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Abstract— This paper proposes an approach allowing 
topology learning and recognition in indoor environments by 
using a probabilistic approach called Bayesian 
Programming. The main goal of this approach is to cope with 
the uncertainty, imprecision and incompleteness of handled 
information. The Bayesian Program for topology recognition 
and door detection is presented.  The method has been 
successfully tested in indoor environments with the BIBA 
robot, a fully autonomous robot. The experiments address 
both the topology learning and topology recognition 
capabilities of the approach. 

Keywords— topology recognition, door detection,  Bayesian 
Programming 

I. INTRODUCTION 
The navigation described by Gallistel in [6], as the 

capacity to localize itself with respect to a map, is an 
elementary task that a mobile and autonomous robot must 
carry out. To navigate reliably in indoor environments a 
mobile robot must know where it is. For this, the robot 
needs to construct or to detain a spatial representation of 
the environment. Reactive navigation is the simplest way 
to navigate. More complicated navigation approaches 
require learning and consequently need to memorize 
information. Stored information is represented as mental 
maps or cognitive maps – term introduced for the first 
time in [18] – which permit an encoding of the spatial 
relations between relevant locations in their environment.  
More details about cognitive maps can be found in [6, 14]. 
This has led to the concept of topological representation. 
The topological map can be viewed as a graph, where at 
each node the information concerning the visible 
landmarks and the way to reach the connected places is 
stored. The topological approach gives a compact 
representation and allows high-level symbolic reasoning 
for map building and navigation. The main idea is to learn 
different types of places and to recognize the situations 
previously learned. 

This paper presents a model for learning the topology 
and recognizing the learned situations based on a 
probabilistic approach. Probabilities will be used to 
express uncertainty and to express knowledge specific to 
the topological maps, in the context of the Bayesian 
Programming formalism.  

The remainder of this paper is organized as follows. 
We present in Section II a short review of related work in 
topological mapping. In Section III, we provide a brief 
introduction to Bayesian Programming formalism. Section 
IV is dedicated to topology learning and recognition by 
using Bayesian Programming. Experimental results are 
presented in Section V. Section VI concludes the paper 
with a discussion of the proposed approach and further 
research directions.  

II. RELATED WORK 
Many methods have been proposed to represent an 

environment in the framework of autonomous navigation, 
from precise geometric maps based on raw data or lines up 
to purely topological maps using symbolic descriptions. 
Each of these methods is optimal concerning some 
characteristics but can be very disappointing with respect 
to other requirements. Metric maps are suited when it is 
necessary for the robot to know its location accurately in 
terms of metric coordinates. However, in office buildings 
with corridors and rooms, or roads, the topology of 
important locations and their connections is enough for 
navigation. Topological maps are less complex and permit 
more efficient planning than metric maps. Moreover, it is 
easier to generate and maintain global consistency for 
topological maps than for metric maps. A full review of 
navigation systems can be found in [20]. In this section, 
we focus on topology learning and recognition for mobile 
robots that have been studied by many researchers.  

There are two main approaches to construct 
topological maps: one is to learn the topological structure 
directly and the other one is to build the topological map 
on top of the metric map.  

An example of the second method is given by Thrun in 
[17] who uses the occupancy-grid based maps in order to 
build the metric map. The topological map is extracted 
from the grid-based map. Learning the topological 
representation depends on learning the geometric map, 
which relies on the odometry abilities of the robot.  
However, in large environments, it is difficult to maintain 
the consistency of the metric map, due to the drift in the 
odometry. 
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Figure 1: Structure of a Bayesian Program 

 

Kortenkamp and Weymouth in [8] have used an 
approach based on concepts derived from a theory of 
human cognitive mapping that also involved topological 
navigation. They have used the data from the sonars 
combined with vision information in order to achieve a 
rich sensory place characterization. Their work is an 
amelioration of Mataric’s approach [12]. The main goal of 
their work was the reduction of the perceptual aliasing 
problem, improvement obtained by introducing more 
sensory information for place representation. 

A model by Franz, Schölkopf and Mallot [5] was 
designed to explore open environments within a maze-like 
structure and to build graph-like representations. Their 
method has been tested on a real robot equipped with an 
omni-directional camera. Place recognition was done by 
comparing the current observation to the stored omni-
directional snapshots.  

