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Abstract— This paper presents a solution to the Simulta-
neous Localization and Mapping (SLAM) problem in the
stochastic map framework for a mobile robot navigating
in an indoor environment. The approach is based on the
concept of the relative map. The idea consists in introducing
a map state, which only contains quantities invariant under
translation and rotation. This is done in order to have a
decoupling between the robot motion and the landmark
estimation and therefore not to rely the landmark estimation
on the unmodeled error sources of the robot motion. The case
of the corner feature is here considered. The relative state
estimated through the Kalman filter contains the distances
and the relative orientations among the corners observed at
the same time. Therefore, this state is invariant with respect
to the robot configuration (translation and rotation). Finally,
an environment containing structures consisting of several
corners is also investigated. Real experiments carried out with
a mobile robot equipped with a 360o laser range finder show
the performance of the approach.

I. I NTRODUCTION

Simultaneous Localization and Mapping (SLAM) re-
quires a mobile robot to autonomously explore the environ-
ment with its on-board sensors, gain knowledge about it,
interpret the scene, build an appropriate map and localize
itself relative to this map. Many approaches have been
proposed both in the framework of the metric and the
topological navigation. A very successful metric method is
the stochastic map [15], where early experiments [4] [9],
have shown the quality of fully metric SLAM. However,
these approaches suffer from some limitations. Firstly, they
rely strongly on odometry making the global consistency
of the map difficult to maintain in large environments due
to the odometry drift. Furthermore, they represent the robot
position with a single Gaussian distribution meaning that an
unmodeled event (i.e. collision) could cause a divergence
between the ground truth and the estimation, which could
be unrecoverable for the system (lost situation). Even
though the global consistency can be better maintained by
taking into account all the correlations [1], the fact that
this remains suboptimal has motivated the introduction of
relative reference frames [3]. In order to properly integrate
information for the SLAM problem it is clearly necessary
to known the statistical model characterizing the systematic
and the non-systematic error of each robot’s sensor as
better as possible. An error on the sensor model will
produce a divergence in the built map if the environment
is large enough. This problem arises even if the approach

is optimal respect to the dynamics of the robot and the
observation and if the convergence is theoretically proven.
Indeed, the divergence arises because the error model is
imperfect. Dissanayake et al. [7], proved the convergence
of a filter based on Kalman (absolute map filter, AMF)
theoretically. However, the proof is based on an unrealistic
perfect statistical knowledge of the error of each sensor and
also on the strong hypothesis of a linear observation. Julier
and Uhlmann proved that the AMF yields an inconsistent
map, even for the special case of a stationary vehicle with
no process noise [8].

In order to minimize the divergence of the built map,
one has to concentrate on two important points: Adopt an
optimal filter (accordingly to the dynamics and the obser-
vation); Use the best statistical model to characterize the
error of the adopted sensor readings. Clearly, to deal with
the second remark, it is better not to use the odometry in the
estimation phase if other more precise sensors are available
with a well-known error model. The AMF, using odometry,
diverges when there is even a very small, undetected
systematic component. This divergence is proven through
simulations in [10] and through experiments on a real
platform in [11]. Therefore, decoupling odometry from the
estimation process becomes a main issue. For this, Csorba,
Uhlmann and Durrant-Whyte [5] introduced a relative map
based on quantities invariant to the robot pose (i.e. to
translation and rotation). Deans and Hebert [6] adopted
the same idea. Both estimate the distance between two
landmarks, which is invariant to the robot pose (translation
and rotation). However, their algorithms are sub optimal
because they do not consider the correlation between the
distances with a common landmark. Newman introduced a
relative map and he used two filters in the estimation, called
the relative map filter and the geometric projection filter
([13] and [14]). The second one provides a mean to produce
a geometrically consistent map from the relative map, by
solving a set of linear constraints. Both filters are optimal
since the dynamics and the observation are linear and they
are based on the Kalman Filter. However, the elements
used in this approach are invariant for translation only, not
for rotation. The approach adopted in [10] and [11] is to
take invariant elements for both translation and rotation
in order not to rely the robot motion for the estimation.
Then a Kalman filter is used for estimation, contrasting to
[5] and [6], who used the same invariants in combination
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with a non-optimal filter. The observation, as well as the
dynamic, will be linear. Therefore, the only error source,
which could create a divergence in the long term, is the
gaussian assumption adopted in the landmark position in
the robot frame evaluated through the exteroceptive sensor.

In this work, we extend the relative map introduced in
[10] and [11] to the case of the corner feature. In particular,
the novelty of this paper with respect to [10] and [11]
consists in the introduction of the relative state among
the corners and the application of the general equations
based on the Kalman filter derived in [10] to this relative
state (sect II and III). Furthermore, a new concept,the
structure, was here introduced to improve the convergence
(sect III). In the sections IV and V some experimental
results, obtained with a mobile robot equipped with a360o

laser range finder sensor, are shown and discussed and
some conclusions and future research are also provided.

