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Abstract
This paper presents a navigation framework which ena-
bles multiple mobile robots to attain individual goals, co-
ordinate their actions and work safely and reliably in a
highly dynamic environment. We give an overview of the
framework architecture, its layering and the subsystems
reactive obstacle avoidance, local path planning, global
path planning, multi-robot planning and localization. The
latter receives particular attention as the localization
problem is a key issue for navigation in unmodified and
difficult environments. The framework permits a light-
weight implementation on a fully autonomous robot. This
is the result of a design effort striving for compact repre-
sentations and computational efficiency.

The experimental testbed was the “Robotics” pavilion at
the Swiss National Exhibition Expo.02 where ten fully au-
tonomous robots were interacting with more than half a
million visitors during a five-month period on 3,316 km.

1. Introduction
Navigation responds to three questions: ‘where am I?’,
‘where am I going?’ and ‘how do I get there?’. A naviga-
tion framework has the task to offer the simplest possible
interface to these questions, hiding their complexity to the
user or the application layer.

At the inside, navigation deals with various constraints
on different time scales and levels of abstraction. A com-
mon approach to structure the problem is a three-layered
architecture which consists in a planning layer, an execu-
tion layer and a reactive behavior layer [6, 23] (figure 2).
• The planning layer decides how to achieve high-

level goals using a model of the environment. Plan-
ning takes places under constraints of task-specific
cost functions and limited resources.

• The execution layer subdivides a plan into execut-
able subplans, activates and deactivates behaviors
and supervises their completion.

• The reactive behavior layer interfaces the robot’s
sensors and actuators. In mobile applications, it acts
as a position controller under constraints of a
dynamic environment, the robot shape, vehicle kine-
matics and dynamics.

Controls, abstracted sensor data and status information
flow vertically between layers. Typically, controls such as
plans and subplans are passed to lower levels and informa-
tion such as status codes and termination flags are passed
to higher levels. In case of failures in a layer (e.g. path
blocked), requests for revised controls are sent to higher
layers (e.g. replanned path). Time scale and abstraction in-
crease from bottom to top, model fidelity and real-time
concerns increase from top to bottom.

We adopt this three-layered architecture here as it ac-
commodates deliberative and reactive behaviors, allows
for constraint distribution over the layers and embodies an
intuitive way of increasing abstraction from bottom to top.
It is further suitable for applications with manipulators
and multiple robots [6, 23, 24].

The application we envisage are ten fully autonomous
mobile robots deployed in a mass exhibition with up to
500 visitors per hour. Their task includes tour giving, en-
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tertaining and picture taking of visitors. They share the
same space and the same goals for the tours and operate in
an unmodified environment. The paper presents how the
architecture was adapted to suit our needs and the choices
we made for its components. Further, operating experience
with this framework from in the “Robotics” pavilion at the
Swiss National Exhibition Expo.02 is discussed.

2. The Navigation Framework
Today we (still) face limited computational resources in
embedded systems for real-time. While radio-linked off-
board hardware might be an alternative for a single robot,
it would result in prohibitive bandwidth costs for multiple
robots, if, for instance, raw sensor data for localization
were transmitted. As we want the robots to be truly auton-
omous, we look out for compact representations and com-
putational efficiency.

2.1 Environment Model

Our approach to environment modeling is feature-based
using geometric primitives such as lines, segments and
points (sometimes called landmarks). The environment to-
pology is encoded in a weighted directed graph with nodes
and edges between the nodes. Neither for global path plan-
ning nor for localization we use a free space model like oc-
cupancy grids. The advantage of this choice is compact-
ness: in indoor environments, a map of this type (features
plus graph) requires typically around 30 bytes per . Fur-
ther, scaling to 3d is polynomial, whereas grid maps scale
exponentially.

The graph has two types of nodes: station nodes and via
nodes. Station nodes correspond to application-specific

-locations in space with a meaning. Examples
from Expo.02 include: showcase with industrial robot, tour
welcome point or location to trigger picture caption. Via
nodes have two tasks. First, they correspond to topology-
relevant locations like doors or corridor-crossings. There-
by the graph models the environment topology. Second, in
environments with large open spaces, they further provide
topological redundancy by locations with favorable tra-
versability. Favorable, for instance, with respect to visitor
flow criteria or other specific requirements from the appli-
cation.

