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Abstract— In [5], a version of Relative Map Filter (RMF)
is proposed to solve the simultaneous localization and map
building (SLAM) problem. In the RMF, the map states
contain only quantities invariant under shift and rotation. The
estimation of the map states and their correlations is carried
out in an optimal way using the Kalman filter. However, the
dependency among the map states is not taken into account,
thus the resulting map states are inconsistent. This paper
presents two methods to enforce the consistency of the relative
map states. The idea is to maintain a geometrically consistent
map by solving a set of constraints between the map states.
Experimental results obtained by using the proposed methods
on real platform data show better performance than those
deduced from the original RMF.

Index Terms— Localization, Mapping, SLAM, Mobile
Robot Navigation.

I. INTRODUCTION

In the Simultaneous Localization and Mapping (SLAM)
problem, a mobile robot has to be able to autonomously
explore an unknown environment with its on-board sen-
sors, incrementally build a map of this environment while
simultaneously using this map to localize itself relative to
this map.

One of the possible approaches is to use the concept
of relative map. This approach has better convergence
properties than, for example, the absolute map approach
because the latter is based on a perfect statistical knowledge
of the errors of the robot sensors (e.g. odometry) and
also on the hypothesis of a linear observation, which are
generally not the case for real world applications. In the
relative map approach, the estimation process involves only
elements which are invariant to the robot motion errors.
Furthermore, the relative approach has better computational
scaling properties than the absolute map approach.

Much of research has been carried out on studying the
relative map approach. The first mathematical formulation
was given in [8], and later [2] introduced a relative map
based on quantities invariant to the robot pose, i.e. to
shift and rotation. The same idea was adopted in [3].
Both algorithms estimate the relative distances between
landmarks pairwise. However, it has been pointed out in
[5] that the algorithms are suboptimal because they do not
take into account any correlation between the distances.

Another relative map algorithm has been proposed in
[7], [6] in which a relative map filter is coupled with a
Geometric Projection Filter (GPF) in the estimation. The
second filter provides a means to produce a geometrically

consistent map from the relative map, by solving a set
of linear constraints. Both filters are optimal since the
dynamics/observation equations are both linear and they are
based on the Kalman Filter. However, the elements used in
this algorithm are invariant to shift only, not to rotation.

Recently, a new relative map filter was proposed in [5],
[4]. In addition to considering only quantities invariant to
shift and rotation (i.e. distances between landmarks), the al-
gorithm also takes into account the correlation between the
map states. The estimation is then carried out by applying
a Kalman filter which is optimal for the modeled system
of linear dynamics/observation equations. However, the
estimated quantities are not independent and the algorithm
has no means to enforce the dependency between the map
states. Consequently, the divergence problem may arise if
the dynamics/observation and error models are not perfect
and, in general, it is the case. This paper presents two
methods to fill the gap. The methods play a similar role as
the second half of the GPF where they are to maintain the
relative map geometrically consistent.

The following section gives a short review of the Rela-
tive Map Filter (RMF) presented in [5]. An inconsistency
analysis of the RMF is then given. The next two sections de-
scribe two methods for consistency enforcement with their
properties and experimental performance. Conclusions are
presented in the last section.

II. THE RELATIVE MAP FILTER (RMF)
In the RMF, the map state contains only relative quan-

tities between landmarks. In this paper, we consider only
relative distances between point landmarks. Of course, the
distances are quantities invariant under shift and rotation,
i.e. they are independent of the robot configuration. Let’s
denote d as the state and P as its covariance matrix.
In Fig.1a, the vector d contains the indicated distances
between the 6 landmarks. Clearly, not all of the distances
between the 6 landmarks are stored in d because not all
the landmarks are observed together at the same time. At
a given time step, the observation consists of a set of
distances between the landmarks observed by the robot
through its external sensor (Fig.1b). These distances may
have been observed (i.e. already in d) or may not. Let’s
introduce the following notations:

dold = [u,wold]
T

dobs = [wobs,v]
T

where dold is the state estimated at a given time step just
before a new observation is made; dobs is the observation
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(a) (b) (c)