II. T HE BASIC EQUATIONS FOR THERELATIVE MAP

FILTER

The odometry can be decoupled from the estimation
process by introducing a filter whose state only contains
quantities invariant under translation and rotation. This is
the idea characterizing the relative filter introduced here.
Once the relative map has been estimated through this filter
and the absolute location of a set of landmarks is known
(e.g. by using the first observation) it is possible to build the
absolute map. Therefore, the entire method contains two
algorithms. The former estimates the relative map, the latter
builds the absolute map. In the following we provide the
equations to estimate the relative state. These equations are
very general and can be applied to any kind of landmarks.

Let denote withI the state containing all the relative
quantities among the landmarks and withP its covariance
matrix. We call the elements contained inI the Invariants,
since they are independent of the robot pose. In the next
section we define the invariants we adopt to characterize
the relative information among corner features. However,
in the derivation of the following equations, the explicit
expression ofI is not required. The only hypothesis here
used for the derivation is thatI contains relative quantities
among the landmarks observed at the same time.

In fig. 1 the nodes represent generic landmarks (e.g.
corners, segments) and the edges represent the invariants
between the related landmarks (e.g. distances, relative
orientations). In fig. 1a the vectorI contains the marked
invariants between the6 landmarks. Clearly, not all of the
invariants between the6 landmarks are stored inI because
not all the landmarks were observed together at the same
time. At a given time step, the observation consists of a
set of invariants between the landmarks observed by the
robot through its external sensor (fig. 1b). Of course, these
invariants may be already observed (i.e. can be in the vector
I) or may not. Let introduce the following notation:

Iold = [u,wold]
T

Iobs = [wobs, v]T (1)

whereIold is the state estimated at a given time step and
Iobs is the observation at the same time step, containing a

(a) (b)

(c)

Fig. 1. Relative Map before the observation (a), the observation (b), and
the relative map obtained by fusing the information coming from the old
map and the observation (c). In all the three figures the map state only
contains the indicated invariants between the landmarks

set of invariants between the landmarks observed by the
robot. u contains the invariants which are not re-observed
(i.e. which do not appear in the vectorIobs) and wold

contains the invariants re-observed (denoted bywobs in the
vectorIobs). Finally, v contains the invariants observed for
the first time at the considered time step. The covariance
matrix of the previous vectors are:

Pold =
[

Puu Puw

PT
uw Pww

]
Pobs =

[
Rww Rwv

RT
wv Rvv

]
(2)

We adopt the following notation to denote the estimated
quantities, obtained by fusing the old state with the ob-
served one (the new estimated invariants are depicted in
fig. 1c).

Inew = [unew, wnew, vnew]T (3)

Pnew =




Pnuu Pnuw Pnuv

PnT
uw Pnww Pnwv

PnT
uv PnT

wv Pnvv


 (4)

We obtain the new estimation for the state and its
covariance matrix by applying the equations of the Kalman
filter. Observe that the observation is linear in the state (is
the identity) and therefore the Kalman filter is optimal.

unew = u + Puw (Pww + Rww)−1 (wobs − wold) (5)

wnew = wold + Pww (Pww + Rww)−1 (wobs − wold) (6)

vnew = v + Rvw (Pww + Rww)−1 (wold − wobs) (7)

Pnuu = Puu − Puw (Pww + Rww)−1
Pwu (8)



Pnuw = Puw − Puw (Pww + Rww)−1
Pww (9)

Pnuv = 0 (10)

Pnww = Pww − Pww (Pww + Rww)−1
Pww (11)

Pnwv = Rwv −Rww (Pww + Rww)−1
Rwv (12)

Pnvv = Rvv −Rvw (Pww + Rww)−1
Rwv (13)

Instead of the equations (6) and (11) it is possible to use
the following equations:

wnew = wobs + Rww (Pww + Rww)−1 (wold − wobs)
(14)

Pnww = Rww −Rww (Pww + Rww)−1
Rww (15)

They are derived by observing the symmetry of the filter
with respect to the change ”observation”↔ ”old state”.
Observe that the coincidence of the previous equations
could be easily proven also by using the inversion lemma.

III. I NVARIANTS FOR THE CORNERFEATURE

The configuration of a corner in a two-dimensional
environment consists of three parameters characterizing
its position and orientation. In fig. 2 we display the
parameters(x, y, θ) here adopted to characterize the corner
configuration in the global reference frameW .

