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Abstract - Navigating in rough terrain is a complex task 
that requires the robot to be considered as a holistic system. 
Algorithms, which don’t consider the physical dimensions 
and capabilities of the mobile robot lead to inefficient 
motion and suffer from a lack of robustness. A physical 
model of the robot is necessary for trajectory control. In this 
paper, quasi-static modeling of a six-wheeled robot with a 
passive suspension mechanism is presented together with a 
method for selecting the optimal torques considering the 
system constraints: maximal and minimal torques, positive 
normal forces. The aim of this method is to limit wheel slip 
and to improve climbing capabilities. The modeling and the 
optimization are applied to the Shrimp rover. 
 

 
I. INTRODUCTION AND MOTIVATION 

A lot of trajectory planning and control algorithms don’t 
consider the physical dimensions and capabilities of the 
mobile robot within its environment. In rough terrain, these 
algorithms lead to inefficient motion and suffer from a lack 
of robustness. Navigating in rough terrain is a complex task 
which requires the robot to be considered as a holistic 
system.  

 

For wheeled rovers, the motion optimization is somewhat 
related to minimizing slip. Minimizing wheel slip not only 
limits odometric error but also reduces the overall energy 
consumption and increases the robot’s climbing 
performance. A good distribution of wheel speeds and 
torques is necessary to fulfill this goal. A few publications 
concerning terrain estimation and physics-based motion 
planning in rough terrain can be found in the literature. A 
good overview of physics-based control and terrain 
modeling techniques is presented in [1,2,3,7]. Time optimal 
planning considering a dynamic model can be found in [4].  

 

The speed of an autonomous rover must be limited in rough 
terrain in order to avoid high shocks on the structure and for 
safety reasons. Furthermore, the computational cost is 
usually quite high (image processing, path planning, 
obstacle avoidance, etc.) and the onboard processing power 
is limited. This requires the rover to move slowly. In this 

range of speeds (typically 5 to 20 cm/s), the dynamic 
contributions can be neglected and a quasi-static model is 
appropriate. Such a model can be solved for contact forces 
and motor torques knowing the state of the robot and the 
wheel-ground contact points. 
 
The Autonomous System Lab developed a six-wheeled off-

road rover called Shrimp which shows good climbing 
capabilities because of its passive structure. A detailed 
description can be found in [5]. This robot can adapt to a 
large range of obstacles and therefore can move smoothly 
across rough terrain. This behavior allows limited wheel 
slip. Nevertheless, further effort has to be done at the 
controller level. A physical quasi-static model of the robot 
must be developed in order to optimally control the torques 
on the wheels. Furthermore, a good knowledge of the wheel-
ground interaction is required in order to set a slip 
probability for each wheel. This will facilitate probabilistic 
sensor fusion between 3D-odometric information [6] and 
other sensors such as inertial measurement unit, laser 
scanner and vision. 
 
In this paper we will first describe the rolling resistance and 

slip models we are using. The quasi-static model of the 
Shrimp and a mobility analysis are presented in section 3 
and 4. Section 5 will be dedicated to the method used for 
selecting the optimal torques considering the system 
constraints. The experimental results are presented in section 
6 and section 7 will be dedicated to future work and 
conclusion. 

 
II. WHEEL SLIP AND ROLLING RESISTANCE 

The intent is to formulate a holistic model of a robot to 
optimize the control of the wheel motor torques to minimize 
wheel slip.  Therefore it is helpful to review the governing 
equations on wheel slip and rolling resistance.  These 
equations are later incorporated into a quasi-static model of 
a robot. Figure 1 shows the common forces acting on the 
wheel of a mobile robot. 
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P : external wheel joint force T : friction force 
N : normal force R : wheel's radius 
µo  : static friction coefficient M : motor torque 
µ : dynamic friction coefficient  

Figure 1. Acting forces on a wheel 

The wheel is balanced if the friction force fulfils the 
inequation: 
 NFstatic ⋅≤ 0µ   (1) 

This case represents static friction.  
If the static friction force can't balance the system, the wheel 
slips and the friction force becomes: 

 NFdynamic ⋅= µ  (2) 

In order to avoid wheel slip, the friction force which 
depends directly from the motor torque, M, should satisfy 
the equation (1) 

 NF
R
MT of ⋅≤== µ  (3) 

The above equations suggest that there are two ways to 
reduce wheel slip. First, assume that µo is known and set:  

 NT o ⋅≤ µ  (4) 

In fact, it is difficult to know µo precisely because it 
depends on the kind of wheel-soil interaction. During 
exploration, the kind of soil interacting with the wheels isn't 
known which makes µo impossible to pre-determine.  Anti-
lock break systems in automobiles sense slip and then 
compensate T until slip is not sensed anymore. But in this 
case slip has already occurred. 