The map further contains so called ghost points. Ghost
points are -positions in the world reference frame
which act as invisible barriers. If the environment contains
forbidden areas undetectable for the robot’s sensors (e.g.
staircases, glass doors, exits, etc.) ghost points are used to
prevent the robot to go there by injecting them into the sen-
sor data as virtual readings (see also section 2.4 and [12]). 

The Expo.02 environment covers a surface of 315 
and has 15 places of interest for the robots. The map con-
tains 44 segments on 44 lines, 15 station nodes, 37 via

nodes and 20 ghost points (figure 3). Its exact memory re-
quirement is 8 kbytes or 26 bytes per . The ghost points
(not shown in fig. 3) are at the entrance (bottom of fig. 3)
and the exit (top) of the circulation area. 

2.2 Global Path Planning

With a topological graph, global path planning becomes a
graph search problem for which a multitude of algorithms
exist. From simple depth-first search with fixed costs to
dynamic programming techniques and probabilistically
learned cost functions for edge traversability [15]. Global
path planning in our case uses a priority-first search [22]
and costs assigned to edges and nodes [27]. In a single-ro-
bot context costs are fixed, for multi-robot planning the
costs of nodes are variable and depend on the distance to
other robots. In the multi-robot case, besides paths, goals
are shared as well, and must be negotiated among the ro-
bots. See section 2.5.

At Expo.02 we give visitors the opportunity to choose
their next station of a tour by themselves. This closes the
first loop to the environment which is asynchronous and
has a cycle time in the order of 0.01 Hz (figure 7). Path
planning in the graph of figure 3 is a matter of a few milli-
seconds in our implementation.

2.3 Command Queue

Paths from the global planner consist in a list of nodes. In
the execution layer, a command queue passes the list to the
behavior layer in a node-by-node manner. For via nodes it
actives a -position-only variant of the obstacle avoid-
ance, in case of the last list node, the full pose 
must be met. Near the last node in the list (typically a sta-
tion node), localization gets deactivated (10 cm in our im-
plementation). This is because localization causes the ro-
bot pose estimates to be noisy such that for any position
controller the goal cannot be reached. The reached condi-
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tion for via nodes is also treated on this level. It is satisfied
when the robot enters a large disk around the node (2 m in
our implementation).

2.4 Local Path Planning and Obstacle
Avoidance

For mobile robots, the primary role of the reactive layer is
that of a position controller. A number of constraints must
be accounted for on this level: vehicle shape, vehicle kine-
matics, vehicle dynamics and, of course, environment dy-
namics which in the case of a mass exhibition is extensive.
Since purely reactive obstacle avoidance methods usually
suffer from local minima problems, we divide the task into
a reactive and a path planning sublayer [7, 21, 2].

For the reactive sublayer we rely on the idea of the dy-
namic window approach (DWA) [11]. The method uses a
simple model of the vehicle dynamics (maximal accelera-
tion / deceleration) and can – with the appropriate exten-
sion [21, 2] – take into account an arbitrary robot shape. In
comparison to the original version of the DWA our ap-
proach differs in the following points:
• Working with differential drive robots, the objective

function trading off speed, heading and clearance are
calculated in the actuator phase space  instead
of the Cartesian -space. This models the accel-
eration limits of the vehicle physically more properly.

• As in [21] and [2], we account for polygonal robot
shapes. The robot shape is not hard-coded in our
implementation and can be specified at boot time.

• Instead of using the distance to collision as a clear-
ance measure, we use time to collision. This solves a
singularity when turning on the spot (any collision
would seem instantaneous because the distance trav-
elled seems zero). It also means the robot will choose
more clearance when travelling at higher speeds.

• Ghost points from the global map are taken into
account. After a global-to-local transform they are
injected as virtual sensor readings.

The dynamic window is part of the time- and safety-crit-
ical software of our robot. We therefore install this process
as a deadline-driven real time task with a 10 Hz frequency.
Special attention was paid to optimize its execution time to
be short and predictable. For reasons similar to those men-
tioned in [21], we use a look-up table for the clearance
measure.

The second sublayer is a path planner which operates lo-
cally as it relies on sensory data without memory. A mod-
ified elastic band [20] is employed which generates
smooth trajectories around obstacles (figure 4) and uses an
NF1 navigation function [17] for initialization. Although
the NF1 always yields topologically correct solutions
(within its scope and if a solution exists), it generates un-
smooth trajectories with the tendency to graze obstacles.

