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Abstract— This paper starts with a discussion of the open
challenges in the SLAM problem. In our opinion they can be
grouped in two main and distinct areas: convergence of the built
map and computation requirement for real world application.
To deal with the previous problems, a solution in the stochastic
map framework based on the concept of the relative map is
proposed. The idea consists in introducing a map state, which
only contains quantities invariant under shift and rotation and to
carry out the estimation of this relative map in an optimal way.
This is a possible way in order to have a decoupling between
the robot motion and the landmark estimation and therefore
not to rely the landmark estimation on the unmodeled error
sources of the robot motion. Moreover, the proposed solution
scales linearly with the number of landmark allowing real-time
application. Experimental results, carried out on a real platform,
show the better performance of this method with respect to the
joint vehicle-landmark approach (absolute map filter) when the
odometry is affected by undetected systematic errors or by large
or unmodeled non-systematic errors.

I. INTRODUCTION

In the Simultaneous Localization and Mapping (SLAM)
problem a mobile robot has to be able to autonomously explore
the environment with its on-board sensors, gain knowledge
about it, interpret the scene, build an appropriate map and
localize itself relative to this map.

Many approaches have been proposed to solve the SLAM
problem both in the framework of the metric and the topolog-
ical navigation.

A very successful method is the stochastic map approach.
After the first precise mathematical definition of the stochastic
map [15] early experiments ([4], [8]), have shown the quality
of fully metric simultaneous localization and map building:
the resulting environment model permits highly precise lo-
calization that is only bounded by the quality of the sensor
data. However, these approaches suffer from some limitations.
Firstly, they rely strongly on odometry. For automatic mapping
this makes the global consistency of the map difficult to
maintain in large environments where the drift in the odometry
becomes too important. Furthermore, they represent the robot
position with a single Gaussian distribution. This means that
an unmodeled event (i.e. collision) could cause divergence
between the ground truth and the estimated position from
which the system is unable to recover (lost situation). In [1] it
has been shown that by taking into account all the correlations
the global consistency is better maintained. However, this
is not sufficient as confirmed by another work [2] where a

solution is proposed by extending the absolute localization to
include a localization relative to local reference frames.

Currently the SLAM has two contrasting problems to be
solved, which are often faced with a trade-off:

• The map convergence;
• The computational requirement (both in processing and

memory) for real-time/real-world implementation
The aim of this paper is to suggest a solution in the

frame-work of the stochastic map approach to SLAM, able to
satisfy both the previous requirements. The basic idea consists
in introducing a map state which only contains quantities
invariant under shift and rotation. This is a possible way in
order to have a decoupling between the odometry and the
landmark estimation and therefore not to rely the landmark
estimation on the unmodeled error sources in the robot motion.
Only the case of point landmark is here considered although
the same idea could be applied to other kind of landmark. In
section II we discuss the two open challenges by illustrating
the solutions so far adopted. In particular, the approach here
introduced is compared with the previous filters based on the
relative maps. The proposed filter is presented in section III
for the case of point landmark. The results obtained through
real experiments are displayed in section IV where also a
comparison with the absolute map filter is shown. Finally,
conclusions and future research are given in section V.

II. OPEN CHALLENGES IN SLAM

A. The Convergence Problem

In order to find a solution of the SLAM problem it is clearly
necessary to known the statistical model characterizing the
error of each robot’s sensor as better as possible. Only in this
case it is possible to integrate all the information coming from
the sensor of the robot in a proper manner. A statistical model
for a sensor reading concerns the characterization of both the
systematic and the non-systematic components of the error of
the sensor. When the gaussian model is adopted to characterize
the error of a given sensor, the systematic component is
provided by the mean value and the non-systematic component
by the variance. Since the previous quantities (mean value and
variance) are known only with a finite accuracy and since the
gaussian hypothesis is in general a simplifying approximation,
any approach to SLAM based on this error model will produce
a divergence in the built map if the environment is large
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enough. This problem arises even if the approach is optimal
respect to the dynamics of the robot and the observation and if
the convergence is theoretically proven. Indeed, the divergence
arises because the error model is unperfect.

