SLAM BASED ON QUANTITIES INVARIANT
OF THE ROBOT’S CONFIGURATION

* koK

Agostino Martinelli* Anna Svensson
Nicola Tomatis * Roland Siegwart *!

* Swiss Federal Institute of Technology Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
** Kungliga Tekniska hégskolan (KTH)
SE-100 44 Stockholm, Sweden

Abstract: This paper presents a solution to the Simultaneous Localization and
Mapping (SLAM) problem in the stochastic map framework for a mobile robot
navigating in an indoor environment. The approach is based on the concept of the
relative map. The idea consists in introducing a map state, which only contains
quantities invariant under translation and rotation. In this way the landmark
estimation is decoupled from the robot motion and therefore the estimation does
not rely on the unmodeled error sources of the robot motion. A new landmark is
introduced by considering the intersection point between two lines. Only landmarks
whose position error is small are considered. In this way the intersection point is
the natural extension of the corner feature. The relative state estimated through
a Kalman filter contains the distances among the intersection points observed at
the same time. Real experiments carried out with a mobile robot equipped with a

360° laser range finder show the performance of the approach.
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1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM)
requires a mobile robot to autonomously explore
the environment with its on-board sensors, gain
knowledge about it, interpret the scene, build an
appropriate map and localize itself relative to this
map. Many approaches have been proposed both
in the framework of the metric and the topological
navigation. A very successful metric method is the
stochastic map (Smith, 1988), where early experi-
ments (Crowley, 1989) (J.J. Leonard, 1992), have
shown the quality of fully metric SLAM. However,
these approaches suffer from some limitations.
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Firstly, they rely strongly on odometry making
the global consistency of the map difficult to main-
tain in large environments due to the odometry
drift. Furthermore, they represent the robot po-
sition with a single Gaussian distribution mean-
ing that an unmodeled event (i.e. collision) could
cause a divergence between the ground truth and
the estimation, which could be unrecoverable for
the system (lost situation). In order to minimize
the divergence of the built map, one have to
concentrate on two important points: Adopt an
optimal filter (accordingly to the dynamics and
the observation); Use the best statistical model to
characterize the error of the adopted sensor read-
ings. Clearly, to deal with the second remark, it is
better not to use the odometry in the estimation
phase if, as often happens, other more precise sen-


https://core.ac.uk/display/147923168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sors are available with a well-known error model.
The absolute map filter (AMF) (Dissanayake and
Csorba, 2001), using odometry, diverges when
there is even a very small, undetected systematic
component. This divergence is proven through
simulations in (Martinelli and Siegwart, 2004a)
and through experiments on a real platform in
(Martinelli and Siegwart, 2004b). Therefore, de-
coupling odometry from the estimation process
becomes a main issue. Newman introduced a rel-
ative map and he used two filters in the estima-
tion, called the relative map filter and the geo-
metric projection filter ((P.M.Newman, 1999) and
(P.M.Newman and H.F.Durrant-Whyte, 2001)).
The second one provides a means to produce a
geometrically consistent map from the relative
map, by solving a set of linear constraints. Both
filters are optimal since the dynamics and the
observation are linear and they are based on the
Kalman Filter. However, the elements used in this
approach are invariant for translation only, not
for rotation. The approach adopted here is to
take invariant elements for both translation and
rotation in order not to rely the robot motion
for the estimation. Then we apply a Kalman fil-
ter for estimation, contrasting to (M.Csorba and
H.F.Durrant-Whyte, 1997) and (M.C.Deans and
M.Hebert, 2000), who used the same invariants in
combination with a non-optimal filter. The obser-
vation, as well as the dynamic, will be linear.

A new landmark whose configuration is defined
through its position and orientation is introduced
by considering the intersection point between two
lines. The position error of such a landmark in
the robot reference is analytically derived. Only
landmarks with small error are considered. Fol-
lowing this criterion, the intersection points are
either very close to the segments generating them,
or generated by segments whose error parame-
ters can be estimated with very high accuracy
(e.g. large segments). Therefore, these intersection
points are the natural extension of the corner
feature with the same degrees of freedom (position
and orientation). The strategy adopted to extract
these landmarks from a laser scan and to evaluate
the error on the estimated position is illustrated in
section 2. The relative state estimated through the
Kalman filter contains the distances among the
intersection points observed at the same time and
therefore is invariant of the robot configuration
(in this paper we do not estimate the relative
orientations among the intersection points, i.e. we
only use the position information contained in the
intersection point and not its orientation). The
relative filter equations are in section 3. In the
sections 4 and 5 some experimental results, ob-
tained with a mobile robot equipped with a 360°
laser range finder sensor, are shown and discussed.

