 and 3), reject straight segments (4 and 5), plot lines in
the direction of arc concavity.

D. ”Pixel-to-Pixel” algorithm

Our algorithm, called ”Pixel-to-Pixel”, acts directly on
the binary edge map, where each pixel values 1 if it is
an edge point, or 0 otherwise. In order to identify line

Fig. 5. The regions rejected by the new algorithm.

direction we explore the distribution of the pixels located
in a window of dimensions (2k + 1) · (2k + 1) centred on
each edge point (see fig. 6 for the axes direction).

Fig. 6. A squared window centred on an edge point. a) axes origin at
the central point b) chord and radial line of the arc.

Suppose the set of ”1” in fig. 6a) to belong to a circular
arc. Then the best estimation of radial line coincides with
the perpendicular one to the chord AB passing for the mid
point C of coordinates:

C = ((xA + xB)/2; (yA + yB)/2) (1)

To determine the two chord extremes A,B, the algorithm
examines all edge points in the current window and chooses
those verify both:

1) Each of two must have the greatest Euclidean dis-
tance from axes origin.

2) One at least of the homologue coordinates must have
opposite sign. This is needed to reject some spurious
points or angular points.

In order to reduce the computational burden required
to compute quadratic Euclidean distance with respect to
origin x2 + y2, we have defined a new distance with the
same results: d(x, y) = |x| + |y|. So only absolute values
need to be calculated. After A,B have been determined,
and so the equation of perpendicular line, we have used
the location of mid point C to infer the arc concavity. In
this way lines in the parameter space may be plotted only in
the direction of concavity and consequently computational
burden decreases.

To detect (and so reject) straight segments, the algorithm
must verify that points A,B and O are aligned, that is when

1575

chord AB exactly intercepts x, y axes at origin O (see fig.
7).

Fig. 7. Edge points distribution of a stright segment.

It may be easily shown that this implies:

|yB(xB − xA) − xB(yB − yA)| = 0 (2)

In practice, being parameter space discreet, x, y inter-
cepts may lie in the range [−1,+1] and the above condition
becomes:

|yB(xB−xA)−xB(yB−yA)| ≤ min(|xB−xA|, |yB−yA|)
(3)

Up to now we have only taken into account the three
points A,B,O to get information about edge direction or
to see if edge belongs to a straight segment. This occurs
because we have supposed only a chain of connected pixels
being present in the current window. However it may
happen that some isolated edge points also appear in the
window giving wrong results. Of course we could look
for those points belonging to the same connected arc and
discard the others, but this search process would increase
computational time.

To overcome this limit we have exploited the fact that
any edge in the squared window is 1 pixel thick at most
because of use of an edge thinning process after edge
detection. So if one only arc is present, then it must be
2k + 1 pixels long.

To conclude, ”Pixel to Pixel” algorithm counts the edge
points in the current window. If this count equals 2k + 1
then a potential arc may be present; then the algorithm
looks for A,B and goes on as previously mentioned.

Figures 8 a),b) show some edge points which are dis-
carded because they are less or more than 2k + 1. Note
also that c) may represent the end of an arc but it is
rejected too. In fact it would not probably contribute to
correctly determine edge orientation. On the contrary d)
might be correct but this is not the only case. Nevertheless
the condition n = 2k + 1 significantly reduces the number
of cases which need to be examined.

Fig. 8. a) b) c) are rejected because counts are different from 2k + 1
d) is correct.

E. Algorithm steps

Here we resume how ”Pixel to Pixel” algorithm works:
1) Obtain the binary edge map of the raw image.
2) Create an accumulator space the dimension of the

edge map and set zero each value.
3) Find next edge point (say O) and consider those

points within a (2k + 1) · (2k + 1) window centred
on O.

4) Count edge points within the window. If this count
equals 2k + 1 then go on, else repeat from step 3.

5) Find extremes A,B in the window.
6) Verify that A,B and O are not aligned. If it is not so

then repeat from step 3, else compute the equation
of line perpendicular to AB and passing for the mid
point C.

7) Compute the direction of concavity and plot the
above line in the accumulator space only towards this
direction.