In [7], the convergence of a filter which estimates the
robot configuration and the absolute location of the landmarks
by adopting a Kalman filter (absolute map filter, AMF ), is
theoretically proven. However, the proof is based on a perfect
statistical knowledge of the error of each sensor and also on
the hypothesis of a linear observation. The map convergence
is not proven when the hypothesis of linearity is not fully
satisfied (see [10] for theoretical details).

In order to minimize the divergence of the built map, one
have to concentrate on two important points:

• Adopt an optimal filter (accordingly to the dynamics and
the observation);

• Use the best statistical model to characterize the error of
the adopted sensor readings (it is better avoiding the use
of sensors whose error is roughly known (statistically) in
the estimation process)

Clearly, to deal with the second remark, it is better not to
use the odometry in the estimation phase if, as often happens,
other more precise sensors are available with a well-known
error model. The AMF, using odometry, diverges when there
is even a very small, undetected systematic component. In [10]
we proved the divergence through simulation while here this
divergence is proven through experiments on a real platform.
Moreover, both in [10] and here in section IV, we do not
consider completely unmodeled events (e.g. collisions) which
cause an error in the odometry estimation very far from the
assumed odometry error model. Therefore, decoupling odom-
etry from the estimation process is very important. Csorba,
Uhlmann and Durrant-Whyte [5] introduced a relative map
based on quantities invariant to the robot pose (i.e. to shift
and rotation). The same idea was adopted by Deans and
Hebert [6]. Both estimate the distance between two landmarks,
which is invariant to the robot pose (shift and rotation).
However, their algorithms are sub optimal because they do not
consider any correlation between the distances. In figure 1 we
display an observation consisting of 4 landmarks. Let consider
the distance d12 between the first and the second landmark.
Clearly, the error on this distance get from this observation is
correlated with the error on d13, d14, d23 and d24 and it is not
correlated with the error on d34. In other words, the covariance
matrix for the vector [d12, d13, d14, d23, d24, d34] will be:
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The importance of these correlations arises in the estimation
process. In the filter proposed by Deans and Hebert [6], the
estimated distance at a given time step is a combination of
the two estimations of that distance coming from the last
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Fig. 1. The distance between the first and the second landmark is correlated
with all the other distances except with the one between the third and fourth
landmark

update and the current observation (see equation (10) in [6]).
In our case, since we use a Kalman Filter which maintains
the correlations, the estimation of a given distance is a com-
bination of all the distances correlated with it. In particular,
the estimation of a given distance can be updated even in the
case when this distance is not re-observed. Indeed, taking into
account these correlations means to take into account of all the
constraints among the distances (which are not independent)
between the landmarks observed at least once simultaneously
[11]. In section III-A we give the equations characterizing our
filter.

Newman introduced a relative map and he used two filters in
the estimation, called the relative map filter and the geometric
projection filter ([12] and [13]). The second one provides a
means to produce a geometrically consistent map from the
relative map, by solving a set of linear constraints (indeed,
he introduced a relative state containing quantities that are
not independent). Both filters are optimal since the dynamics
and the observation are both linear and they are based on the
Kalman Filter. However, the elements used in this approach
are invariant for shift only, not for rotation. Our approach is
to take invariant elements, but for both shift and rotation and
to apply a KF for estimation, contrasting to [5] and [6], who
use the same invariants in combination with a non-optimal
filter. The observation, as well as the dynamic, will be linear.
Therefore the filter will be optimal with respect to both the
previously presented criteria. The only error source, which
could create a divergence in the long term, is the gaussian
assumption adopted in the statistical knowledge of the external
sensor (laser in the experiments).