Fig. 1. (a) The relative map before the observation, (b) the observation,
and (c) the relative map obtained by fusing the information coming from
the old map and the observation. In all the three figures the map state
only contains the indicated distances between the landmarks.

at the same time step, containing a set of distances between
the landmarks observed by the robot. u contains the dis-
tances which are not re-observed (i.e. which do not appear
in the vector dobs). wold contains the distances re-observed
(denoted by wobs in the vector dobs). Finally, v contains
the distances observed for the first time at the considered
time step. The associated covariance matrices are:

Pold =

[

Puu Puw

P
T
uw Pww

]

Pobs =

[

Rww Rwv

R
T
wv Rvv

]

We adopt the following notations to denote the newly
estimated quantities, obtained by fusing the old state with
the observed one (Fig. 1c):

dnew = [unew ,wnew,vnew]T

Pnew =





Pnuu Pnuw Pnuv

PnT
uw Pnww Pnwv

PnT
uv PnT

wv Pnvv





We obtain the new estimates of the state and its covari-
ance matrix by applying the equations of the Kalman filter.
Observe that the observation is linear in the state (is the
identity) and therefore the Kalman filter is optimal.

unew = u + Puw(Pww + Rww)−1(wobs −wold)
wnew = wold + Pww(Pww + Rww)−1(wobs −wold)

vnew = v + Rwv
T (Pww + Rww)−1(wold −wobs)

Pnuu = Puu −Puw (Pww + Rww)
−1

Puw
T

Pnuw = Puw −Puw (Pww + Rww)
−1

Pww

Pnuv = 0
Pnww = Pww −Pww(Pww + Rww)−1

Pww

Pnwv = Rwv −Rww(Pww + Rww)−1
Rwv

Pnvv = Rvv −Rwv
T (Pww + Rww)−1

Rwv

(Hint: Apply the Kalman update equations to [u,wold]
T ,

[wobs,v]T with observations [wobs], [wold], respectively.)
The RMF’s update time is dominated by the 3 updates of

unew,Pnuu,Pnuw (other vectors/matrices have constant
sizes, thus constant update time). It is possible to show
that the update time for unew ,Pnuu,Pnuw is also constant
time. (Hint: since the covariance matrix is block diagonal,
Pnuw has constant non-zero rows. Thus, multiplications
in the 3 update equations result in a matrix that contains a
non-zero block with constant size.) Overall, the RMF has
a constant update time.

The absolute map can be recovered from the estimated
relative map by a relative transformation, given the absolute
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Fig. 2. The Inconsistency of the relative map estimates.

locations of two landmarks. These two seeding landmarks
can be provided or taken from the first observation. At a
given time step, the absolute location of a landmark can
be determined from the absolute locations of two available
landmarks by the following formula:

x =
x2 + x1

2
+

(x2 − x1) × (d2

1
− d2

2
)

2× r2
±

y2 − y1

2× r2
×

×
√

[(d1 + d2)2 − r2] × [r2 − (d2 − d1)2]

y =
y2 + y1

2
+

(y2 − y1) × (d2
1 − d2

2)

2 × r2
∓

x2 − x1

2 × r2
×

×
√

[(d1 + d2)2 − r2] × [r2 − (d2 − d1)2]

or in function form:

x = [x y]T = h(d1, d2) (1)

where x1=(x1, y1), x2=(x2, y2) are two available land-
marks, r is the distance between them; d1, d2 are the
distances between the two landmarks to the considered one.
Note that the equations give two possible solutions, but
an approximate location of x can be used to select the
right solution. In (1), it uses the fact that x1 and x2 are
given or already computed from previous steps, therefore
x1, y1, x2, y2, r are considered fixed.

By applying recursively the method for all the land-
marks, starting from the two seeding landmarks, it is
possible to obtain their absolute locations at each time
step. If the consistency (see next section for the definition)
between the estimated distances is achieved, then clearly
the choice of the two seeding landmarks will not have any
influence on the result.

III. THE INCONSISTENCY OF RELATIVE MAP
ESTIMATES

Under perfect conditions, e.g. the robot sensors were not
affected by any error and the dynamics/observation models
perfectly represented the system, the relative map obtained
from the RMF would contain no inconsistency. However,
it is impossible to achieve those perfect conditions in
practice. Thus, transforming from an estimated relative
map to an absolute map produces errors and inaccuracies,
and they are dependent on the sequences of the relative
transforms.