 

Another way to avoid wheel slip is to first assume that the 
wheel does not slip. It is then possible to calculate the forces 
T and N as a function of the torque and the result is 
optimized in order to minimize the ratio NT / . Accounting 
for the previous assumption: 
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µn is similar to a friction coefficient. In minimizing this 
ratio, then minimizing µn , we optimize our chances that this 
coefficient is smaller than the real friction coefficient µo. If 
this is the truth, there is no slip. Therefore, it is possible to 

minimize the ratio NT /  without knowing the real static 
friction coefficient.  The second method is used here, 
because it is more robust. However, determination of 
parameters T and N require a model of the mobile robot. 

 
Rolling resistance is another important aspect to the quasi-

static model, and is therefore reviewed here. A static model 
balances the forces and moments on a system to remain at 
rest or maintain a constant speed. Such a system is an ideal 
case and does not include resistance to movement.  The 
rolling resistance is introduced in order to complete the 
model. This results in a quasi-static model. For a motorized 
wheel, we have: 

 

 
T, N : tangential/normal force  s : movement of the wheel 
T-, N- : ground reaction forces e/r : rolling resistance parameter 
R : wheel's radius Mr : friction torque  

Figure 2. Rolling resistance on a motorized wheel 

 
The friction torque, or rolling resistance torque, is opposed 

to the movement (Hertz-Föppl model [8]): 
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where l is the length of the rectangular contact patch and E 
is the reduced elasticity module described by : 
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where E1 and E2 are the elasticity of the wheel and the 
ground. This representation expresses the friction torque as 
dependant on the normal force applied on the wheel. A 
greater normal force results in a greater resistance torque 
which follows intuition. 

 
Equation 6 is not linear which can be difficult for analytical 

solutions. It is therefore simplified as: 

 N
El

RM r ⋅
⋅= 15.0α  (8) 

where α is a coefficient for reducing the simplification 
error. α is identified after an iterative process that estimates 
the simplification error. 
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III. INFLUENCE OF THE DEGREES OF FREEDOM 

The mobility of a rolling robot in straight motion should 
ideally be one, indicating that the robot can move in a 
constrained direction. Grubler's Mobility Equation in three 
dimensions can be described as: 

 

 54321 23456 fffffnMO −⋅−⋅−⋅−⋅−⋅=  (9) 
 

where n is the number of mecanical parts and fj the number 
of joints of each type (j=1,..,5, for example f1: the number of 
pin joints, f3: the number of spherical joints). The mobility 
equation is a guideline for determining if a system is 
statically determinate. Many real systems contain 
redundancy in links and joints resulting in hyperstatism. A 
four-legged table, for example, is statically indeterminate. 
More sophisticated modelling methods are required to 
analyze the distribution of forces in a hyperstatic system. 
Another approach is to model selective joints with additional 
degrees of freedom. Intelligent selection of these joints can 
minimize the error associated with a quasi-static solution. 
While the modeled kinematic chain is a simplification, it can 
be good enough to support motor control. 

Example for the Shrimp 

The mobile robot Shrimp has six powered wheels as shown 
in Figure 3. One wheel is rigidly attached to the body. In the 
front, a second wheel is effectively in the same plane with 
its position governed by a linkage and a spring. On either 
side two-wheeled bogies provide lateral stability. The 
position of the parallel-linkage bogie is passively articulated 
from reaction of the terrain.  
  

 

Figure 3. The Shrimp structure. 

In a first step, we can consider the wheel-ground contacts 
as spherical joints and all the pin joints in the mechanism as 
1DOF revolute. For the Shrimp, the calculation of the 
mobility using equation (9) is –20 rather than 1. The system 
is, therefore, significantly hyperstatic and requires a 

modified model for a possible quasi-static solution. Two 
significant modifications to joint degrees of freedom assists 
the model.  

 
The first one involves the representation of the wheel-

ground joint mobility. For a standard wheel without slip, the 
joint that represents the wheel-ground contact can be 
modelled as a spherical joint allowing three degrees of 
freedom (rotations about the three axes). Motor torque on 
the wheels will directly affect the forces in that contact 
plane. Lateral forces are not influenced by the motor torque. 
Therefore, the system was modelled with the lateral forces 
being carried by the wheel fixed to the body and the wheel 
on the front fork. The wheels on the bogies were modelled 
with no resistance in the lateral direction (4 degrees of 
freedom).    