B. Computational Requirement

As explained, the other open challenge for the SLAM is a
practical problem, which one encounters when implementing
an approach: the memory and processing resources are limited.
This is especially present in the AMF filter, since the lack
of invariance requires taking into account all the covariances
[1]. This means that an update needs the update of all the
covariances between landmarks and between the landmarks
and the robot (which scales as O(N 2), where N is the
number of landmarks). Therefore, AMF scales dramatically



with the number of landmarks making impossible a real-time
implementation when N is larger than about one hundred.
Thrun [16] proposed to reduce this complexity by using the
Information Filter, which allows to detect the dependencies
between landmarks and to set them to 0 if they are very
small (Sparsification). This approximation allows reducing the
complexity, but avoids an optimal solution. He applied this
method also in the case of multi-robots [17]. A constant time
solution was proposed very recently by Newman [14] by
considering several local maps. The relative maps proposed
by Csorba et al. [5], Deans and Hebert [6] and Newman [12]
scale linearly with N since the covariance matrix is block
diagonal. Also in our approach, the covariance matrix will be
block diagonal without any approximation. Furthermore, even
in the event of closing a loop, the relative map approaches
present at least two advantages with respect to the AMF :

• the elements of the relative state for the landmarks
belonging to the same loop are uncorrelated (without
approximation) before closing the loop;

• After closing a loop, only the elements of the relative
state for the landmarks belonging to this loop will be
correlated.

We can say that the relative map approaches minimize the
number of the correlations necessary in order to completely
use the information coming from closing a loop. The clos-
ing loop constrain can be integrated by updating only the
independent elements in the relative state (i.e. by deriving
the analytical dependency of the dependent elements on the
ones independent), that is equivalent to the application of the
Projection filter introduced by Newman [12].

III. THE STRUCTURE OF THE RELATIVE MAP FILTER

A possible way to decouple odometry from the estimation
process is obtained by introducing a filter whose state only
contains quantities invariant under shift and rotation. This is
the idea characterizing the relative filter introduced here. Once
the relative map has been estimated through this filter and
the absolute location of a set of landmarks is known (e.g. by
using the first observation) it is possible to build the absolute
map. Therefore, the entire method contains two algorithms.
The former estimates the relative map, the latter builds the
absolute map. In the sections III-A and III-B respectively we
describe the two algorithms.

A. The Relative Map Filter

The state estimated through this filter only contains the
distances between the point landmarks. Of course, the distance
is a quantity invariant under shift and rotation, i.e. it is
independent of the robot configuration. Let denote with d the
state and with P its covariance matrix. In fig. 2a the vector
d contains the marked distances between the 6 landmarks.
Clearly, not all of the distances between the 6 landmarks
are stored in d because not all the landmarks were observed
together at the same time. At a given time step, the observation
consists of a set of distances between the landmarks observed
by the robot through its external sensor (fig. 2b). These

(a) (b)

(c)

Fig. 2. Relative Map before the observation (a), the observation (b), and
the relative map obtained by fusing the information coming from the old map
and the observation (c). In all the three figures the map state only contains
the indicated distances between the landmarks

distances may be already observed (i.e. can be in the vector
d) or may not. Let introduce the following notation:

dold = [u,wold]
T

dobs = [wobs, v]
T (1)

where dold is the state estimated at a given time step and
dobs is the observation at the same time step, containing a set
of distances between the landmarks observed by the robot. u

contains the distances which are not re-observed (i.e. which do
not appear in the vector dobs) and wold contains the distances
re-observed (denoted by wobs in the vector dobs). Finally,
v contains the distances observed for the first time at the
considered time step. The covariance matrix of the previous
vectors are:

Pold =

[

Puu Puw

PT
uw Pww

]

Pobs =

[

Rww Rwv

RT
wv Rvv

]

(2)

We adopt the following notation to denote the estimated
quantities, obtained by fusing the old state with the observed
one (the new estimated distances are depicted in fig. 2c).

dnew = [unew, wnew, vnew]
T (3)

Pnew =





Pnuu Pnuw Pnuv

PnT
uw Pnww Pnwv

PnT
uv PnT

wv Pnvv



 (4)