Fig.2 depicts an example of such inconsistency. The
absolute location of landmark x4 can be recovered from
the absolute locations of landmarks x1, x2, x3 and the es-
timated distances d̂1, d̂2, d̂3. However, due to the imperfec-
tion discussed above, the relative transformation results in



two inconsistent solutions: one obtained from the set {x1,
x2, d̂1, d̂2} and one obtained from {x2, x3, d̂2, d̂3} (the
third solution obtained from {x3, x1, d̂3, d̂1} is dependent
and can be deduced from the other two solutions). A similar
inconsistency problem is also observed and tackled in the
Geometric Projection Filter. Thus, the following definition
is adopted for the relative map consistency ([7]):

A relative map is consistent if all possible trans-
formations to an absolute map yield unique and
unambiguous absolute landmark locations.

The statement implies that if the transformation is
applied recursively from the two known landmarks (the
seeding landmarks), and produces unique solution for each
landmark location, then the relative map is consistent.

IV. THE RELATIVE MAP GEOMETRIC FILTER (RMGF)
The basic idea is to use the absolute landmark locations

as the fusing points to enforce the consistency of the
estimated relative map. In Fig.2, if we are able to fuse or
unite the two inconsistent solutions of landmark x4, we can
obtain a unique consistent solution for the absolute location
of x4. In other words, if the consistency enforcement is
applied recursively for all the landmarks, we will obtain
a consistent relative map and thus be able to recover the
absolute map. Note that in the original RMF, the absolute
locations of landmarks are only used for data association.

The next two subsections IV-A, IV-B will describe in
turn the two proposed approaches of how to interpret the
“fusion” as geometric constraints and how to impose the
constraints into the estimation process. In subsection IV-
C, it will be shown that the two approaches have differ-
ent formulations and consequently different characteristics
subjected to linearization errors.

Fig.3 shows the structure of the RMGF algorithm. It
consists of two main components. The first component
is essentially the original RMF algorithm. The resulting
relative map of this stage has no consistency enforcement,
thus it is inconsistent in general. The second component
of the RMGF is connected to the first half by a switch,
through which the unconstrained relative map (d̂r(k|k) and
P̂r(k|k)) is fed into a consistency enforcement system. In
this system, the geometric constraints between map states
are applied by a Kalman filtering update. The result of
this updating process is a consistent relative map and the
process is repeated.

Observation
Relative map

RMF

Consistent
Absolute mapRelative map

Consistent

Constraint
Enforcement

Consistency

Relative map
Unconstrained

Fig. 3. The structure of the RMGF algorithm.

A. Standard Approach - The RMGF-SA
Fig.4 shows a possible situation of inconsistency when

recovering the absolute map from an unconstrained relative
map. Landmark x5 is connected with landmarks x1, x2, x3,
x4 by the estimated distances d̂1, d̂2, d̂3, d̂4, respectively.
However, due to inconsistent errors, 3 possible inconsistent
solutions are obtained when recovering the absolute loca-
tion of x5 as shown (other combinations are dependent and
can be deduced from these 3 solutions).

Clearly, in order to be consistent, the 3 solutions x12,
x23, x34 must be united into a unique landmark x5.
Equivalently, the following constraints must be satisfied:

[

x12 − x23

x12 − x34

]

= 0 (2)

The fact that x12 is a function of x1, x2, d̂1, d̂2; and x1, x2

are considered fixed (given or already computed in previous
steps), x12 is a function of d̂1, d̂2. The same argument is
applied to x23 and x34. Using (1), (2), we have:

[

h(d̂1, d̂2) − h(d̂2, d̂3)

h(d̂1, d̂2) − h(d̂3, d̂4)

]

= 0 (3)

or in a compact form:

H(d̂r) = 0 (4)