With the elastic band, The initial NF1 plan continuously
evolves towards a smoother curve.

Updates of the band are implemented in a non-time criti-
cal thread which runs at several Hz. As soon as the elastic
band “snaps”, replanning is initiated. At Expo.02, this
takes place typically in the order of 0.1 Hz.

For path planning and evolution of the elastic band, the
robot is assumed to be circular and heuristics are used to
ignore some sensor readings. This results in simplified and
speed-up implementations. The simplifications are accept-
able because the DWA ensures the dynamic, kinematic,
and geometrical constraints.

The modifications of the DWA and the elastic band are
described in more detail in [19]. At the lowest level finally,
the speed controller, also installed as a real-time task, runs
at a 1 kHz frequency (figure 7).

2.5 Multi-Robot Planning

For multi-robot planning we distinguish goal coordination
and path coordination.

For the paths, environment dynamics from visitors is im-
portant. Visitors who play with a robot easily deviate the
vehicle from its path and provoke path collisions where at
planning time no collision had occurred. We therefore face
the problem of replanning paths for all robots on-the-fly.
This has to happen in real-time since we do not want the
robots to stop and wait each time we detect a path deviation
somewhere.

For this we employ a potential field approach where
graph nodes receive costs proportional to the distance to a
robot. Each robot assigns weights to those nodes which are
in its current plan. The resulting graph superimposes the
weights of all robots. Using this graph, the global planner
delivers cost-optimal paths that contain nodes which are
currently unused by other robots.

Theoretically, there is no guarantee on collision freeness
with potential fields. One can construct (pathological) sit-
uations where it is cheaper for two robots to use the same
node at the same time. More sophisticated methods [17]
can provide a guarantee but are computationally unfeasible
in our application. The advantage of this technique is its ef-
ficiency. It enables multiple robots to adapt their plans
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Figure 4. Two situations from Expo.02 which show how
the elastic band finds a smooth path around people. In a)
there are two robots virtually blown up with ghost points.

robots

a) b)



                              
quickly and requires a minimum of shared information: a
list of elements , with  being the node identifier
and  its weight – a matter of a few bytes.

Coordination of the goals is necessary since a limited
number of shared goal locations is to be allocated to mul-
tiple robots. Path coordination cannot avoid that several ro-
bots choose simultaneously the same station node since ro-
bots with the same goal would, due to the lack of redun-
dancy, insist to go there regardless the costs.

To give visitors the choice of their next tour station the
robot makes a proposition which is based on the currently
unoccupied stations, the list of stations included in the tour
and the stations already visited. The selected station is then
reserved for this robot. More details on goal negotiation
and implications for visitor flow can be found in [16].

2.5.1 The Robot-Sees-Robot Problem
Multi-robot coordination so far presented, depends on the
knowledge of the robot positions. Even with a reliable and
accurate localization, this creates critical interdependen-
cies. Robots shall therefore be able to see each other on a
raw data level. This, however, is not straight-forward with
platforms of the same mechanical design which all mea-
sure at the same height since, at this height, the true vehicle
size will be underestimated from the sensor readings.

Our approach is to mount two retro-reflecting beacons
onto the vertical profiles in the blind zone between the two
Sick laser scanners (figure 1). The Sick LMS 200 sensors
provide an intensity signal which allows to easily extract
the reflector information. We then use ghost points to arti-
ficially create a virtual robot contour at the extracted re-
flector positions (see also figure 4). Thus, obstacle avoid-
ance provides an anytime fall-back solution.

2.6 Localization

Localizing a robot robustly in a mass exhibition environ-
ment is certainly a challenge. In former exhibition projects,
localization was based on off-board hardware [8, 26] or en-
vironment modifications [18]. In our earlier work we em-
ployed features and an extended Kalman filter (EKF) [3].
This is also the approach for the three museum robots de-
scribed in [13]. However, a robot doing (single-hypothe-
sis) pose tracking can loose its track as the inherent data as-
sociation problem is ignored. With the localization tech-
nique introduced in [1], we address the data association
problem and extend the conventional EKF localization ap-
proach to a global localization technique.

