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Abstract. Navigation in unknown or partially unknown environments remains one of the 
biggest challenges in today's mobile robotics. Environmental modeling, perception, 
localization and mapping are all needed for a successful approach. The contribution of this 
paper resides in the extension of the fingerprint concept (circular list of features around the 
robot) with uncertainty modeling, in order to improve localization and allow for automatic 
map building. The uncertainty is defined as the probability of a feature of being present in 
the environment when the robot perceives it. The whole approach is presented in details and 
viewed in a topological optic. Experimental results of the perception and localization 
capabilities with a mobile robot equipped with two 180° laser range finders and an omni-
directional camera are reported. 

1 Introduction 

Navigation, described by Gallistel in [5] as the capacity to localize itself with 
respect to a map, is an elementary task that an autonomous mobile robot must 
carry out. Both, accurate perception and a reliable environmental modeling are 
needed, in order to localize a mobile robot and to build a map of its environment. 
Many methods have been proposed to represent environments in the framework of 
autonomous navigation, from precise geometric maps based on raw data or lines 
up to purely topological maps using symbolic descriptions. Each one of these 
methods is optimal concerning some characteristics but can be very disappointing 
with respect to other requirements. Metric maps are suited when the robot needs to 
know its location accurately in terms of metric coordinates. However, in office 
buildings with corridors and rooms, or roads, the topology of important locations 
and their connections might be sufficient for navigation. Topological maps are less 
complex and permit more efficient planning than metric maps. Moreover, it is 
easier to generate and maintain global consistency for topological maps than for 
metric maps. Even though research has recently leaded to successful solutions, 
robust perception for robot localization in unmodified, dynamic, real-world 
environments is still a challenge. 
In this paper we concentrate on how multimodal perception combined with the 

uncertainty modeling of the features increases the reliability for topological 
localization and permits improving map building (map update). For the 
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topological framework the fingerprint concept is used. This type of representation 
permits a reliable and distinctive environment modeling. The goal is to model the 
error-prone measurements from the imperfect exteroceptive sensors by means of 
uncertainty associated to their data. 
Early works in topological localization [6] presented experiments in simulations, 

which avoided facing the perception problem. Following works as [10] were 
concerned with controlled environments, where perception with sonars was 
enough for the navigation purpose. Only more recent works address the perception 
problem in its whole complexity in the real world. Successful vision-based 
navigations are currently limited to indoor navigation because of its dependence 
on ceiling features [14], room geometry, or artificial landmark [12]. Other means 
for visual localization are applicable both indoors and outdoors, however they are 
designed to collect image statistics while foregoing recognition of specific scene 
features, or landmarks [13, 16]. In this context [7] and [8] introduced the 
fingerprint concept. Here, we show how the extension of the fingerprint concept 
with uncertainty modeling improves the topological global localization and 
mapping. 
The remainder of this paper is organized as follows. We present in Section 2 the 

fingerprint concept, the way it is encoded and generated. In Section 3, we define 
the uncertainty model for the features present in the fingerprint. Section 4 is 
dedicated to the new method used for the fingerprint matching. In Section 5 a brief 
description of the localization and mapping is depicted. Experimental results are 
presented in Section 6. The system will use both, a laser scanner and an omni-
directional camera for feature extraction. To conclude, Section 7 contains a 
discussion of the proposed approach and further research directions. 

2 The Fingerprint Concept in a Topological Framework 

The topological approach yields a compact representation and allows high-
level symbolic reasoning for map building and navigation. With this method we 
try to eliminate the perceptual aliasing (i.e. distinct locations within the 
environment appearing identical to the robot’s sensors) and to improve the 
distinctiveness of places in the environment. To maximize the reliability in 
navigation, the information from all sensors available to the robot must be used. 
For this, the notion of fingerprint as described in [7, 8] is used. This 
characterization of the environment is especially interesting when used within 
topological localization and multiple sensor modalities. 

