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Abstract— The development of miniature flying robots has
become a reachable dream thanks to the new sensing and
actuating technologies. Micro VTOL1 systems represent a
useful class of flying robots because of their strong abilities for
small-area monitoring and building exploration. In this paper,
we present the results of two model-based control techniques
applied to an autonomous four-rotor micro helicopter called
Quadrotor. A classical approach (PID) assuming a simplified
dynamics and a modern technique (LQ), based on a more
complete model. Various simulations were performed and
several tests on the bench validate the control laws. Finally, we
present the results of the first test in flight with the helicopter
released. These developments are part of the OS42 project in
our lab3.

I. INTRODUCTION

The important progress over the last years in sensing

technologies, high density power storage, and data pro-

cessing have made the development of micro unmanned

aerial vehicles (UAV) possible. In the field of sensing tech-

nologies, industry can provide currently a new generation

of integrated micro IMU4 composed generally of MEMS5

technology inertial sensors and magneto-resistive sensors.

The last technology in high density power storage offers

about 180W/kg which is a real jump ahead especially

for micro aerial robotic. This technology was originally

developed for handheld applications and is now widely

used in aerial robotics. The cost and size reduction of such

systems makes it very interesting for the civilian market

in several applications like for small-area monitoring and

building exploration. Simultaneously, this reduction of cost

and size implies performance limitation and thus a more

challenging control. Moreover, the miniaturization of the

inertial sensors imposes the use of MEMS technology

which is still less efficient than the conventional sensors

because of noise and drift. The use of low-cost IMU

is synonym of less efficient data processing and thus a

bad orientation data prediction in addition to a weak drift

rejection. On the other hand, and in spite of the latest

progress in miniature actuators, the scaling laws are still

unfavorable and one has to face the problem of actuators

saturation. That is to say, even though the design of micro

1Vertical Take-Off and Landing
2Omnidirectional Stationary Flying Outstretched Robot
3Autonomous Systems Lab
4Inertial Measurement Unit
5Micro Electromechanical Systems

aerial robots is possible, the control is still a challenging

goal.

A. The OS4 Project

This recent project, initiated at the Autonomous Sys-

tems Laboratory (EPFL), focuses on micro VTOL vehicles

evolving towards full autonomy in indoor environments.

The long term goal is to allow indoor navigation using

various techniques. The approach advocated for this project

is to simultaneously work on design and control. This

original approach makes it possible to simplify the control

by design adaptation, and vice versa. A Quadrotor config-

uration vehicle has been chosen for the experiments.

B. Quadrotor Configuration

The Quadrotor concept has been around for a long time.

The Breguet-Richet Quadrotor helicopter Gyroplane No.1

built in 1907 is reported to have lifted into flight [1]. One

can describe the vehicle as having four propellers in cross

configuration. The two pairs of propellers (1,3) and (2,4)

turn in opposite directions. By varying the rotor speed,

one can change the lift force and create motion. Thus, in-

creasing or decreasing the four propeller’s speeds together

generates vertical motion. Changing the 2 and 4 propeller’s

speed conversely produces roll rotation coupled with lateral

motion. Pitch rotation and the corresponding lateral motion

result from 1 and 3 propeller’s speed conversely modified

as described in figure 1. Yaw rotation is more subtle, as it

results from the difference in the counter-torque between

each pair of propellers. In spite of the four actuators,

the Quadrotor is still an under-actuated and dynamically

unstable system.

Advantages and Drawbacks: The space and energy

requirements are definitely the main disadvantages of the

Quadrotor. However, this concept offers a better payload

and is potentially simpler to build and to control. This could

be a decisive advantage. Table I gives a rapid idea about

Quadrotor’s advantages and drawbacks.

TABLE I

QUADROTOR MAIN ADVANTAGES & DRAWBACKS.

Advantages Drawbacks

Rotor mechanics simplification Weight augmentation
Payload augmentation High energy consumption

Gyroscopic effects reduction
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Fig. 1. Quadrotor concept motion description, the arrow width is
proportional to propeller rotational speed.

Fig. 2. Quadrotor configuration, frame system with a body fixed frame
B and the inertial frame E.

II. QUADROTOR DYNAMIC MODELLING

The first step before the control development is an

adequate dynamic system modelling [2], [3]. Especially

for lightweight flying systems, the dynamic model ideally

includes the gyroscopic effects resulting from both the rigid

body rotation in space, and the four propeller’s rotation.