Unlike POMDP or Markov approaches [8, 26] where lo-
cations1 are generated before they get evaluated by the ex-
teroceptive sensors (as a grid or as particles), our approach

to localization turns this process around: locations are gen-
erated as a direct consequence from sensory information.
Features tell us when and where to place a location hypoth-
esis. This allows to maintain as many hypotheses as neces-
sary and as few as possible.

The technique for hypothesis generation is a constraint-
based search in an interpretation tree [14, 10, 9]. This tree
is spanned by all possible local-to-global associations, giv-
en a local map of observed features  and a
global map of model features . Further-
more, besides track formation, in [1] we present an algo-
rithm for track splitting under geometric constraints. It re-
lies on the same idea as hypothesis generation (search in an
interpretation tree), thus forming a consistent framework
for global EKF localization.

We briefly outline the approach (more details in [9,1]):
The search space for hypothesis generation is the space of
all possible associations of the observed features  and the
modeled features . The search space has the structure of
a tree with  levels and  branches [14].  is the num-
ber of observed features in ,  the number of modeled
feature in . The extra branch (called star branch) allows
correct associations in the presence of outlier observations
(false positives) and thus accounts for environment dy-
namics and map errors. During tree traversal, statistically
feasible pairings  are sought given all un-
certainties associated to the features. A pairing says that
the observed feature  and the modeled feature  denote
the same physical object in the environment (  is called
an ‘interpretation’ of ). Although the problem is of expo-
nential complexity, geometric constraints reduce enor-
mously the space to be explored. The constraints can be
classified into two categories [9], location independent
constraints (unary and binary) and location dependent
constraint (rigidity, visibility and extension). The latter
category requires the robot location :

Unary constraint. We accept the pairing  if  and 
are of the same type, color, size or any other instrinsic
property. Examples:  and  are both features of type

-point, or the length of the observed segment  is
smaller or equal than the length of the modeled segment .

Binary constraint. Given a valid pairing  we will ac-
cept the pairing  only if the two local features  and 
are compatible to the two global features  and . Exam-
ples:  and  are lines with the angle  between the
lines. Then, the pairing  is considered compatible if the
angle  is the same. With point features, for instance, the
distances -  and -  must correspond.

Visibility constraint. This constraint only applies to mod-
el features. It tests whether  is visible from the robot po-
sition . Example: lines or segments can always be seen
only from one side. If the robot is behind a wall, one of the
two lines modeling the wall is invisible. With sensor spe-
cific parameters, the visibility constraint rejects features

1. We use the terms location, position and pose interchangeably.
They denote all the full  vehicle pose
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which are not detectable, for instance, because they are far-
er away than a maximal perception radius.

Rigidity constraint. A pairing  is considered compati-
ble if  and , transformed into the same coordinate sys-
tem given , coincide (are at the same position). This is
what happens in the matching step of any EKF localization
cycle. Usually,  is transformed into the frame of .

Extension constraint. A pairing  is considered com-
patible if  and , transformed into the same coordinate
system given , fully overlap. Example: an observed seg-
ment  must be fully contained in the transformed  seen
from the location .

These constraints allow to discard whole subspaces (sub-
trees) from the search each time when an incompatible
pairing is found at the root of such a subtree. With the un-
certainties associated to local and global features, all deci-
sions make use of the Mahalanobis distance on a signifi-
cance level .

Tree traversal is implemented as a recursive back-track-
ing search algorithm [9]. The strategy is to first find a min-
imal number of valid pairings with location independent
constraints such that a location estimate can be determined
in order to apply location dependent constraints, too. Each
time when the algorithm reaches the bottom of the tree,
that is, the end of a branch where all observed features 
could have been assigned to a model feature  or to the
star-branch, we have a valid robot location hypothesis 

. The pairings which support the hypothesis are
put together into the supporting set .

2.6.1 Estimating the Robot Location
With the supporting set, the -pose of the robot is
not yet known. This is what the extended information filter
(EIF) does. Given the set of pairings with all associated un-
certainties, it estimates the robot location and its covari-
ance in the least square sense. The difference between the
EIF and the EKF is that the former is the batch estimator
formulation of the latter (which is recursive). This is need-
ed, because, during hypothesis generation, there is no a pri-
ori knowledge on the robot location which formally means
that the state prediction covariance, usually called

, is infinite. With the EIF, this can be properly
expressed as  since covariance ma-
trices are represented in the information matrix form, that
is, by their inverse.