Let consider now two corners. We can attach on each
one a reference frame without any ambiguity (indeed, in
the SPmodel the binding matrix of a corner is the identity
matrix [2]). Clearly, all the information concerning the
configuration of one corner with respect to the other one
is contained in the coordinates transformation between the
two reference frames. Furthermore, this transformation is
invariant with respect to the global referenceW (i.e. to the
robot pose). Therefore, a possible choice for the invariants
between two corners could be the parameters defining the
transformation of above. However, the previous choice
has the disadvantage of being asymmetric with respect to
the transformationcorner1 ↔ corner2. For the sake of
simplicity in the implementation, we define the invariants
between two corners in a way that they do not depend on
the order of the corners. For this reason we introduce the
three invariants(d, α1, α2) shown in fig. 3:

d =
√

(x1 − x2)2 + (y1 − y2)2 (16)

α1 = θ1 − arctan
y1 − y2

x1 − x2
(17)

α2 = θ2 − arctan
y1 − y2

x1 − x2
(18)
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W

Fig. 2. The parameters defining the corner configuration in the reference
W
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Fig. 3. The invariants between two corners

They are clearly independent of the robot configura-
tion and symmetric with respect to the transformation
corner1 ↔ corner2. Finally, they contain all the infor-
mation concerning the configuration of one corner with
respect to the other one (in other words, once the absolute
configuration of one corner is known, it is possible to
obtain the absolute configuration of the other one, through
the previous invariants.) With this choice, the stateI
introduced in the previous section contains all the invariants
among the corners observed at the same time. In particular,
if at a given time the number of corners observed ism,
the dimension of the vectorIobs in equation (1) is equal
to 3× m(m−1)

2 . This does not mean that the dimension of
the stateI increases asN2, whereN is the number of the
corners in the environment. Indeed, if we assume that the
numberm is bounded, the dimension ofI increases linearly
with N . Moreover, the structure of the equations in the
previous section is such that the computational requirement
has a complexityO(N). Indeed, the covariance matrix
P is block diagonal since the invariants between corners
a and b are completely uncorrelated with the invariants
between the cornersc and d when a 6= c, d and b 6=
c, d. The equations of the previous section are used to
estimate the invariants and the covariance matrix. Clearly,
the elements in the stateI are not independent. This means
that there are some constraints on them, containing very
useful information to improve the convergence of the map.
A possible solution to take into account these constraints
consists in considering only the independent elements in
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Fig. 4. To evaluate the absolute configuration of the corner 4 it is possible
to follow the path1 → 2 → 4 or 1 → 3 → 4

I (which corresponds exactly to applying the Projection
filter suggested by Newman [13]). However, concerning
all the constraints among the invariants related to a group
of corners observed at least once simultaneously, they
are automatically satisfied, due to the structure of the
covariance matrix of the observation and the structure of
the equations in the previous section [12]. Therefore, the
only constraints to be imposed, are the ones involving the
invariants related to a group of landmarks never observed
at the same time (typically this happens when closing a
loop). For these invariants a Projection filter can be applied
and the covariance matrix concerning all these invariants
after applying the Projection filter will have all the cross-
correlations among them different from zero [13].

Once the relative map is estimated, it is possible to
reconstruct the absolute map. Indeed, the absolute configu-
ration of a given corner can be easily estimated by knowing
the absolute configuration of another one and the invariants
between these two corners. SinceI contains invariants
which are not independent, the absolute configuration of a
given corner can be determined following different paths.
In fig. 4, the 4th corner can be located by determining
firstly the configuration of the3d corner or of the2nd one.
However, if all the constraints are maintained, the result
does not depend on the choice. The robot configuration at
a given time step is estimated by using the last observation,
which provides the position and the orientation of several
corners in the local frame of the robot. In particular, it is
sufficient that this observation contains the configuration
of one corner.

Finally, we want to consider a further hypothesis consist-
ing in assuming the existence of structures made of two or
more corners. Once this hypothesis is made two questions
arise:
• how to detect a structure;
• how to use the information coming from the struc-

ture constraint in the estimation process, in order to
improve the map convergence.

Clearly, to answer the first question it is necessary
to better define the structure itself. In our experimental
implementation we just introduce a check on the corners
to verify their alignment. In the fig. 5, corner1 and corner
2 belong to the same structure. On the other hand, corner3

corner 3

corner 1

corner 2

Fig. 5. Structures are found by using aperture angles around the arms
of each corner. Corners belonging to the same structure must lie within
their opponents aperture angle.
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Fig. 6. Once a structure as the one here shown is detected, the number
of independent invariants among the three corners reduces from6 to 2

does not belong to the same structure since the condition to
be within the aperture angle is not verified simultaneously
by both corner3 and2.