If we interpret (4) as a perfect observation of z =
H(d̂r(k|k)) with no observation noise, applying the con-
straint in an Extended Kalman filter, we have:

d̂cr(k|k) = d̂r(k|k) + K(k|k)(−H(d̂r(k|k))) (5)
P̂cr(k|k) = P̂r(k|k) −K(k|k)∇HkP̂r(k|k) (6)

K(k|k) = P̂r(k|k)∇H
T
k [∇HkP̂r(k|k)∇H

T
k ]−1 (7)

where ∇Hk is the Jacobian of H evaluated at d̂r(k|k);
d̂cr(k|k) is the constrained relative map state, P̂cr(k|k)
is the associated covariance matrix. It is easy to verify
that d̂cr(k|k) satisfies the linearization of the consistency
constraint (4) (pre-multiply both sides of (5) by ∇Hk).

This update is performed recursively at each landmark
in the absolute map recovering process, starting from the
seeding landmarks. The number of rows of ∇Hk is the
number of constraints, which equals to p − 2, where p is
the number of given/previously computed landmarks. Also
notice that there are only 3 nonzero elements in each row
of ∇Hk (see (3)) and since P̂r is block diagonal, P̂cr

remains block diagonal.
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^

Fig. 4. The Standard Approach: At the fusing landmark x5, there are
two constraints: x12 - x23 = 0 and x12 - x34 = 0.



Using the positive definite property of the matrices, it
is easy to prove that applying the constraints can decrease
the uncertainty in each estimated relative map covariance
(using (6), (7)). As the number of observations tends to
infinity, the relative map becomes perfectly known. The
equations (5), (6), (7) can be performed in constant time
using Sequential Processing since the observation has no
noise (see [1]). Thus, the consistency update for all the
landmarks is in linear time. Overall, the complexity of the
RMGF-SA is linear in the number of landmarks.

B. Indirect Approach - The RMGF-IA
We consider again the previous example (Fig.5). Instead

of writing directly the constraints as in (2), we can make the
following reasoning: “fusing” x12, x23, x34 is equivalent
to equalizing q3 to d̂3 and q4 to d̂4 (q3, q4 are the distances
from x3, x4 to x12 as shown). Thus, if we interpret q3, q4

as virtual observations of d̂3, d̂4, then we can apply again
the RMF’s equations to update the map state.

The indirect approach can be followed in 3 steps:
Step 1: Select one possible solution as the pivot, for
example, compute x12 and its covariance matrix Px12

using
(1):

x12 = h(d̂1, d̂2) Px12
= ∇hkPd1,d2

∇hT
k (8)

Step 2: Compute the virtual observation [q3 q4]
T of z =

[d̂3 d̂4]
T = Cd̂r and its covariance matrix R from x12,

Px12
using:

d = ‖x12 − x
∗‖2 or d = gx

∗(x12) (9)

where d is the distance between x12 and a given/previously
computed landmark x

∗ (in this case x3 or x4), and:

b =

[

q3

q4

]

=

[

gx3
(x12)

gx4
(x12)

]

= G(x12) (10)

R = ∇Gx12
Px12

∇G
T
x12

(11)

Step 3: Apply the virtual observation z = Cd̂r in a linear
Kalman filter:

d̂cr(k|k) = d̂r(k|k) + K(k|k)(b−Cd̂r(k|k)) (12)
P̂cr(k|k) = P̂r(k|k) −K(k|k)CP̂r(k|k) (13)

K(k|k) = P̂r(k|k)CT [CP̂r(k|k)CT + R]−1 (14)

where we use the same notations as before. Note that the
matrix C has the same number of rows as matrix ∇Hk,
but each row of C has only one nonzero element which
equals 1 (in the considering example, C has only two 1
elements, corresponding to d̂3 and d̂4).

This RMGF-IA has the same properties as for the previ-
ous approach: the uncertainty in the relative map covariance
decreases; the relative map becomes perfectly known if
the number of observations tends to infinity. The same
decomposition technique used in the RMF can be used
to decompose the estimation equations (12), (13), (14).
Therefore, the consistency update for one landmark is
constant time and for all the landmarks is linear time.
Overall complexity of the RMGF-IA is linear in the number
of landmarks.
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x4

q3

x12

x23

x34

x5

d4^

d3

d2^

d1^
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q4

Fig. 5. The Indirect Approach: At the fusing landmark x5, there are two
constraints: d̂3 = q3 and d̂4 = q4.