We obtain the new estimation for the state and its covariance
matrix by applying the equations of the Kalman filter. Observe
that the observation is linear in the state (is the identity) and
therefore the Kalman filter is optimal.

unew = u + Puw (Pww + Rww)
−1

(wobs − wold) (5)



wnew = wold + Pww (Pww + Rww)
−1

(wobs − wold) (6)

vnew = v + Rvw (Pww + Rww)
−1

(wold − wobs) (7)

Pnuu = Puu − Puw (Pww + Rww)
−1

Pwu (8)

Pnuw = Puw − Puw (Pww + Rww)
−1

Pww (9)

Pnuv = 0 (10)

Pnww = Pww − Pww (Pww + Rww)
−1

Pww (11)

Pnwv = Rwv − Rww (Pww + Rww)
−1

Rwv (12)

Pnvv = Rvv − Rvw (Pww + Rww)
−1

Rwv (13)

Instead of the equations (6) and (11) it is possible to use
the following equations:

wnew = wobs + Rww (Pww + Rww)
−1

(wold − wobs) (14)

Pnww = Rww − Rww (Pww + Rww)
−1

Rww (15)

They are derived by observing the symmetry of the filter
with respect to the change ”observation” ↔ ”old state”.
Observe that the coincidence of the previous equations could
be easily proven also by using the inversion lemma.

B. Recovering the Absolute Landmark Location

We adopt a simple linear method to recover the absolute
landmark locations starting from the absolute location of three
landmarks and the state estimated by the previous filter, which
contains the distances between the landmarks. At a given time
step the absolute locations of a set of landmarks are available
(we assumed that the absolute coordinates of at least three
landmarks are known at the beginning; these coordinates could
be provided by the first observation). The aim is to estimate
the location of a new landmark denoted by j (see fig. 3).
We extract from the previous set a subset containing three
landmarks whose distance from the landmark j is provided
by the relative filter (we assume that the extraction of three
landmarks is possible; if it is not possible the absolute location
of the landmark j cannot be provided through this method).
Let denote the locations of these landmarks by (xi, yi) and the
distance between the landmark j and the landmark i of this
subset by di. Clearly, we have for the landmark i

d2

i = (xj − xi)
2 + (yj − yi)

2 i = 1, 2, 3 (16)

We therefore obtain a linear system in the unknowns xj

and yj by considering the differences d2
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Fig. 3. In the estimation of the jth landmark’s absolute location only the
landmarks whose absolute position is known and whose distance from the
jth landmark has been estimated through the relative filter are involved.

applying recursively this method for all the landmarks (all j)
it is possible to get their absolute location at each time step.

Clearly, the choice of the three landmarks does not have any
influence on the result since the distances are not independent
and the dependency is automatically accounted by maintaining
all the necessary correlations in the covariance matrix, as
mentioned in the previous sections.

IV. EXPERIMENTS

For the experiments, Donald Duck (see Fig. 4), a fully au-
tonomous mobile robot, has been used. The robot is equipped
with wheel encoders, two 180 laser range finders and a CCD
camera (not used here). It is connected via radio ethernet only
for data visualization via web and data logging for statistical
purposes.

Ten beacons were placed in the environment. They could be
detected by the laser sensor with an accuracy of about 2cm.
They were adopted to create the point landmarks. Clearly,
instead of them a function able to extract corners or any other
point feature from the laser scanner could be used.

Figure 5 shows the metric map and the robot trajectory
obtained through the absolute map filter. The odometry was
calibrated through the method introduced in [9] before the
experiment. By using this method of calibration it was possible
to make the systematic odometry error smaller than 0.2%. The
robot moved along a closed trajectory at around 20 cm s−1

and estimated at each time step its configuration and the
position of the beacons in the environment. In the figure,
the estimated robot position is represented with a dot and
the estimated beacon position with a circle. The unities are
meters in both axes. The initial robot configuration coincides
with the origin of the global reference whose axes were chosen
coincident with the axis of the robot at the initial time. Because
of the odometry calibration and the small dimension of the
environment, the map convergence is good.