In [7] and [15], the authors used a model based on a 
self-organizing map which creates a topological 
representation of the environment while the robot explores 
it.    

The work most similar to ours is by Aycard in [1], who 
learns places by using the second-order Hidden Markov 
Models (HMM2). The maximum likelihood estimation 
criteria, that determine the best model’s parameters 
according to the corpus of observations, are employed, in 
order to perform the learning. The recognition is carried 
out using the Viterbi algorithm. For these experiments 
ultrasonic and infrared sensors were used. Unfortunately 
these sensors are very sensitive to ambient light, object 
color, object orientation and surface of reflection.  

III. BAYESIAN PROGRAMMING FORMALISM 
This section briefly introduces the Bayesian 

Programming formalism. When programming a robot, the 
programmer constructs an abstract representation of its 
environment, which is basically described in geometrical, 
analytical or symbolic terms. In a way, the programmer 
imposes on the robot, his or her own abstract conception 
of the environment. Difficulties appear when the robot 
needs to link these abstract concepts with the robot’s raw 
signals (obtained either from the robot’s sensors or being 
sent to the robot’s actuators). The central origin of these 
difficulties is the irreducible incompleteness of the 
models. Controlling the environment is the usual answer 
to these difficulties, but it may not be desirable or possible 
when the robot must act in an environment not specifically 
designed for it, populated, or subject to unexpected and 
unattended events.  

Probabilistic methodologies and techniques offer 
possible solutions to the incompleteness and uncertainty 
problems when programming a robot. The basic 
programming resources are probability distributions.  

The Bayesian Programming (BP) approach was 
originally proposed as a tool for robotic programming (see 
[11]), but nowadays used in a wider scope of applications 
([13] shows some examples).  

In this approach, a probability distribution is associated 
with the uncertainty of a logical proposition value. The 
usual notion of a Logical Proposition (true or false) and its 

operators (conjunction, disjunction and negation) are used 
when defining a Discrete Variable. A Discrete Variable X 
is a set of logical propositions xi, such that these 
propositions are mutually exclusive (i.e. for all i,j with i≠j,  
xi∧xj is false) and exhaustive (at least one of these 
propositions xi is true).  

The probability distributions assigned to logical 
propositions are always defined according to some 
preliminary knowledge, identified as π. The probability 
P(xi⎟π) gives the probability distribution of the variable X 
having the value xi, knowing π. Most of the time, 
probabilities will be manipulated using the Bayes rule. 
More details about the inference postulates and rules for 
carrying out probabilistic reasoning in this context can be 
found in [3, 2, 11].  

The Bayesian Programming formalism allows for 
using a unique notation and provides a structure to 
describe probabilistic knowledge and its use. The elements 
of a Bayesian Program are illustrated in Figure 1. A BP is 
divided in two parts: a description and a question.  

 

 

 

 

 
 
 
 
 

A.  Description 
The purpose of a description is to specify an effective 

method to compute a joint distribution on a set of relevant 
variables {X1,X2,…,Xn}, given a set of experimental data 
δ and a priori knowledge π.  

In the specification phase of the description, it is 
necessary to: 

• Define a set of relevant variables {X1,X2,…,Xn}, 
on which the joint distribution shall be defined; 

• Decompose the joint distribution into simpler 
terms, using the conjunction rule. The conditional 
independence rule can allow further 
simplification, and such a simplified 
decomposition of the joint distribution is called 
decomposition. 

• Define the forms for each term in the 
decomposition; i.e. each term is associated with 
either a parametric form, as a function, or to 
another Bayesian Program. 

B.  Question 
Given a description P(X1,X2,…,Xn │ δ π), a question is 

obtained by partitioning the variables {X1,X2,…,Xn} into 
three sets: Searched, Known and Unknown variables. A 
question is defined as the distribution  
P(Searched │ Known δ π ). In order to answer this 
question, the following general inference is used: 



Depending on the number of variables (and its 
discretization) and the decomposition choice, this 
calculation may need a lot of computational time and turn 
out to be infeasible. Numerous techniques have already 
been proposed to achieve an admissible computation time. 
A brief summary of the approximative approaches used for 
reducing calculation time can be found in [13]. In [3], one 
of these approximative methods is described in detail. 