2.1 Fingerprint Encoding 

A fingerprint is a circular list of features, where the ordering of the set matches the 
relative ordering of the features around the robot. We denote the fingerprint 
sequence using a list of characters, where each character represents the instance of 
a specific feature type. In our case we choose to extract color patches and vertical 
edges from visual information and corners and beacons from laser scanner. We 
use the letter ′v′ to characterize an edge, the letters ′A′, ′B′, ′C′, ... , ′P′ to represent 
hue bins, the letter ′c′ to characterize a corner feature and the letter ′b′ to 



 

 

characterize a beacon feature. Details about the visual features extraction can be 
found in [7] and laser scanner features extraction in [2]. 

2.2 Fingerprint Generation 

The fingerprint generation is performed in three steps (see Figure 1). The 
extraction of the different features (e.g. vertical edges, corners, color patches, 
beacons) from the sensors is the first phase of the fingerprint generation. The order 
of the features, given by their angular positions (0 … 360°) is kept in an array. At 
this stage a new type of feature, the virtual feature ′f′ is introduced. It reflects a 
correspondence between a corner and an edge. The ordering of the features in a 
fingerprint sequence is highly informative and for that reason the notion of angular 
distance between two consecutive features will be added. This adds geometric 
information and increases once again the distinctiveness between fingerprints. 
Furthermore, we introduced an additional type of feature, the empty space feature 
′n′, for reflecting angular distances. Each ′n′ covers the same angle of the scene 
(20°). This insertion is the last step of the fingerprint generation. More details can 
be found in [8]. 
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(a) 

(b) 

Figure 1.  Fingerprint generation. (a) Panoramic image with the vertical edges 
and color patches (′v′ and color); (b) laser scan with extracted corners ′c′ and 
beacons ′b′; (c) images one to four depict the position (0 to 360°) of the 
vertical edges, the corners, the beacons and the colors (G-green, E-light green, 
and A-red). The fifth image describes the correspondence between the vertical 
edges and the corners. By regrouping all this together and by adding the empty 
space features, the final fingerprint is:   
cbccbnfGcnEnvccncbcvncnnfvvvnccAcb.



 

 

3 Uncertainty Modeling in the Fingerprint Approach 

The interaction between the mobile robot and its surroundings is performed by 
means of exteroceptive sensor data. Of course, the sensors are imperfect devices, 
and thus the measurements always contain errors. This can be modeled by 
associating uncertainty to their data. For that reason, the probability theory will be 
used to model the uncertainty of the geometric features extracted from the 
environment. We define the uncertainty as the probability of a feature of being 
present in the environment when the robot perceives it. The main idea is to 
introduce a new element in the fingerprint approach that specifies this uncertainty. 
Such uncertainty is modeled by experience, for each type of feature presented in 
Figure 1: vertical edges, colors, corners (extremities of the segments), beacons, ′f′ 
feature and respectively ′n′ feature. In the following, it will be shown how the 
uncertainty, denoted by the symbol u, is calculated for each one of the features: 

• For the first three types of features (vertical edges, colors and corners) the 
uncertainty is calculated by using the following schema. 

 
 
 
 
 

 
 

The extraction_value variable changes in function of the type of the 
feature. For the vertical edges, extraction_value corresponds to the 
gradient value. For the colors, the extraction_value is represented by the 
hue value of the color. In the case of the corner features, the 
extraction_value is identified as the distance between the robot and the 
extremities of the segments. The values of the low_bound and high_bound 
are experimentally determined for each type of feature. The low_bound 
represents the bound below which the feature has a low probability of 
existence so that the robot may not see it at the next passage. Another 
important element is the high_bound, above which a feature has a high 
certainty to exist and to be in the place where it was found (extracted). 
The low_bound and the high_bound are determined for each feature at the 
extraction level. The extraction of the vertical edges consists of the 
application of a threshold function on the gradient values. Since all edges 
below the threshold are ignored, the low_bound is used as the threshold 
value. The high_bound must be high, but not max_gradient, and so it has 
been fixed experimentally at (threshold + mean_gradient). To extract the 
colors, a threshold function on the hue values has been applied and a 
similar method to that applied for the vertical edges has been chosen. 
Other two important elements in the schema described before are the 
values of min and max, which are fixed to 0.6, respectively 0.99. A 
method for calculating the value in-between these two values (min and 
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max), by knowing the low_bound, high_bound and the extraction_value 
can be obtained by linear interpolation. In this case, u will be equal to: 
 
 
 

 
• The beacons are artificial landmarks (i.e. reflectors) and they are extracted 

with the help of the laser range finders. The experiments showed that the 
beacons are detected all the times, and for that reason the uncertainty has 
been fixed at a high value. 