The next three figures (6-8) show the map and the robot
trajectory as estimated by the AMF when a systematic error
occurred (odometry not calibrated). They refer to the same
experiment as in figure 5 but, in processing the data from the
encoder sensor, the radius of the right wheel was changed by
a factor equal to 0.5%, 1% and 2% respectively in the three



Fig. 4. The autonomous robot Donald Duck. Its controller consists of a VME
standard backplane with a Motorola PowerPC 604 microprocessor clocked at
300 Mhz. Among its peripheral devices, the most important are the wheel
encoders, a 360 laser range finder and a grey-level CCD camera (not used
here).

Fig. 5. The results obtained through the AMF when the odometry was
perfectly calibrated (< 0.2%)

figures. It is possible to see that the map starts to diverge
even when the error is quite small (0.5%). Moreover, when
the error is larger or equal than 1% the algorithm makes an
error in associating the data (in figure 7 the number of the
beacons found are 12 and in figure 8 they are 16). Clearly, the
error in the data association depends not only on the method
adopted and on the sensor error, but also on the speed of the
robot, on the frequency of the data delivery and on the actual
distance among the landmarks. Therefore, the main problem
here shown, concerns the map convergence.

Figure 9 shows the results obtained by using the same data
adopted in the previous case, but through the relative map filter
described in the section III. Since in this case the odometry
was completely decoupled by the estimation process, there

Fig. 6. The results obtained through the AMF when the radius of the right
wheel was changed by a factor equal to 0.5%

Fig. 7. The results obtained through the AMF when the radius of the right
wheel was changed by a factor equal to 1%

is not any drift in the built map. During the experiment the
odometry data were only used to solve the data association
problem and not in the estimation process. In this case, we get
exactly the same result if we change the value of the wheel
radius by a factor equal to 10%. For changes larger an error
in associating the data arises.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper presented an approach to solve the SLAM
problem in the stochastic map framework based on the concept
of the relative map. The idea consists in introducing a map
state which only contains quantities invariant under shifts and
rotations and to carry out the estimation of this relative map
in an optimal way (a Kalman filter was adopted). This is a
possible way in order to have a decoupling between the robot
and the landmark estimation and therefore not to rely the
landmark estimation on the unmodeled error sources in the
robot motion.

The optimal filter in combination with the invariance of
the landmarks represents an excellent solution for the con-
vergence. Furthermore, the filter presented here maintains all
the covariances without approximation. On the other hand, the
structure of the covariance matrix remains block diagonal due
to the invariance. (Clearly, in the case of closing a loop all the



Fig. 8. The results obtained through the AMF when the radius of the right
wheel was changed by a factor equal to 2%
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Fig. 9. The results obtained through the RMF. In this case the odometry
was completely decoupled by the estimation process and therefore there is
not any drift in the built map even when the wheel diameters is changed by
a factor equal to 10%

elements involved in the loop will be correlated, increasing
the complexity of the covariance matrix. However, as for
other relative map approaches, the number of correlations
is the minimum necessary to completely use all the infor-
mation coming from the closing loop constraint). Therefore,
the presented method represents an optimal solution to the
open challenges of SLAM pointed out at the beginning of
the work: Convergence and computation. A series of exper-
iments on a real platform was carried out to validate our
method. In particular, the same data from the experiment
were adopted to compare the standard joint vehicle-landmark
approach (absolute map filter) with our method. We conclude
that the convergence of the absolute map filter is true only if
several infeasible hypothesis are satisfied (linear observation,
odometry perfectly calibrated, non-systematic odometry error
statistically perfectly known). The proposed approach does not
require these hypothesis.

We are extending the approach to the case of more general
landmarks. In particular, we are deriving the equations for this
relative filter for the corner feature.
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