 
The second modification acts on the representation of the 

redundant kinematic chains. It is possible to model selected 
joints on redundant kinematic chains with greater degrees of 
freedom. This results in force being transmitted through 
direct flow patterns. Because the model is being used to 
optimise motor torques, inaccuracies in the internal linkage 
forces can have minimal effect. 

 
Figure 4 shows the resulting kinematic model of the 

Shrimp mobile robot. The numbers at the link connections 
indicate the degrees-of-freedom of that joint. 

 

 

 

Figure 4. Final representation of the mobility of the joints. 
 

The final mobility can then be calculated using equation (9) 
to produce: 
 

 1627314145186 =⋅−⋅−⋅−⋅−⋅=MO  (10) 

 
IV. QUASI-STATIC MODEL OF A ROBOTIC SYSTEM 

For a 3D static model, 6 equations (3 torques and 3 forces) 
are applied to each body, containing ground reaction forces, 
gravity forces (weight) and external forces. The resulting 
model that is used for motion control also includes 
consideration of wheel resistance and wheel slip. Dynamic 
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forces are considered to be negligible because the speed is 
low. Therefore, the model is referred to as quasi-static.  

 

For the model we assume that the wheel-ground contact 
angles are known. They can be computed while the robot is 
moving using the technics presented in [1] and [6]. An 
alternative method using tactile wheels can be found in [9]. 
It has the advantage to provide the contact points for static 
conditions also. 

 

Model of the Shrimp 
The   Shrimp   has   18  parts  and  is  characterised  by 6⋅18 

= 108 independent equations describing the static equilibium 
of each part and involving 14 external ground forces, 6 
internal wheel torques and 93 internal forces and torques for 
a total of 113 unknowns. The weight of the fork and the 
bogies link has been neglected whereas the weight of the 
main body and the wheels is considered. 

 

Of course, it is possible to reduce this set of independent 
equations because we have no interest in implicitly 
calculating the internal forces of the system. The variables 
of interest are the 3 ground contact forces on the front and 
the back wheel, the 2 ground contact forces on each wheel 
of the bogies and the 6 wheel torques. This makes 20 
unknowns of interest and the system could be reduced to 20 
- (113 - 108) = 15 equations. This leads to the following 
matrix equation: 

 1151202015 xxx RUM =⋅  (11) 

where M is the model matrix depending on the geometric 
parameters and the state of the robot, U a vector containing 
the unknown and R a constant vector.  

 
V. OPTIMIZATION 

The controlable inputs of the system are the six wheel 
torques. Since there are five more unknowns than equations 
it is possible to write an equation expressing the torques as 
linearly dependant. The 14 other equations define the 
external forces as a function of the torques. 

 
The model of the Shrimp is indeterminate because there are 

less equations than variables and the set of solutions is of 
dimension five (number of wheels -1). The goal of the 
optimization is to minimize slip. This can be achieved by 
maximizing the traction forces, which is equivalent to 
minimizing the function ( )ii NT /max  for the wheels [1].  

 
Since it is difficult to do reasoning in five dimensions, a 

simpler robot referred to as ThreeWheels (see Figure 5) is 
used for presenting our optimization algorithm. This process 
will then be extrapolated for the complete model. 

 

Figure 5. The ThreeWheels 2D model. This rover belongs to the passively 
suspended robots family. m4 is a non-controllable torque generated by a 
torsion spring with known characteristics. 

 

The model of the ThreeWheels rover has nine unknowns: 
two forces and one torque on each wheel (m4 is known and 
directly depends on the geometry) and seven equations: 
three global equations, one torque equation for each wheel 
and one torque equation for the fork. That means that the 
solutions space is of dimension two and that m1, m2 and m3 
are linearly dependant. Equations (12) express the forces on 
the wheels and equation (13) the torque of the first wheel as 
functions of m2 and m3.  

 iiii mmN 13121 γβα +⋅+⋅=  

iiii mmT 23222 γβα +⋅+⋅=  with i = 1,2,3 

 δεε +⋅+⋅= 32211 mmm  (13) 
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The solution space of the ThreeWheels rover is depicted in 
Figure 6a. It corresponds to the function f defined by the 
equation (14), which is the function to minimize. 
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(b) 

Figure 6. Solution space for the ThreeWheels rover (see Eq. 14): max(Mu1, 
Mu2, Mu3). The functions Mu1, Mu2, Mu3 are hyperbolic and a linear 
optimisation process is not possible. (a) Optimal solution (circled) 
minimizing slip and fulfilling the Ni > 0 constraint. (b) Cross section of 
figure (a) for m2 = -0.3061.  One can see that the optimal solution (circled) 
corresponds to equal Mu’s. 