Fig. 1. The two points A and B belong to the same
cluster although their distance is larger than
dy.
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Fig. 2. The raw laser scan (a) and the scan after
the clustering step (b).

2. EXTRACTING THE INTERSECTION
POINTS FROM A LASER SCAN

The following steps are considered in order to
extract the intersection points from a laser scan:

o Clustering;

e Segmentation;

e Segment parameter estimation;

e Estimation of the intersections among all the
extracted segments;

In the following subsections we detail the strate-
gies adopted for each step.

2.1 Clustering

Fig. 2a shows a laser scan. Our first step consists
in grouping all the points of the scan in clusters
and in removing the small clusters. A cluster
is defined through the following property: if the
Fuclidean distance between two points is smaller
than a given distance dy, these two points belong
to the same cluster. Clearly, the definition of the
cluster is based on the parameter dy. Moreover,
we want to remark that if two points belong to
the same cluster this does not imply that their
distance is smaller than dy as shown in Fig 1.
Finally, we introduce another parameter Ny. All
clusters whose number of points is smaller than
Ny are removed. Fig. 2b displays the scan after
the clustering step. In this case we get 13 clusters
(do = 0.2m and Ny = 6).
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Fig. 3. The points in the two ellipses belong to

two distinct clusters (a). The result of the
segmentation step is shown in (b).

2.2 Segmentation

The aim of the segmentation step is to divide the
points belonging to the same cluster in subgroups
representing segments. The points in the cluster
which are not in any segment are removed. We
apply for each cluster the algorithm introduced
by Fisher and Bolles (Fisher and Bolles, 1981).
Fig. 3a and b show the results obtained in this
step for two clusters.

2.3 Segment Parameter Estimation

Once we know that a given set of points repre-
sents a segment, we can estimate the parameters
characterizing this segment. We put a reference
frame on the segment: its origin is in the middle
and its xr—axis is along the segment. The parame-
ters characterizing the segment are the estimated
position of the reference frame origin (z, §) and
the estimated orientation k. Concerning the error,
accordingly with the SPmodel for the case of
a line (see (Castellanos and Tardds, 1999)), we
consider only the component on the orientation
and on the direction orthogonal to the segment
(02, 02 and 0,9).

2.4 FEstimation of the intersections among all the
extracted segments

Let x5, and y;,,: be the local coordinates of the in-
tersection point between two segments. The aim of
this step is to estimate these coordinates together
with the error (02, ,, oo and 04,,,y,,,). More-
over, when two intersection points are generated
by a common segment, they are correlated and
therefore we need to compute also the covariance
error between the two points. In the following we
provide the method adopted to the parameters
related to a single intersection point. Similar com-
putation is carried out to compute the covariance
between two intersections.

By adopting the same notation introduced in the
previous section we represent the two segments
through the following parameters: &1, 91, k1, 0317

o2 and o,,, for the first segment and &, 72,
ks, 04,, 0%, and oy,p, for the second one. We
denote with the hat the estimated quantities to

distinguish them from their actual value.

The intersection point satisfies the following equa-
tions

(Tint — 1) sin01 — (Yint — Y1) coshy =0

(Tint — x2) sinb2 — (Yint — y2) cosby =0

where 6; and 6y are respectively the orientation
of the two vectors ki and k. The previous two
equations can be written in the compact form:

?(xintayinhxlaylaela$2,y2792) =0 (1)

By expanding this function at the first order we
get:

7(5&1'7#/7ginta-’%lvgl7é17-@2vg2aé2) =0 (2)

and
P = APsegAT (3)
where:
) Uimt Ointyint

int —
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o A= —Fi;%Fseg, with Fj,¢ and F,e4 respec-
tively the Jacobian of the function in (1) with
respect to the intersection and the segment
parameters computed in the point satisfying
the equation (2);

o Py, is the covariance matrix for the segments

Pseg = |:P;1 22] with
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The equations (2) and (3) define the position of
the intersection and its covariance error matrix.