 

 

 

 

 

 

 

Figure 2: Bayesian Programming and other probabilistic approaches 

C. Bayesian Programs and Other Probabilistic 
Approaches 

Bayesian Programs have been shown to be a 
generalization of most of the other probabilistic 
approaches [3], as shown in Figure 2. It means that all 
these probabilistic approaches may be reformulated 
following the Bayesian Program formalism and thus easily 
compared with one another. For instance, Bayesian 
Networks correspond to a description where one and only 
one variable may appear to the left of each probability 
distribution appearing in the decomposition. This 
restriction enables optimized inference algorithms for 
certain class of questions. 

IV. TOPOLOGY LEARNING AND PLACE RECOGNITION 
WITH BAYESIAN PROGRAMMING 

Bayesian Programming can be used to solve typical 
robotics problems and incorporates the programmer’s 
preliminary knowledge in the specification of the 
description part (the choice of pertinent variables, the joint 
distribution decomposition and the parametric forms). 
Before getting into the details of our BP, a description of  
the topology situations and doors is shown, as it is very 
important in the choice of pertinent variables as well as in 
the decomposition of the joint distribution. 

 
A. The topology situations and doors corpus 

A corpus with all the topology situations and doors that 
the robot must detect during the application phase is 
constructed as shown in Figures 3 and 4. In Figure 3 the 
topology situations are illustrated. These are: corridor, X-
crossing, T-crossing and L-Intersection. For the T-crossing 

we have chosen three cases. This decision is justified by 
the fact that the recognition is only made with probability 
distributions and if we would have had only one state for 
the T-crossing, the distribution would not have been 
sufficient for this state. Figure 4 depicts different types of 
doors: closed door, right partially-opened door, left 
partially-opened door, opened door and no door.  This 
implies the assumption that the environment is orthogonal, 
which is the case for most office buildings including the 
institute building where the robot operates. The above 
mentioned limitation is not an inherent loss of generality 
because it is only a simplification for the current 
implementation and not a general requirement of the 
algorithm. 

 
 

 

 

 

 

 
 

 

 

Figure 3: The topology to learn: Corridor, +Intersection, T Intersection, 
L-Intersection. 

The main goal of this work is to determine the state in 
which the robot may be (for instance that the robot is in a 
corridor and has a partially-opened door on his right). To 
solve this problem, two Bayesian Programs will be used, 
one for the topology recognition and one for the door 
detection. These two programs are described in more 
detail in the next section. 
 
 

 

 

 

 

 

Figure 4: The types of door to learn: closed door, right partially-opened 
door, left partially-opened door, opened door and no door.  
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B. The Bayesian Program used for topology learning 
and place recognition 
The new approach presented here is constructed in two 

steps. The first step is the phase of supervised learning 
where the robot visits different situations denoted by State. 
In each situation sit∈ State the robot takes an observation 
and stores it along with the name of the situation in a 
database, denoted by the symbol δ. The second step is the 
phase of application, when we want the robot to recognize 
the situation in which it is. To solve this problem, the 
robot will extract the actual observation and answer the 
following probabilistic question: 

 

 
The actual state of the robot may be recovered by 

comparing the actual observation with the database of 
known situations and choosing the situation sit* with the 
highest probability. Next, we will show how this 
probabilistic question can be solved by applying the 
Bayesian Programming technique.  

Figure 5 illustrates the Bayesian Program used for the 
topology recognition and door detection. We consider that 
the observations nVV ...1  are dependent on the location and 
these dependencies lead to the decomposition described in 
the Bayesian Program. In our case, the observation Vi is 
equal to the maximum distance found with the laser 
scanner in the corresponding i section (see Figure 6). This 
choice reinforces the robustness of the observation Vi with 
respect to the robot’s orientation (i.e. if the robot’s 
orientation changes with an angle smaller than n/360° 
degrees, the robot will find similar values) and to the noise 
in the environment (i.e. a person near the robot will not 
influence the observation since the robot takes into 
account only the maximum distances).  

From the result of the decomposition formula (see 
Figure 5) we can distinguish two different kinds of 
probability distributions: 

• Since we have no a priori information about the 
different topology situations or about the doors, 
we consider each situation to be equally probable 
and consequently we express the probability of a 
state given all the a priori knowledge, as a 
uniform distribution.  