Note that an approximation is made when introducing
the virtual observation z = Cd̂r. Theoretically, a perfect
observation is preferred since it contains no noise, whereas
a virtual observation contains some noise which is ac-
counted for in the associated covariance matrix R. One way
to limit the “artificial” imperfection is to select the best one
(e.g. with smallest error which can be provided by Px12

in
(8)) among the possible solutions as the pivot. In the limit,
when the uncertainty of the chosen pivot approaches 1 (i.e.
surely certain), the virtual observation becomes a perfect
observation.

C. Linearization errors
This subsection devotes to analyze the performance

of the two approaches, the estimators {(5)-(6)-(7)} and
{(12)-(13)-(14)}, subjected to linearization errors when the
observation data are affected by a large noise. We consider
d̂r, P̂r as the input and d̂cr, P̂cr as the output of the two
estimators. The time step k is omitted for clarity.

The RMGF-SA uses an EKF as its estimator. In (7), the
gain K is strongly and directly affected by the error in
∇Hk. Observing from (1), h is highly nonlinear. Thus, if
the noise error in the input (d̂r, P̂r) is large, then the
linearization error of ∇Hk evaluated at an “erroneous”
d̂r can be very large, far from the true value. (In fact,
the experiments show that when the innovation is large
(e.g. 0.5m), ∇Hk is fluctuating and changing the sign
completely.) The error in ∇Hk then propagates directly
to K and then d̂cr, P̂cr. Another source of error comes
from H(d̂r) (see (5)), but generally the error in function
evaluation is small compared to the error in its Jacobian
evaluation. Thus, the RMGF-SA performance is very sen-
sitive to noise error.

The RMGF-IA uses a linear KF as its estimator, which
is optimal for linear dynamics/observation models in this
case. The largest source of linearization error is from R

in (14) since R is computed from the Jacobians of h and
g. However, the formulation of (14) naturally restrains the
“unexpected” effects of R in case of large linearization
error: If R is erroneously very large, then K becomes very
small, the update (12), (13) has small effect on d̂cr, P̂cr.
If R is erroneously very small, K can not go unbounded
because of the presence of CP̂rC

T . For implementation,
one can use a minimum threshold for R. The noise error
comes from b in (12) is small compared to that from R

and K (similarly to H in (5)).



Thus, the RMGF-IA is expected to be more robust subject
to linearization errors than the RMGF-SA when the obser-
vation noise is large. This prediction will be verified with
real experiments in the next section.

V. EXPERIMENTS

In the first experiment, Donald Duck, a fully autonomous
mobile robot is used. Ten beacons are placed in the
environment (8m × 6m). They can be detected as point
landmarks by the on-board laser sensors with an accuracy
of about 2cm. The robot makes a complete loop and 1300
observation steps.

Fig.6 shows the estimated robot trajectory and landmark
locations using the RMF. The thin curve is the vehicle path
using raw odometry data which contain a small systematic
error: the raw odometry path does not close. Clearly, the
RMF does not use the data coming from the odometry in the
estimation, thus the filter is not affected by the odometry
error and able to produce a good result. However, a close
look reveals 5 inconsistent distances!

To evaluate the consistency of a given relative map, we
introduce the following measure. Let’s denote dij as the
distance between the ith and jth landmarks. d̂ij is the
estimated distance (in d̂). Once the absolute map associated
with the estimated d̂ is obtained, it is possible to compute
the distance da

ij from the absolute coordinates of the ith

and jth landmarks. If the distance d̂ij is inconsistent then
d̂ij 6= da

ij . We introduce the absolute estimate error (AEE)
as the value of |da

ij − d̂ij |.
In Fig.6, there are 5 inconsistent distances with AEE

greater than 1cm. Fig.7 shows the results using the RMGF:
The estimated trajectory is good and there are no incon-
sistent distances (both RMGF-SA and RMGF-IA produce
similar results).