• As the ′f′ feature reflects the correspondence between a corner and an 
edge, its uncertainty is defined as the mean value between the uncertainty 
of the corner and the uncertainty of the vertical edge feature. 

• The last feature is the ′n′ feature (i.e. the empty space feature that 
represents the angular distance between the features). The uncertainty of 
this feature is proportional to the distance between the features.  

In this way, the uncertainty of the features used in the fingerprints is calculated. 
The limitation of this method resides in the models, which are difficult to define, 
especially for our definition of uncertainty, which cannot be directly derived from 
the physical characteristics of the sensors. 

4 Fingerprint Matching 

The string-matching problem is not easy. Usually strings do not match exactly 
because the robot may not be exactly located on a map point and/or some changes 
in the environment or perceptual errors occurred. Many string-matching 
algorithms can be found in the literature but they generally require the strings to 
have the same length. Some of them allow a level of mismatch, such as the k-
mismatch matching algorithms and string matching with k differences [1, 3]. The 
first allows matches where up to k characters in the pattern do not match the text 
and the second requires that the pattern have an edit distance from the text of k or 
less. One of the main problems of the above methods is that they do not consider 
the nature of features and specific mismatches. We wish to consider the likelihood 
of specific types of mismatch errors. For instance confusing a red patch with a 
blue patch is more egregious than confusing the red patch with a yellow patch. 
The standard algorithms are quite sensitive to insertion and deletion errors, which 
cause the string lengths to vary significantly. The methods adopted previously in 
the fingerprint approach for sequence matching are the minimum energy algorithm 
used in stereovision [5] and the global alignment used usually for D.N.A. 
sequences [9]. Our current approach is an extension of the global alignment 
algorithm considering uncertainties and it is described below. 
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4.1 Global Alignment with Uncertainty 

The global alignment algorithm finds an alignment between two strings so that the 
cost is minimal by using the cost function for aligning two characters. 

Before starting describing the algorithm, the idea of aligning two strings and 
calculating the cost will be illustrated with an example (see Figure 2): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  An example of calculating the cost between two strings. 
 
More formally, we can distinguish five elements, which form the global alignment 
algorithm (see Figure 3). The first element is an alphabet A, typically a set of 
letters, which is not empty. The second element corresponds to the two strings 
which are to be aligned: the first is composed of m, the second of n letters of the 
alphabet. The occlusion symbol is used to represent a space inserted into the string. 
The cost function gives the cost for the match between two symbols of the 
alphabet, included the occlusion symbol. Finally, the cost matrix is used to keep 
the minimal cost of a match between the first i letters of the first string with the 
first j letters of the second string, keeping this value in the element (i,j) of matrix 
V. 
 
 
 
 
 
 
 
 
 
 
Figure 3.  The main elements of the Global Alignment algorithm. 
 

Alphabet  Α, A ≠ { } 
Strings  S1∈ mA , S2∈ nA , m, n ∈ N 
Occlusion symbol ε, ε ∉ A  
Cost function  ℜ→∪∈∪∈ εε AbAaf t ,:cos   

Cost Matrix  ),( jiV ∈ ℜ, i∈{0, 1, ..., m}, j∈{0, 1, ..., n} 

string1 := « abcd » 
string2 := « bbc » 
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The values of the cost function fcost(a, b), are calculated experimentally in function 
of the similarity between characters a and b, in other words the more similar the 
characters are, the lower will be the penalty for mismatching. It only remains to 
calculate the values of the elements of the cost matrix, which is constructed by a 
technique named "dynamic programming". Initially the edges of the matrix are 
initialized with the cumulative cost of occlusions. (That reflects the fact that we do 
not know, a priori, how much letters must be jumped in one or the other string in 
order to obtain the best solution.).  
The base conditions of the algorithm are: 
 

•  
 
 
•                                                
 

 
For i and j both strictly positive, the recurrence relation is: 
 

The three cases that can be distinguished from the above relation are: 
• Aligning S1(i) with S2(j): The score in this case is the score of the 

operation fcost(S1(i),S2(j)) plus the score of aligning i-1 elements of S1 
with j-1 elements of S2, namely, V(i-1,j-1)+ fcost(S1(i),S2(j))   

• Aligning S1(i) with an occlusion symbol in string S2: The score in this 
case is the score of the operation fcost (S1(i), ε)  plus the score of aligning 
the previous i-1 elements of S1 with j elements of S2 (Since the occlusion 
is not an original character of S2), V(i-1,j)+ fcost (S1(i), ε)   

• Aligning S2(j) with an occlusion symbol in string S1: Similar to the 
previous case, the score will be V(i,j-1)+ fcost (ε,S2(j)). 