It is important to be very conservative in deciding if
some corners form one structure, since a false structure
detection could degrade irreparably the quality of the
map. For this reason a candidature approach is strongly
recommended (i.e. it is required that the same alignment is
observed several times before introducing a new structure).

Concerning the estimation process after detecting a given
structure, we remark that the constraint to be imposed
depends on the structure. In general, the structure constraint
will remove several elements from the stateI, namely
the invariants that depend on the other ones through the
constraint. In fig. 6, the number of independent invariants
will reduce to two after imposing the constraint. Indeed,
all the relative angles are determined and also the three
distances satisfy the conditiond2

a + d2
b = d2

c

Hence, once a structure has been introduced, the number



Fig. 7. The robot BIBA equipped with the laser range finders

of invariants will decrease. Moreover, some independent
invariants are intrinsic to the structure, i.e. they characterize
only the structure itself but do not contain any information
concerning the configuration of the structure with respect
to the other corners and/or structures in the environment
(e.g. the two independent distancesda and db in the fig.
6 are intrinsic to the structure). Therefore, to describe
the structure configuration we select an anchor corner.
When the structure is observed simultaneously with other
corner and/or structures, the equations in section II are
used to update the invariants among the anchor corner and
these other corners and/or structures. This update can be
carried out even if the chosen anchor corner is not directly
observed but only other corners belonging to the same
structure are observed.

In conclusion, the introduction of a structure will im-
prove the convergence, since, after that, the same ob-
servations will be used to estimate a smaller number of
quantities and some of the invariants will be not affected
by any error. The price to pay, is the risk to detect a false
structure which could cause a divergence.

IV. RESULTS AND DISCUSSION

For the experiments, BIBA (see Fig. 7), a fully au-
tonomous mobile robot, has been used. The robot is
equipped with wheel encoders and two180o laser range
finders. It is connected via radio ethernet only for data
visualization via web and data logging for statistical pur-
poses.

The experiment was performed in the hallway of our
building department, consisting of several walls, cupboards
and pillars. In the figures 8-11, the lines represent only
the walls but not the cupboards and pillars. This is the
reason because many times the corners are not located on
the lines. The robot moved along a closed trajectory, whose
length was about50m. We applied three different methods
to solve the SLAM problem using exactly the same data
(both encoder and laser). The data association problem was

Fig. 8. SLAM with odometry

accomplished in all the three cases by using the nearest
neighbor filter (NNF). Furthermore, a candidature system
was employed to evaluate and admit new corners.

Method one, referred asSLAM with odometry, only
uses odometry to determine the robot configuration. At
every iteration step, once the robot configuration has been
estimated through odometry, the absolute configuration of
each corner is estimated in the local map. When the same
corner is observed more the one time, the mean value of its
position and orientation is computed. The robot trajectory
and the corners are displayed in fig. 8. The map obtained
with this method is completely inaccurate.

Method two, referred asSLAM with relative map and
corners, updates the relative map in the previous sections
by estimating a state containing the invariants among
the corners. In fig. 9 we show the results obtained by
this method. The convergence is not excellent and can
be improved because we used a very simple model to
characterize the error of the invariants as obtained from a
single observation (the matrixPobs). In particular, this error
does not contain all the correlations among the invariants
which are not independent. In this way, we loose a great
amount of information. However, we used this error model
to simplify the problems in the implementation. We want to
remark that considering the correlations does not increase
the computational complexity, as explained in sect. III.

Method three, referred asSLAM with relative map and
structures, extends method two using structures. Clearly,
the structure hypothesis contains very useful information
as discussed in the previous section. The results shown in
fig. 10 and 11, confirm this.

V. CONCLUSIONS ANDFUTURE RESEARCH

This paper presented an approach to solve the SLAM
problem with the corner feature in the stochastic map
framework based on the concept of the relative map. The
idea consists in introducing a map state which only con-
tains quantities invariant under translations and rotations
and to carry out the estimation of this relative map in an
optimal way (a Kalman filter was adopted). This is an
optimal way in order to have a decoupling between the



Fig. 9. SLAM with relative map and corners

Fig. 10. SLAM with relative map and structures

Fig. 11. SLAM with relative map and structures. With respect to the
previous figure, we linked the corners belonging to the same structure
through a virtual line

robot and the landmark estimation and therefore not to rely
the landmark estimation on the unmodeled error sources
in the robot motion. The relative state estimated through
the Kalman filter contains the distances and the relative
orientations among the corners observed at the same time.
Therefore, this state is invariant of the robot configuration
(translation and rotation). Finally, the use of structures to
extend SLAM with corners was investigated.

We performed real experiments in an indoor environment
validating the approach.

In a future implementation we want to introduce a
more sophisticated model to characterize the error on the
invariants, taking into account all the dependencies.
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