Fig. 4 shows the intersections obtained from the
scan in fig 2a. We removed all the intersections
whose error in the estimation is larger than a
threshold. In particular, we compute the trace of
the covariance error matrix (which is independent
of the robot pose) and we reject all the intersec-
tions whose square root of this trace is larger than
2.5em.

The intersections defined in this way generalize
the concept of the corner since they are usually



Fig. 4. The intersections obtained from the scan
in fig 2a.

close to the segments generating them. In the case
they are not close, they are generated by segments
whose error parameters can be estimated with
very high accuracy (e.g. large segments).

3. THE STRUCTURE OF THE RELATIVE
MAP FILTER

The odometry can be decoupled from the estima-
tion process by introducing a filter whose state
only contains quantities invariant under transla-
tion and rotation. This is the idea characterizing
the relative filter introduced here. Once the rel-
ative map has been estimated through this filter
and the absolute location of a set of landmarks
is known (e.g. by using the first observation) it is
possible to build the absolute map. Therefore, the
entire method contains two algorithms. The for-
mer estimates the relative map, the latter builds
the absolute map. In the following we provide the
equations to estimate the relative state. These
equations are very general and can be applied to
any kind of landmarks.

Let denote with d the state and with P its co-
variance matrix. In fig. ba the vector d contains
the marked distances between the 6 landmarks.
Clearly, not all of the distances between the 6
landmarks are stored in d because not all the
landmarks were observed together at the same
time. At a given time step, the observation con-
sists of a set of distances between the landmarks
observed by the robot through its external sensor
(fig. 5b). Of course, these distances may be already
observed (i.e. can be in the vector d) or may not.
Let introduce the following notation:

dold = [uu wold]T dobs = [wobsu U]T (4)
where d,;q is the state estimated at a given time
step and d,ps is the observation at the same time
step, containing a set of distances between the
landmarks observed by the robot. u contains the
distances which are not re-observed (i.e. which do
not appear in the vector dops) and weyq contains
the distances re-observed (denoted by wyps in the

Fig. 5. Relative Map before the observation (a),
the observation (b), and the relative map
obtained by fusing the information coming
from the old map and the observation (c).
In all the three figures the map state only
contains the indicated distances between the
landmarks

vector dyps). Finally, v contains the distances ob-
served for the first time at the considered time
step. The covariance matrix of the previous vec-
tors are:

R’ww R’U)'U
Pobs = |:RT R :| (5)

We adopt the following notation to denote the
estimated quantities, obtained by fusing the old
state with the observed one (the new estimated
distances are depicted in fig. 5¢).

Puu Puw
Pold:|:PT P :|

dnew = [unewv Wnew, vnew]T (6)

Pryy Pryw Py,
Pnfw Pryw Pnwe (7)
PnT  Pnl = Pn,,

Pnew:

We obtain the new estimation for the state and
its covariance matrix by applying the equations of
the Kalman filter. Observe that the observation is
linear in the state (is the identity) and therefore
the Kalman filter is optimal.

Upew = U+ Puw (wa + wa)71 (wobs - wold) (8)
Wnew = Wold + Puww (P'ww + wa)_l (wobs - wold)(g)

Unew = UV + va (wa + wa)71 (wold - wobs)(lo)

Py = Puw — Puw (Pow + Ruw) ' Pou  (11)
Prww = Puw — Puw (Pow + Row) ' Pow  (12)

Py, =0 (13)
Prww = Puw — Puw (Pow + Ruw) " Pow (14)
Prws = Ruy — Ruw (Pow + Ruww) ™' Ruw  (15)
Py = Ry — Row (Puw + Ruw) " Ruy  (16)
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Fig. 6. The closed line and the circles represent
respectively the robot trajectory and the bea-
cons position estimated with proposed filter.
The open line is the robot trajectory esti-
mated through the AM F with the same data
(odometry and laser). The real robot motion
was a closed path.