These aspects have been often neglected in previous works.

Let us consider earth fixed frame E and body fixed frame

B, as seen in figure 2. Using Euler angles parametrization,

the airframe orientation in space is given by a rotation R
from B to E, where R ∈ SO3 is the rotation matrix. The

dynamic model is derived using Euler-Lagrange formalism

[4] under the following assumptions:

• The structure is supposed to be rigid.

• The structure is supposed symmetrical.

• The center of mass and the body fixed frame origin

are assumed to coincide.

• The propellers are supposed rigid.

• The thrust and drag are proportional to the square of

the propeller speed.

1) kinematics: For any point of the airframe expressed
in the earth fixed frame, we can write:










rX = (cψcθ)x + (cψsθsφ − sψcφ)y + (cψsθcφ + sψsφ)z
rY = (sψcθ)x + (sψsθsφ − cψcφ)y + (sψsθcφ + cψsφ)z
rZ = (−sθ)x + (cθsφ)y + (cθcφ)z
c : cos, s : sin

(1)

The corresponding velocities are obtained by differentia-

tion of (1), and thus the squared magnitude of the velocity

for any point is given by:

υ2 = υ2

X + υ2

Y + υ2

Z (2)

Energy: From the equation (2), and by assuming that

the inertia matrix is diagonal, one can extract the kinetic

energy expression:

T =
1

2
Ix(φ̇ − ψ̇sθ)2

+
1

2
Iy(θ̇cφ + ψ̇sφcθ)2

+
1

2
Iz(θ̇sφ − ψ̇cφcθ)2 (3)

And using the well known potential energy formula, one

can express it in the earth fixed frame as:

V =

∫

xdm(x)(−gsθ)

+

∫

ydm(y)(gsφcθ)

+

∫

zdm(z)(gcφcθ) (4)

Equation of Motion: Using the Lagrangian and the

derived formula for the equations of motion:

L = T − V , Γi =
d

dt
(
∂L

∂q̇i

) −
∂L

∂qi

(5)

Where q̇i are the generalized coordinates and Γi the

generalized forces. The three equations of motion are then:

φ̈ = θ̇ψ̇(
Iy − Iz

Ix

)

θ̈ = φ̇ψ̇(
Iz − Ix

Iy

)

ψ̈ = φ̇θ̇(
Ix − Iy

Iz

) (6)

On the other hand, the nonconservative torques acting on

”OS4” result firstly from, the action of the thrust forces

difference of each pair, see figure 2:

τx = bl(Ω2

4 − Ω2

2)

τy = bl(Ω2

3 − Ω2

1)

τz = d(Ω2

2 + Ω2

4 − Ω2

1 − Ω2

3) (7)

Secondly from the gyroscopic effect resulting from the

propellers rotation:

τ
′

x = Jωy(Ω1 + Ω3 − Ω2 − Ω4)

τ
′

y = Jωx(Ω2 + Ω4 − Ω1 − Ω3) (8)

The Derived Dynamic Model: The Quadrotor dynamic

model describing the roll, pitch and yaw rotations contains

then three terms which are the gyroscopic effect resulting

from the rigid body rotation, the gyroscopic effect resulting

from the propeller rotation coupled with the body rotation

and finally the actuators action:

φ̈ = θ̇ψ̇(
Iy − Iz

Ix

) −
J

Ix

θ̇Ω +
l

Ix

U1

θ̈ = φ̇ψ̇(
Iz − Ix

Iy

) +
J

Iy

φ̇Ω +
l

Iy

U2

ψ̈ = φ̇θ̇(
Ix − Iy

Iz

) +
1

Iz

U3 (9)



The system’s inputs are posed U1, U2, U3 and Ω as a

disturbance, obtaining:















U1 = b(Ω2

4 − Ω2

2)

U2 = b(Ω2

3 − Ω2

1)

U3 = d(Ω2

1 + Ω2

3 − Ω2

2 − Ω2

4)

Ω = Ω2 + Ω4 − Ω1 − Ω3

(10)

where :

Symbol definition

R rotation matrix

φ roll angle

θ pitch angle

ψ yaw angle

Ωi rotor speed

Ix,y,z body inertia

J propeller inertia

b thrust factor

d drag factor

l lever

In this paper we focus on the rotational dynamics as the

linear motion of the Quadrotor is a consequence of the

rotations.