If strings S1 and S2 are of length n and respectively m, then the value of their 
optimal alignment with the global alignment is the value of the cell (n,m).  

The global alignment with uncertainty changes only the cost function described 
earlier. The cost function is adapted in order to take into account the 
corresponding uncertainty of features. The goal of adding the uncertainty in the 
string matching algorithm is to improve the distinctiveness of places. Next, a small 
example of global alignment algorithm with uncertainty will show the 
improvement of the matching (see Figure 4). 

The example depicted in Figure 4 shows the improvement gained by the new 
fingerprint matching with uncertainty algorithm. Even if the two fingerprints from 
the map are similar (i.e. string1 and string2), the uncertainty of features will 
determine the map fingerprint that matches best the observed fingerprint (i.e. 
stringObs). 
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Figure 4.  An example of the Global Alignment algorithm with the uncertainty. 

5 Topological Localization and Mapping 

In this section a brief description of the global topological localization and map 
building approach is presented.  

For the topological navigation a Partially Observable Markov Decision Process 
(POMDP) model is used. 

A POMDP is defined as <S,A,T,O>, where S is a finite set of environment 
states; A is a finite set of actions; T(s,a,s’) is a transition function between the 
environment states based on the action performed. A finite set O of possible 
observations and an observation function OS will be added. With this information, 
the probability of being in a state s’ (belief state of s’) after having made 
observation o, while performing action a, is given by: 

 
 
 
 
 
The key idea is to compute a discrete approximation of a probability 

distribution over all possible poses in the environment. An important feature of 
this localization technique is the ability to globally localize the robot within the 
environment. More details about this approach can be found in [4]. 

The information for the observation function within the topological framework 
is given by the fingerprint matching algorithm, described in the previous section.  

While navigating in the environment, the robot firstly creates and then updates 
the global topological map. Each node contains the topology and door situation 

string1   := « abcde » 
uncertainty_s1 := « 1 1 0.1 1 1 »  
string2  := « abcde » 
uncertainty_s2 := « 1 1 1 1 1 »  
 
stringObs  := « abde » 
uncertainty_sObs := « 1 1 1 1 » 
 
The alignment between the string1 and stringObs is the same with the 
alignment of the string2 and stringObs: 
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The probability that the stringObs matches the string1 is of 95% and the 
probability that the stringObs matches the string2 is of 75%. 
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(i.e. corridor, T intersection, + Intersection, L Intersection, room, closed door, 
opened door, partially left opened door, partially right opened door and no door. 
For the doors, with the direction: in front, behind, on the left or on the right of the 
robot.) and the associated fingerprint. More details about the topology can be 
found in [12]. 

The entropy of a probability distribution p is  
 
 
 

where pslog ps = 0 when ps = 0. The lower the value, the more certain the 
distribution. When the robot is "confused", the entropy is high. Therefore, the 
strategy of updating the map will be the following:  

• When the entropy of the belief state is low enough, the map will be 
updated and so the fingerprint and the uncertainty of the features will also 
be updated. 

• If the entropy is above a threshold α, then the updating will not be 
allowed, and we will try to reduce the entropy by continuing the 
navigation with localization. 

Similarly to [15], when the robot feels confident concerning its state, it can decide 
if an extracted feature is new by comparing the observation fingerprint to the 
fingerprint from the map, corresponding to the most likely state. This can happen 
either in an unexplored portion of the environment, or in a known portion where 
new features appear due to the environmental dynamics. The features from the 
fingerprint come with their extraction uncertainty u. When a feature is re-
observed, the uncertainty of the feature from the map fingerprint is averaged with 
the uncertainty of the extracted one. Otherwise, if the robot does not see an 
expected feature the uncertainty is decreasing. When the uncertainty of a feature 
from a map fingerprint is below a minimum threshold, than the feature is deleted, 
allowing in this way for dynamics in the environment. 