•    To determine the probability of one observation 
Vi, given the topology or door situation and all 
the a priori knowledge, we use Gaussian laws 
with means and standard deviations being 
updated at each new measurement, permitting an 
incremental learning process. 

The two equations in Parametric Form will solve the 
basic question described in the Bayesian Program (see 
Figure 5). 

The interesting point is that the same Bayesian Program 
is used for both topology recognition and door detection. 
The only thing that changes is the domain of the variable 
State and the database used for the learning. For the case of 
topology recognition, the variable State contains the 

following values: corridor, X-crossing, T-crossing and L-
Intersection. The 360° view of the robot is divided in n 
equal parts, as shown in the Figure 6.a). In the case of door 
detection the variable State takes the values:  closed door, 
right partially-opened door, left partially-opened door, 
opened door and no door. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 5: The Bayesian Program used for the topology recognition and 
door detection, following the unique notation and structure described in 
section III.  

The observation field is portioned into four Zones. The 
method of splitting the field of view of the robot in zones 
will permit also the detection of the direction of doors. 
The Bayesian Program will give an answer for each of 
these zones in order to detect a door in front, behind, to the 
left and to the right of the robot. Each of these zones is 
split in n equal slices, as illustrated in the Figure 6.b). For 
both cases: topology recognition and door detection, we 
have fixed n to 8. 

 
 
 
 
 
 
 
 
 

Figure 6: The observation field of view of the robot: a) for the topology 
recognition the 360° view of the robot is portioned in n parts; b) for doors 
detection the view of the robot is divided in four Zones and each zone is 
portioned in n parts. In our implementation, for both cases a) and b) n is 
equal to 8. 

Note how flexible this method is with respect to the 
utilization of the same program for two different tasks: 
topology recognition and door detection. 
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V. EXPERIMENTAL RESULTS 
The approach has been tested in a 50 m x 25 m portion 

of our institute building.  
For the experiments, the BIBA robot (see Figure 7), a 

fully autonomous mobile robot, has been used.  

 
 

 

 

 

 

 

 

 

 

Its controller consists of a VME standard backplane 
with a PowerPC 750 clocked at 400 MHz running XO/2, a 
hard real-time operating system and a Pentium III running 
at 700 MHz, 128 MB RAM on Windows 2000 for all 
interaction tasks. Both computers can communicate with 
each other over a 10 Mbit/sec local Ethernet and with a 
central computer over wireless interfaces to allow for 
monitoring of the state of the robot for security reasons.  
Among its peripheral devices, the most important are the 
wheel encoders, two 180° laser range finders, five infra-
red sensors, four ultra-sound sensors and an omni-
directional camera. In our application only the two laser 
range finders are used. 

We have constructed the training data and built a 
model for each of the seven topology situations and for 
each of the five door types. The robot was placed 25 times 
in each situation in order to construct a robust training 
corpus. A simple navigation system has been implemented 
on the robot, so that the robot will stay in the middle of the 
corridor (i.e. mid-line following), parallel to the two walls 
constituting the corridor. In order to complete the training, 
for each situation and each observation the Gaussian 
parameters (the mean and the standard deviation) were 
calculated. 

To test our topology and door recognition, we have 
performed 50 tests for each situation. The results are 
summarized in Table I and Table II.  

In these two tables the results of the topology 
recognition door detection are presented. Each line 
corresponds to a situation that the robot observed and each 
column corresponds to a situation that the robot 
recognized. In Table I, we can see that for instance, the 
robot has recognized the corridor almost all the time and 
the percentage of recognition of a corridor is 98%. For the 
topology, the percentage of successfully recognition is 
between 82% and 98%, and at an average of 92.2%. It is 
important to notice that the falsly recognized situations are 
always similar to the real topology situations. It would 
have been more compromising to recognize a situation 
like ╔ or ╠  where the situation were ╗ and ╣ 

respectively, because these are opposite topology 
situations.  

TABLE I. The table shows the results of topology recognition. The 
following notations has been used: ║(corridor),  ╗ (left L-Intersection), 
╔ (right L-Intersection), ╣ (left T-crossing), ╠ (right T-crossing), ╦ 
(middle T-crossing), ╬ (X-crossing). 