Rotor Dynamics: The rotors are driven by DC-motors

with the well known equations:






L di
dt

= u − Ri − keωm

J dωm

dt
= τm − τd

(11)

As we use a small motor with a very low inductance, the

second order DC-motor dynamics may be approximated:

J
dωm

dt
= −

k2
m

R
ωm − τd +

km

R
u (12)

By introducing the propeller and the gearbox models,

the equation (12) may be rewritten:










ω̇m = − 1
τ
ωm − d

ηr3Jt
ω2

m + 1
kmτ

u

with :
1
τ

=
k2

m

RJt

(13)

The equation (13) can be linearized around an operation

point ẇ0 to the form ẇm = −Awm + Bu + C with:

A =
(

1
τ

+ 2dw0

ηr3Jt

)

, B =
(

1
kmτ

)

, C =
dω2

0

ηr3Jt
(14)

Symbol Definition

u motor input

ke back EMF constant

km torque constant

ωm motor angular speed

τm motor torque

τd motor load

τ motor time-constant

R motor internal resistance

r gear box reduction ratio

η gear box efficiency

Fig. 3. OS4 test-bench for stabilization strategies testing, 3DOF are

locked, the cross is made with carbon rods and the flying system weight

is about 240g. 1)RS232 to I2C translator, 2)Motor modules, 3)3D captured

universal joint, 4)Micro IMU, 5)Propulsion group.

Fig. 4. OS4 test-bench block diagram

III. OS4 TEST-BENCH

The development of a control system for a flying robot

requires the development of an adequate test-bench. This

can help lock some number of degrees of freedom in order

to reduce control complexity and to avoid system damage.

For our control experiments, we use the test-bench in figure

3.

From a PC and through a standard RS232 port, one

can send orders to the test-bench. The RS232 to I2C

module translates the serial signals to the I2C bus motor

modules. These modules integer a PID regulator on a

PIC16F876 microcontroller. The MT9-B6 IMU7 estimates

with a kalman filter the 3D orientation data and gives

the calibrated data of acceleration and angular velocity. It

weights about 33g and communicates at 115kbps. The OS4

test-bench has 4 propulsion groups, each one is composed

of a 25g motor8, a 6g gear box and a 6g propeller. To design

the propulsion group, a test, evaluation and comparison

method was developed.

IV. CLASSICAL CONTROL OF ”OS4” VTOL

SYSTEM

The dynamic model (9) presented above contains in

addition to the actuators action, both the gyroscopic effects

resulting from the rigid body, and the propellers rotation.

The influence of these effects is in our case less important

6www.xsens.com
7Inertial Measurement Unit
816G88 motor from: www.portescap.com



Fig. 5. Simulation: the system has to stabilize the orientation angles,

starting from π/4 in roll, pitch and yaw as initial condition (P=0.8, D=0.4

for roll and pitch. P=0.8, D=0.5 for yaw angle).

than the motor’s action. Especially if we consider a near-

hover situation. In order to make it possible to design

multiple PID controllers for this system [5], one can

neglect these gyroscopic effects and thus remove the cross

coupling. The model (9) is then:

φ̈, θ̈, ψ̈ = l
Ix,y,z

U1,2,3 (15)

If we include in (15) the rotor dynamics and rewrite the

model in Laplace domain we obtain:

φ(s) = B2bl
s2(s+A)2Ix

(u2
2(s) − u2

4(s))

θ(s) = B2bl
s2(s+A)2Iy

(u2
3(s) − u2

1(s))

ψ(s) = B2d
s2(s+A)2Iz

(u2
1(s) + u2

3(s) − u2
2(s) − u2

4(s))
(16)

Where A and B are the coefficients of the linearized

rotor dynamics as described in (14). While C, too small

comparing to B, is neglected.

A. PD Controller Synthesis and Simulation

Introducing a PD controller for each orientation angle:

U1,2,3 = kφ,θ,ψ(φ, θ, ψ) + dφ,θ,ψ(φ, θ, ψ) (17)

In order to tune the controller parameters, and before

implementing on the real system, we performed several

simulations on Simulink using the complete model. The

controller’s task was to stabilize the orientation angles.