8) Come back to step 3.
9) When all edge points are examined, apply a smooth-

ing filter to the parameter space and find the global
maximum, whose coordinates give the potential cir-
cle location.

In order to improve the capability to identify the correct
maximum, we have introduced a smoothing filter (e.g. an
average filter) as a last step. In fact it is to be noted that
all radial lines of a circle do not intersect in one single
point due to the discreet nature of parameter space. The
purpose of the average filter as a smoother (a squared
convolution mask whose elements are all 1) is to emphasize
these intersections.

F. Results

Here we present the circle detection results obtained by
using different values of k. As an accumulator space we
have used a 2D-matrix of size 352x288 pixels.

1576

Fig. 9. a) Radial lines on parameter space. b) The same lines superim-
posed on the edge map.

Figure 9 shows all radial lines computed by applying
”Pixel to Pixel” algorithm to the test image of figure 2;
lines are superimposed on the edge map for major clarity.
Comparing it with figure 4 it is evident the better precision
of this algorithm to detect circle center. Note also that the
number of lines is smaller than the one in figure 3. In
fact, straight segments, angular points and isolated points
are now discarded, so a less number of lines needs to be
plotted. In the example above we have used k=5. To explain
the effect of k we have used a second test image, where
four circles of different radiuses are shown (see fig. 10).

Fig. 10. Second test image.

Choosing k = 3, k = 5, k = 8, k = 15 each single circle
(from smallest to biggest) may be isolated (see fig. 11).

By increasing k, the number of votes of the bigger circles
rises, while votes of the smaller ones reduce; vice-versa
when k decreases. In the experimented strategy of ball
following we have set k=5 because this guarantees the best
results for different distances from the ball.

IV. BALL SEARCHING

The circle detection algorithm described in section III
works very well when a ball is present in front of the
cameras. But when the ball comes out of the cameras
view it always returns a false detection because there
is always a peak in the parameter space. When ball is
absent, distribution of centers locations is random due to
the presence of noise and so robot motion is chaotic. As
mentioned in section II we have used epipolar constraint in

Fig. 11. a) k=3 b) k=5 c) k=8 d) k=15.

order to avoid these false positives but a little percentage
of mistakes occurs anyway.

Here we describe a new algorithm that removes up
to 90% of false detections and guarantees to look for
the ball when it is out of the robot view. To do this
we have taken advantage of temporal correlation between
consecutive frames, used in MPEG Block Based Motion
Estimation[8]. If a ball is present in the current frame it
will appear with similar color intensity in the next frame.

One way to express the concept of similarity between
two blocks of pixels of RGB images is the so called SSD
(Sum of Squared Differences) [8]; let I1, I2 be two color
image blocks of size (2k + 1) · (2k + 1) pixels, so:

SSD =
2k+1∑
i=1

2k+1∑
j=1

[I1R(i, j) − I2R(i, j)]2+ (4)

+[I1G(i, j) − I2G(i, j)]2 + [I1B(i, j) − I2B(i, j)]2

SSD values zero only if I1, I2 are equal, but in case
of a good matching between blocks its value is anyway
small. In practice we have chosen k = 10 and fixed the
SSD threshold to 200,000. So when SSD < 200, 000 two
Blocks of size 21x21 may be considered to be similar.

Our strategy adopts both circle detection and SSD to
remove any false detection. Suppose a ball is moving within
cameras view. At first it uses circle detection algorithm
to identify center location in the current frame. Once this
is determined, a block of pixels centred on this point is
compared via SSD with a block already stored in memory
at previous frames (see fig. 12). If matching is suitable then
the stored block is replaced by the present one, otherwise it
is compared with blocks of next frames until this condition
is satisfied. The Block we have considered is relative to the
left camera.

This Block updating runs continuously as long as the
object is visible. But when ball falls out of cameras view,
even if circle detection may return something, SSD gives
a too large value so that the ball searching task starts. This

1577

Fig. 12. a) The block considered in a previous frame. b) The new block
in the current frame which needs to be matched to the previous one.

means that the mobile robot begins to turn around until
ball is visible again. In order to speed up the search, the
robot chooses sense of rotation in the direction where the
ball has been seen the last time.