Fig. 7. The trajectory of the robot and the
position of the intersection point estimated
through the relative map filter

Instead of the equations (9) and (14) it is possible
to use the following equations:

Wnew = Wobs + Ryw (Pw'w + wa)_l (wold - wobs)(17)

Pryw = Ryw — Ryw (wa + wa)_l Ryw (18)
They are derived by observing the symmetry of
the filter with respect to the change ” observation”
< 7old state”. Observe that the coincidence of the
previous equations could be easily proven also by
using the inversion lemma.

4. RESULTS AND CONCLUSIONS

For the experiments, two fully autonomous mobile
robots Donald Duck and the BIBA robot have
been used. Both robots have the same functional-
ity: They are equipped with wheel encoders, two
180-laser range finders and a CCD camera (not
used here). The experiments are of two kinds.
The first is based on reflectors, which are used
as beacons. These experiments set a benchmark
for the intersection approach presented in Sec-
tion 2. Then the first results of the SLAM based
on intersections are presented with the current

limitations. In the figures, the estimated robot
position is represented with a dot and the esti-
mated landmark (beacon and intersection point)
with a circle. The unities are meters in both axes.
The initial robot configuration coincides with the
origin of the global reference whose axes were
chosen coincident with the axis of the robot at the
initial time. Figure 6 concerns the results obtained
with beacons. Ten beacons were placed in the
environment to be used as point landmarks. The
laser sensor could detect them with an accuracy
of about 2c¢m. The robot moved along a closed
trajectory at around 20cms~! and estimated at
each time step its configuration and the position
of the beacons in the environment. An error on the
odometry was artificially introduced by increasing
the wheel diameter of a factor equal to 2%. The
same data (from laser and encoder) were used as
the input for the relative map filter described in
the section 3 and for the AMF. The closed line
is the trajectory estimated through the first filter.
Since in this case the odometry was completely de-
coupled by the estimation process, there is not any
drift in the built map. During the experiment the
odometry data were only used to solve the data
association problem and not in the estimation
process. In this case, we get a complete correct
result if we change the value of the wheel radius
by a factor equal up to 10%. For changes larger
an error in associating the data arises. The open
line represents the trajectory estimated with the
AMF. Finally, the circles represent the position
of the beacons estimated through the relative map
filter. Note for comparison, that the same data
with the AMF creates a map divergence.

The results related to the second kind of experi-
ment are shown in Fig 7. The experiment is car-
ried out in an indoor environment. The landmark
here adopted is the intersection point extracted
from the laser data by following the method pre-
sented in Section 2. The odometry is not well
calibrated, making the experiments very challeng-
ing even without adding any further error. More-
over, the estimation process is not completely
independent of the odometry since the number
of common landmarks observed in subsequent ob-
servations is sometimes equal to 1 (i.e. it is not
possible to locate a new landmark by only using
one distance). This happened six times during the
experiment shown in the figure and therefore the
location of several beacons rely on the odometry.
Clearly, although the estimated map depends on
the odometry, the dependency is quite weak. To
completely avoid this dependency, we are consid-
ering also the orientation for an intersection point,
defined through the segments generating it. Then,
the relative orientations among these intersection
points will be estimated through a new relative
filter. In this way, a new landmark can be located



by knowing only the relative distance and orienta-
tion respect to only one landmark (whose absolute
configuration is known).

5. CONCLUSIONS AND FUTURE
RESEARCH

This paper presented an approach to solve the
SLAM problem in the stochastic map framework
based on the concept of the relative map. The
idea consists in introducing a map state which
only contains quantities invariant under transla-
tions and rotations and to carry out the esti-
mation of this relative map in an optimal way
(a Kalman filter was adopted). This is a way in
order to have a decoupling between the robot
and the landmark estimation and therefore not
to rely the landmark estimation on the unmod-
eled error sources in the robot motion. A new
kind of landmark is introduced by considering
the intersection point between two segments. The
position error of such a landmark in the robot
reference is analytically derived. Only landmarks
with small error are considered. Following this
criterion, the intersection points are either very
close to the segments generating them, or gen-
erated by segments whose error parameters can
be estimated with very high accuracy (e.g. large
segments). Therefore, these intersection points are
the natural extension of the corner feature. We are
considering also the orientation for an intersection
point, defined through the segments generating it.
We are also introducing a new relative filter esti-
mating the distances and the relative orientations
among these intersection points.
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