For this simulations, the dynamic model (9) was used,

obtaining the results showed if figure 5. The simulated

performance was satisfactory regarding the simple control

synthesis approach. We decided then to test on the real

system.

B. PID Controller on The Real System

Finally, we implemented the controllers in C under

Linux on a machine running at 450Mhz simulating the

future integration of a Single Board Computer. The ex-

periment has shown that the ”OS4” was not completely

Fig. 6. Experiment: the system has to stabilize the orientation angles

with a higher priority to roll and pitch angles, an integral term was added

to eliminate the steady-state error (P=0.9, I=0.3, D=0.2 for roll and pitch.

P=0.06, I=0.3, D=0.02 for yaw angle). This experiment includes a PID

on each propeller to control the speed.

stabilized, as a small steady-state error remains. An integral

term was then added and the experiment was performed

including a closed-loop speed control on each rotor. The

results are shown in figure 6. The effect of the propellers

speed control affects the general stabilization of the vehicle.

In the closed-loop, the orientation stabilization is faster and

the yaw angle is well controlled. Contrarily, in open-loop,

the response is much more smooth. This highlights the

importance of the actuators fast response. In both cases,

the simulations and the experiments have shown that the

Quadrotor can be controlled efficiently in hover using a

classical approach. This is possible because the controller

was tuned in simulation on the more complete model (9).

Obviously, this controller will not be able to stabilize the

robot in presence of strong perturbations.

V. OPTIMAL CONTROL OF ”OS4” VTOL SYSTEM

Considering the general equations for state-space sys-

tem, cost function and state feedback for a linearized

system






ẋ = Ax + Bu
J =

∫

(xT Qx + uT Ru)dt
u(t) = −Kcx(t)

(18)

In this case, the necessary condition for optimality of

the time derivative of the Hamiltonian function is:

Kc = R−1BT P (19)

Where P obey to Riccati equation:

−PA − AT P + PBR−1BT P − Q = Ṗ (20)

In order to solve Riccati equation, we first build the

Hamiltonian matrix:

H =

[

A −BR−1BT

−Q −AT

]

(21)



Fig. 7. Simulation: the system has to stabilize the orientation angles

starting from π/2 with an LQ controller generated using Pearson method.

A. Adaptive Optimal Control

Applying the LQ control requires the system lineariza-

tion to Ẋ = AX + BU form. In our specific system, a

linearization around an equilibrium point will cause the

model to be far form the reality (especially in large orienta-

tion angles) as all the couplings are neglected (gyroscopic

effects). In order to allow the system optimization for a

larger flight envelope, one can linearize around each state.

Each coupled term is represented twice by fixing and

varying each time one state. This leads to the following

linear state-space system:

Ẋ
T

=
(

φ̇ φ̈ θ̇ θ̈ ψ̇ ψ̈
)T

(22)

A =













0 1 0 0 0 0

0 0 0
Iy−Iz

2Ix
ψ̇ 0

Iy−Iz

2Ix
θ̇

0 0 0 1 0 0

0 Iz−Ix
2Iy

ψ̇ 0 0 0
Iyz−Ix

2Iy
φ̇

0 0 0 0 0 1

0
Ix−Iy

2Iz
θ̇ 0

Ix−Iy

2Iz
φ̇ 0 0













(23)

B =













0 0 0 0 0

0 l
Ix

0 0 Jr
Ix

θ̇

0 0 0 0 0

0 l
Iy

0 0 Jr
Iy

θ̇

0 0 0 0 0

0 0 0 1

Iz
0













(24)

The A and B matrix are now being adapted through the

robot trajectory. The linearization is thus more valid.

B. First LQ Controller Synthesis and Simulation

If we consider Pearson method [6], we solve Riccati

equation assuming that we zero the second term of (20),

solve the equation and get the feedback gain matrix. A first

simulation was performed on a model without the actuators

dynamics, the results were very satisfactory, even if we start

from a critical position as π/2 for the orientation angles.

The same simulation including, this time, the actuator

model was performed and showed the strong influence of

the actuators dynamics as presented in figure 7.

Fig. 8. Simulation: the system has to stabilize the orientation angles
starting from π/2 with an LQ controller generated using Sage-Eisenberg
method.