Now it is to be noted that when the object appears again,
lighting conditions or ball size may be different, so block
matching may give a negative result. On the contrary circle
detection algorithm returns a valid location.

In order to avoid conflicts between the two algorithms,
we have implemented a statistical approach which consists
in storing in a shift register the last five 3D locations
returned by ball detection and in computing mean and
variance of distribution.

In fact, when there is no relative motion between ball
and robot variance is theoretically null; in practice a dense
distribution of the position values is always present due
to image noise. On the other hand, when a relative motion
exists consecutive 3D positions of the ball may be generally
thought as lying on a straight line corrupted by noise (see
fig. 13). In this case the new ball location will be considered
if close to the line that best fits the last acquired points.

Fig. 13. a) Random distribution when the ball is absent. b) Estimated
positions when the ball is moving.

Therefore, to overcome the mentioned conflicts, the
algorithm works as follows:

1) Store in a shift register the last five potential 3D
positions returned by ball detection.

2) Compute mean and variance of the five-point distri-
bution.

3) Apply ball detection to the current stereo-frame (sixth
acquisition).

4) If ball location is less than the square root of variance
or is close to the best fitting line, then accept it as
correct. Whatever is the result, shift the register and
store this position as last.

Observe that statistical verification continuously occurs,
together with ball detection and ”block matching”, either
when ball is present or absent.

Now we summarize how the predictive algorithm for ball
following and searching works. At the beginning, when
program starts, robot is still and ”block matching” task
does not run yet. However statistical distribution of first
five location returned by ball detection is examined. If the
current ball position (the sixth one) is considered valid then
robot starts to follow it and current Block is stored as a
reference.

Subsequently, ball detection, block matching and statis-
tical verification always run together. While ball is rolling
within cameras view, statistical analysis has no influence
because is block matching that verifies whether a value is
suitable. On the contrary when object is out of robot sight
this is performed by statistical approach.

V. CONCLUSIONS

In this paper we have presented a software architecture
for ball detection and following based on a stereoscopic
vision system. In particular we have described a different
approach for circle detection and a predictive method to
look for the object whenever it comes out of cameras view.

Our circle detection algorithm is able to identify po-
tential arcs in the edge image due to a different way to
infer edge orientation, which takes into account spatial
distribution of near edge points. The presented algorithm
may also discard straight segments, isolated points, angular
points and may distinguish the direction of an arc, resulting
in a low computational burden. In order to reject any false
detection of the ball we have used epipolar constraint that
forces two correspondent circle locations to belong to the
same row.

Finally we have described a predictive algorithm to look
for the object, based on a block matching method among
frames and on a statistical analysis of 3D positions of the
ball in consecutive frames.

REFERENCES

[1] Ali Ajdari Rad, Karim Faez, Navid Qaragozlou, ”Fast Circle De-
tection Using Gradient Pair Vectors”, Proc. VIIth Digital Image
Computing: Techniques and Applications, December 2003.

[2] T. D’Orazio, N Ancona, G. Cicirelli, M. Nitti, ”A Ball Detection
Algorithm for Real Soccer Image Sequences”, IEEE, 1051-4651,
2002.

[3] Coath, P. Musumeci, ”Adaptive Arc Fitting for Ball Detection in
RoboCup”, 2002.

[4] R.O.Duda and P.E.Hart, ”Use of the Hough Transform to Detect Lines
and Curves in Pictures”, Communications of the ACM 15, pp: 11-15,
1975.

[5] C.Kimme, D.Ballard, and J.Sklansky, ”Finding circles by an array of
accumulators”, Proc. ACM 18, pp: 120-122, 1975.

[6] L.Minor and J.Sklansky, ”Detection and segmentation of blobs in
infrared images”, IEEE Trans. SMC 11, pp: 194-201, 1981.

[7] A. Fusiello, E. Trucco, A. Verri, ”A compact algorithm for rectifi-
cation of stereo pairs”, Machine Vision and Applications 12, 16-22,
2000.

[8] I.E.G. Richardson, ”H264 and MPEG-4, Video Compression, Video
coding for next generation multimedia”, Wiley, 2003.

1578

	MAIN MENU