6 Experimental Results 

The approach has been tested in a 50 x 25 m2 portion of our institute building. 
 
 
 
 
 
 
 
 

 

Figure 5. The test environment, with the rooms and corridors in which the 
experimentation has been done.  
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For the experiments, the Donald Duck robot (see Figure 6), a fully autonomous 
mobile robot, has been used.  
 

 

 

 

 

 

 

 

Figure 6. System used for experimentation: The fully autonomous robot Donald 
Duck and the panoramic vision system. The camera has a 640 x 480 pixel 
resolution and an equiangular mirror is used so that each pixel in the image covers 
the same view angle.   

Its controller consists of a VME standard backplane with a Motorola PowerPC 
604 microprocessor clocked at 300 MHz and running XO/2, a hard real-time 
operating system. Among its peripheral devices, the most important are the wheel 
encoders, two 180° laser range finders and an omni-directional camera. The 
panoramic vision system depicted in Figure 6 uses a mirror-camera system to 
image 360° in azimuth and up to 110° in elevation.  
In order to validate the fingerprint approach with uncertainty, a comparison 

between the results obtained with the non-probabilistic approaches and the results 
obtained with the new probabilistic version will be presented. The experiments for 
all the approaches have been tested in the same environment and under the same 
conditions.  
The test setup was the following: The robot extracted the four features (i.e. 

vertical edges, colors, corners and beacons) in seven offices at 11 different places. 
For the new matching approach, the uncertainties of different features have been 
modeled. One fingerprint per room has been included in a database as reference 
(map initialization) for the localization approach. The other 70 fingerprints have 
been matched to the database for testing the localization.  
During all measurements, the orientation of the robot was approximately the 

same. This simplification could be omitted by letting the robot estimate his 
orientation by considering all rotations of the fingerprint string. 
For a given observation (fingerprint) a match is successful if the best match with 

the database corresponds to the correct room. Table 1 illustrates the percentage of 
successful matching and the mean rank for three string matching algorithms: 
minimum energy, global alignment and global alignment with uncertainty. The 
rank calculates the position of the correct room, with respect to the others, in the 
classification (e.g. if the match is successful than the rank is 1, if the correct room 
is detected with the second highest probability the rank is fixed at 2, etc.).  



 

 

Table 1. Classification using string matching, comparing minimum energy, global 
alignment and global alignment with uncertainty algorithms. 

 
 
 
 
 
 
 
 
In Table 1, one can see the improvement from using global alignment with 

uncertainty instead of the global alignment or minimum energy algorithm. The 
results with global alignment with uncertainty algorithm have 83.82% of 
successful matches, which corresponds to a clear improvement of 8.82% with 
respect to the standard global alignment (see Table 1). Note that the experimental 
setup does not include yet the presented Partial Observable Markov Decision 
Process (POMDP) for localization. However, as soon as the matching information 
will be integrated by the POMDP, the motion will bring additional information to 
the system that should allow very reliably navigation. 

7 Conclusion and Future Work 

This paper has presented a method for topological global localization and 
mapping by using the fingerprint concept combined with an uncertainty modeling. 
The fingerprint approach [7, 8] has already shown its capability of representing 
real world scenes in a robust and flexible manner. The uncertainty model, 
presented here as the probability of a feature being present in the environment 
when the robot perceives it, improves the concept and allows for a more stable 
global localization. The performance of the probabilistic fingerprint approach is 
shown through experiments comparing the new approach with two old versions. 
From the experiments we can conclude that the presented method is practical and 
robust. The successful classification is 83.82% which represents an improvement 
of 25% in comparison with the minimum energy approach and 8.82% with the 
standard global alignment. Even though the matching is not yet integrated with 
POMDP, we can already state that all matching steps will bring important 
information to the system since the correct fingerprint has a mean rank of 1.23. 
Future work will focus on the integration of the fingerprint with uncertainty within 
a POMDP for Simultaneous Localization and Mapping (SLAM) and the extension 
of the whole approach towards multi-resolution SLAM. 
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