C. Second LQ Controller Synthesis and Simulation

Considering a permanent solution to Riccati equation as

simulated before gives medium results. Contrarily, Sage-

Eisenberg method [6] proposes to consider a variable

solution to Riccati equation and a fixed final condition

P (tf ) = 0. Once discretized, Riccati equation can be

rewritten as:

−Pt(hA − I) − (hAT )Pt

+Pt(hBR−1BT )Pt − (hQ + Pt+h) = 0
(25)

Where : tf : final time, h =
tf

n
: iteration period, n: number

of iterations.

The equation (25) represents correctly the system in the

Pt to Pt+h interval. The control using this method was

simulated at 100Hz under Simulink (see figure 8), with

the full model including the actuators dynamics, the same

Q and R matrix used in V-B and by taking tf = 0.3 and

n = 10. The gain matrix was then:

K =









0 0 0 0 0 0

12.83 10.02 0 0 0 0

0 0 12.83 10.02 0 0

0 0 0 0 12.86 10.01









(26)

Comparing with the previous simulation presented in

V-B, Sage-Eisenberg method gives better results as it

optimizes the cost function for every sub-trajectory in the

Pt to Pt+h interval. According to Bellman principle [7],

splitting an optimal trajectory generates several optimal

sub-trajectories.

D. LQ controller on The Real System

In order to validate the previous simulations, we im-

plemented the controllers on the same 450Mhz PC. It

was problematic to find weight matrices which satisfy the

control stability, in addition, a slight change in Q or R
matrices introduces an important variation of the controller

behavior. Hence, by choosing tf = 0.05, n = 10 and

an appropriate Q and R matrices, the system stabilizes as



Fig. 9. Experiment: the system has to stabilize the orientation angles. The
experiment was performed with an LQ controller using Sage-Eisenberg
method.

shown in figure 9. The gain matrix K is then:

K =









0 0 0 0 0 0

1.059 0.391 −0.001 0 0 0.001

0.0007 0 1.059 0.391 0 −0.0004

0.005 0.002 −0.0002 −0.0001 0.015 0.028









(27)

As this can be seen from figure 9, a steady-state error

remains on the three orientation angles, this is due to

the slight differences of the propulsion groups and the

disturbance introduced by the power and data cables.

On the other hand, the fact that the LQ controller was

developed without considering the actuators dynamics it

is also responsible of the average performance. However,

a new automatic test-bench for propellers is under con-

struction, this will allow a better characterization of the

propellers and the propulsion groups. However, one can try

to introduce an integral term in an LQ controller as shown

in [8]. This will be considered in a future development.

VI. EXPERIMENTAL AUTONOMOUS FLIGHT

After several simulations and experiments performed on

the test-bench, it was time to test an autonomous flight.

Once applied, the LQ controller brought-back average

results for this experiment. In fact, a steady-state error

remained because the actuator dynamics was not taken into

account and the systematic slight differences in the propul-

sion groups. In addition, the LQ controller we obtained is

experimentally less dynamic than the PID. Thus, we were

not able to release ”OS4” for a free flight. Contrarily, using

the classical approach (PID), the autonomous flight was a

success. The figure 10 shows the ”OS4” orientation angles

during an autonomous flight. Some perturbations were

introduced by the power cables and by us while trying to

prevent the robot from collisions with the walls. Obviously,

there are still some episodic problems, especially with the

sensors (drift, bad initialization,...) partly caused by the

vibrations. We are rather happy with this result using the

PID, but we are firmly convinced that the optimal control

theory (LQ) should give better results.

Fig. 10. Experiment: successful autonomous flight. The robot ”OS4”
has to stabilize the orientation angles by a PID controller.

VII. CONCLUSION

In this paper, we presented the application of two

different control techniques (PID) and (LQ) to a micro

Quadrotor called ”OS4”. As it can be seen from the

experimental plots, the controller introduced using the

modern approach provides average results, due to the

model imperfections. It will be enhanced in a near future.

On the other hand, the classical controller proves the

ability to control the orientation angles in the presence of

minor perturbation. The successful first autonomous flight

validates the development. Our next goal is to enhance

the control with position controller and to develop a fully

autonomous vehicle. The positive results obtained in this

development towards autonomous micro-VTOL, reinforce

our conviction that, in spite of the natural high instability

of these systems, a reliable control is still possible.
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