Since the system of equations is non linear, a numerical 
method is implemented. Our optimization method uses a 
combination of different algorithms and is depicted in Fig 7. 
Firstly the Equal Torques solution is checked versus the 
following constraints: 

 
a. Motors saturation : the torques of the optimal solution 

must be smaller than the maximal possible torque. 
 

b. Normal forces : the normal forces Ni must be greater than 
zero. The asymptotes of the hyperbolic functions in Fig 
6a define the sign inversion limit. 

 

 
If this solution is valid, it is taken as the initial solution for 

the Fixed Point optimization (A). If it doesn’t fulfill the 
constraints, a valid initial solution is computed using the 
Simplex Method (B). The optimal solution is then provided 
either by (A) or the Gradient optimization (C). 
 

 
Figure 7. Optimization algorithm. 

Now the individual modules are explained in more detail. 
 

A. Fixed Point optimization 

This optimization method is based on the fixed point 
algorithm. The aim of this algorithm is to numerically find 
an intersection of curves when an analytical solution is hard 

to obtain. This is the case when searching for solutions with 
equal Mu’s. The corresponding flow chart along with its 
explanation is presented in Figure 8. 

 

 
 

Figure. 8 : Fixed point based algorithm. The quasi-static model (2) is solved 
with an initial set of torques (1). Block (3) computes an average friction 
coefficient based on the computed forces (output of module 2). The 
corresponding torques are computed (4) and fed again in module (2). 
Twenty iterations are sufficient for convergence. 

This algorithm is not computationally expensive and 
provides good results for most cases. Nevertheless, it 
diverges sometimes and doesn’t account for the before-
mentioned constraints. This can lead to torques that cannot 
be provided by the motors. 

 
B. Simplex method 

This method is based on the Simplex algorithm which 
solves linear programs in a constrained solution space. The 
Simplex method tries to maximize an object function 
considering a set of constraints on the variables. We choose 
the object function g defined in equation (15) as the object 
function. This function has been chosen because it tends to 
minimize the ratio T/N. 

 

 )max(∑=
i

iNg  (15) 

Furthermore, the function g is linear because it is a linear 
combination of the torques. The solution provided by this 
method fulfils the constraints and will be used as a starting 
point for the Incremental optimisation.  

 
C. Gradient optimization  

This algorithm seeks for an optimum in the constrained 
solutions space given a known valid initial solution. The 
gradient optimization is similar to the potential field method: 
at each step the gradient is computed and the next solution is 
generated following the maximum slope. 

 
VI. EXPERIMENTAL RESULTS 

The optimization for the 3 dimensional Shrimp is similar 
to the method presented in the previous section. The solution 
space has now five dimensions and one has to account for 
18 constraints (with i = 1 … 6). 

  

 MaxTrqmi <  MaxTrqmi −>  0>iN  (16)



  
 
An example of computed forces and torques is depicted in 
figure 9. 

 
Figure 9. Forces and torques computed by the optimization procedure. The 
forces are expressed in the global frame of reference. The user of the 
interface can change the state of the robot and the contact angles of the 
wheels interactively. (a) Side view: the pitch, the front fork and the left 
bogie angles can be modified (b) Right bogie view: the angle of the right 
bogie can be modified on this view. (c) Decomposed view from rear: the 
roll angle can be modified. In this view, the arrows represent the projections 
of the reaction forces in the global frame of reference.     

The optimization algorithm has been tested for around 20 
thousand states generated automatically considering 
different angles for each input parameter. 80% of the 
computed torques correspond to a friction coefficient 
smaller than 0.6 (a tyre on a dry road has a coefficient of 1). 
This will certainly allow to limit the slip of the wheels in 
most of the cases. 

 
The execution times for the algorithms A, B and C are 6 

ms, 5 ms and 20 ms respectively (1.5 GHz processor). The 
worst case is about 31 ms. However, as it can be seen in Fig. 
7, the majority of the states are handled in 6 ms. 

  
VII. FUTURE WORK AND CONCLUSION 

In this paper a quasi-static model of a six-wheeled rover 
together with an optimization method which minimize slip 
have been presented. The simulations show promising 
results and the system is ready to be implemented on the 
rover for real testing. The needed processing power is 
relatively limited and online computation should be easily 
accomplished. 

 
The next step will be to use the computed forces and 

torques in order to set a slip probability for each wheel: the 
less pressure on the wheel, the more likely the wheel slips. 
This is a valuable information for probabilistic multi-sensors 
fusion. The knowledge of wheel-ground interaction will also 
give a clue on how to correct for wheel diameter changes 
due to tire compression. 
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