In the second experiment, the algorithms are tested with
the Victoria park dataset (a well known dataset in SLAM
community). Since the aim of this experiment is to evaluate
estimation algorithms, a true data association is used. The
first 600 observation steps are selected in this experiment,
which include 2 loop closings, 62 (tree) landmarks, 494
(distance) states and covers an area of about 160m×100m.
The first two observed landmarks are chosen as the seeding
landmarks, and the relative distance between them has
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Fig. 6. Estimated vehicle trajectory and landmark locations using the
RMF. There are 5 inconsistent distances (indicated segments).
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Fig. 7. Estimated vehicle trajectory and landmark locations using the
RMGF. There are no inconsistent distances.
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Fig. 8. The RMF on the Victoria park dataset: Bottom - the estimated
vehicle trajectory and landmark locations; Top - two zoomed-in examples
show inconsistent distances.

an initial variance P = [0.5m2]. (Note: For this outdoor
experiment, we use a value of (0.5+0.06)m as the standard
deviation for each newly observed distance, where 0.06m is
the uncertainty of the hardware and 0.5m is the uncertainty
for the measured distance from the robot to the center of
a tree.)

The result obtained using the RMF is shown in Fig.8.
The bottom part shows the estimated vehicle trajectory
and landmark locations. The top part displays 2 zoomed-in
examples which reveal that some estimated distances are
inconsistent. In total, there are 55 inconsistent distances
with AEE greater than 10cm, 4 inconsistent distances with
AEE greater than 50cm and one inconsistent distance with
AEE greater than 1.0m ! It is important to emphasize
that in an outdoor application, those distances may not
be such great significant for absolute mapping approaches.
However, for relative mapping approach, a small local
inconsistency can make a big difference in the final map
if the map is large, since the error propagates.

We are unable to use the RMGF-SA in this experiment.
The problem comes from the linearization. In fact, an
IEKF (Iterated EKF) is used in the implementation of
RMGF-SA. The values of ∇Hk and the innovation between
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Fig. 9. The RMGF-IA on the Victoria park dataset: Bottom - the
estimated vehicle trajectory and landmark locations; Top - two zoomed-
in examples. There are no inconsistent distances.

the iterations are fluctuating, not converging. (When the
innovation is large (e.g. 0.5m), ∇Hk is fluctuating and
changing the sign completely.) After first 100 observation
steps, the divergence problem arises which causes negative
distance lengths. This can be explained by the large error
in the measurement data (the case of Victoria park dataset),
making the Jacobian value ∇Hk erroneous. Therefore, the
linearization does not give a good approximation of the
function.

Fig. 9 shows the result obtained using the RMGF-IA. The
estimated trajectory is similar but smoother than the one
obtained using the RMF. However, there are no inconsistent
distances.

Fig. 10 is a comparison between the relative map states
estimated by the RMF and those estimated by the RMGF-IA.
The figure shows the absolute length differences between
the estimated distances by the two algorithms. The median
of the differences is about 10cm. There are 4 peaks where
the length differences are greatest. Each of them corre-
sponds to the distances starting from a landmark where
the vehicle makes a turn. This is because during a turn,
the number of observations of the same set of landmarks
is small, thus the correlation between the landmarks in this
region is small. As a result, large inconsistency remains.

VI. CONCLUSIONS

This paper has presented two methods to handle the
consistency of the Relative Map Filter to solve the SLAM
problem. The idea consists in maintaining a geometrically
consistent relative map. The first approach, the RMGF-SA
interprets the geometric constraint as a perfect observation
and adopts EKF as its estimator. The second approach, the
RMGF-IA considers the geometric constraint as a virtual
observation. It then carries out the estimation by applying
a linear KF. Both algorithms scale linearly with the number
of landmarks.
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Fig. 10. The difference in length of enumerated relative map states
estimated by the RMF and RMGF-IA.

Two experiments on real platform data are performed.
The first experiment shows that both methods perform
theoretically better than the the original RMF in term
of consistency of the estimated map state. However, the
RMGF-SA which is based on an EKF, suffers from the lin-
earization errors and does not work when the measurement
data are affected by a large noise. That means one has to
pay attention when using EKF in real applications. The
RMGF-IA, on the other hand, uses a linear Kalman filter
and produces very good results in both experiments.
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