 ║ ╗ ╔ ╣ ╠ ╦ ╬ 
║ 98%   2%    
╗  82%    18%  
╔   96%   4%  
╣ 8%   86%   6% 
╠ 6%    90%  4% 
╦      98% 2% 
╬ 4%      96% 

 
In Table II, we can notice that in the case of the "left 

partially opened door" situation, 36% of responses were 
false. Instead of detecting the "left partially opened door" 
situation, the "opened door" is detected. However, this is 
not very important if the context of recognition is the 
detection of doors without considering its aperture. A 
similar false detection can be observed in the case of a 
"closed door" situation, where there are 20% of "no door" 
detections. These false detections can still be considered 
good results knowing that to determine a "closed door" 
situation, a jump near the frame of the door must be found. 
The percentage of successful door detection is between 
60% and 90%, and at an average of 80.4%.     

TABLE II. The table shows the results of door detection. The following 
notation has been used: nd (no door), cd (closed door), od (opened door), 
lpod (left partially opened door) and rpod (right partially opened door). 

 nd cd od lpop rpod 
nd 90%  4% 6%  

cd 20% 76%   4% 

od 6%  90% 4%  

lpod   36% 60% 4% 

rpod 4%  10%  86% 

 
The application of our Bayesian Program for door 

detection shows how well suited our approach is, for this 
type of recognition. If we regroup the three situations in 
which the door is partially or completely opened, we have 
three possible situations "opened or partially opened door", 
"closed door" and "no door". The results for these three 
situations are even better than their precedents, the 
percentage of succesful recognition being of 96%, 76% and 
90% respectively. Another interesting statistic was 
computed in order to detect the percentage of successful 
door and no door detection. The results are quiet 
concluding, 90% and 94% respectively.  

A combination between the two Bayesian Programs to 
perform the simultaneous topology recognition and door 
detection was implemented and was found to produce very 
promising results. A learning corpus of 50 measurements 
was constructed and 250 tests (50 tests for topology and 
200 tests for door detection) were performed. A topology 
situation or a door is recognized if the actual observation 
matches exactly with the real situation. Substitution errors 
occurred during the tests. We have divided the substitution 

Figure 7: The fully autonomous 
robot BIBA.  



errors in two types: satisfactory substitutions (applied only 
for the detection of doors) and false substitutions.  

We define them as: 
• Satisfactory Substitution: The recognized 

situation is a confusion between the states: 
"right partially opened door", "left partially 
opened door", "opened door". For instance, the 
robot observes a "right partially opened door", 
when an "opened door" was present in the map. 

• False Substitution: The confusion of a state 
with another one, not in the category of 
satisfactory substitution. 

Table III summarized the results obtained for the global 
recognition. 

TABLE III. The table shows the results of global recognition 

 Number % 
Tests 250 100% 

Recognized 206 82.4% 
 Satisf. Substituted  18 7.2% 
False Substituted 26 10.4% 

 
From the experiments, it can be observed that the 

different situations (topology and doors) are globally well 
recognized. The results have given a percentage of 
successful recognition (classification) of 82.4% and 7.2 % 
of satisfactory substitution (see Table III). However, the 
false-substituted situations can still be used in combination 
with a localization approach such as a Partial Observable 
Markov Decision Process (POMDP) [4, 19] to give 
satisfactory results. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents a method for topology learning and 
place recognition by using the Bayesian Programming 
methodology. This work took place in the context of a 
new programming technique based on Bayesian inference, 
called Bayesian Programming. From the experiments, we 
conclude that the presented approach is practical and very 
robust. After 250 tests, the Bayesian Program used for the 
global recognition gave 82.4% of successful classification 
and 7.2% of satisfactory substitution, which still 
represents positive results. Even if the correct situation is 
not always detected, the information given by the false-
substituted situations can still be used for localization e.g. 
by employing a localization approach like POMDP. Future 
works will focus on the topological map building 
combined with the fingerprint approach [9, 10 and 16]. 
This fusion will allow the elimination of the perceptual 
aliasing problem and the improvement of distinctiveness 
and uniqueness of places in the environment. 
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