Figure 5 shows two examples of hypothesis generation in
the Expo.02 environment. With multiple discrete hypothe-
ses, to be localized is simply expressed as having a single
hypothesis. For line extraction we use the method de-
scribed in [4]. Extraction times are around 20 ms. Local-
ization was implemented as a non-RT thread. Its cycle time
was slowed down to 2 Hz in favor of other concurrent non-
RT processes (e.g. path planning, communication). With a
single hypothesis to be tracked, cycle times of 10 Hz and
more are achievable on the Robox hardware.
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Figure 5. Global EKF localization. Given the local maps
in a) and b), hypotheses are generated at locations where
the local map geometrically ‘fits’ into the global map. In
a) there are 8 hypotheses; the location is ambiguous. In
b) there is a single hypothesis; the robot is instantane-
ously localized. ‘t’ denotes the execution time. The exper-
iments were carried out at the positions shown below.
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2.6.2 Multi-Hypothesis Tracking (MHT)
The main reason for lost situations during tracking is incor-
rect data association. This occurs typically when there is
more than one statistically feasible pairing candidate for an
observation. Choosing the closest one is the most widely
applied strategy called the nearest neighbor standard filter.
If it was the wrong one, the KF will become inconsistent
and is very likely to diverge. Therefore, besides uncertain-
ties in the value of measurements, robust pose tracking
must also account for uncertainty in the origin of measure-
ments [5].

We look for an algorithm which re-generates hypotheses
during tracking as soon as there is no guarantee anymore
that the correct association of an observation can be done.
In [1] we propose an algorithm for track splitting under
geometric constraints which, given a predicted location, a
local and a global map, splits up into multiple offspring hy-
potheses if there is statistical compatibility with several
supporting sets. It has the identical structure than the algo-
rithm for hypothesis generation but employs location de-
pendent constraints only and does not recur with a refined
position estimation. In this manner the algorithm finds all
supporting sets in the vicinity of the initially predicted lo-
cation . 

After each hypothesis has been tracked, there are three
cases: (i) hypothesis confirmation, (ii) hypothesis rejection
and (iii) hypothesis split up. Track rejection takes place
when the predicted location is not supported anymore by
location dependent constraints on the level . When track
splitting occurs, their locations get newly estimated and the
best one is taken. “Best” in the sense of most paired obser-
vations, and in case of a tie in a goodness-of-fit sense, ex-
pressed by the joint Mahalanobis distance. This is a non-
Bayesian approach to data association. Fig. 5.a) shows an
example: the marked (true) hypothesis is the only one with
three paired observations, while the seven other hypothe-

ses have only two pairings and a star-branch match. 
Figure 6 shows an experiment how the robot converges

towards the true location after a short trajectory. Note that
by geometry only (or geometric falsification respectively),
false tracks get rejected quickly. No free-space informa-
tion is needed.

Finally, figure 7 shows the resulting decomposition of the
architecture, the four control loops and their cycle times.
The DWA sublayer requires the position of the ghost
points which explains its connection to the environment
model. Localization can be seen as a behavior as it is
switched by the execution layer and connected to the ro-
bot’s sensors. It is however invisible since there is no direct
connection to other components or behaviors. It acts in the
background continuously correcting the odometry. There-
by, all other framework components can consider odome-
try as being “perfect”. For multi-robot coordination, robots
are connected on the level of the planning layer.

3. Implementation
In view of the requirements from the Expo.02 application
and former experience in robot design and system integra-
tion in our lab, the decision was taken to construct a robot
from scratch.

The outcome, Robox, is shown in fig. 1 and is described
in detail in [25]. For navigation, a PowerPC G3 at 380
MHz serves as main CPU running the deadline-driven
real-time operating system XO/2. The robot sports two
SICK LMS 200 and is made for fully autonomous opera-
tion. It does not rely on off-board resources with one ex-
ception at Expo.02: a central server for multi-robot plan-
ning. The approach described in section 2.5 does not re-
quire this at all but with the implementation using HTTP,
opening a connection took more time than data transmis-
sion itself. The central unit allowed us to optimize laten-
cies and transmission times (see also [16]).

4. Operation Experience and Discussion
During Expo.02 (May 15th–October 20th, 2002), 686’405
persons visited the “Robotics” exhibition (4317 per day,
around 400 per hour). Assuming an average visit duration
of 15 minutes (typical for mass exhibitions), around 100
persons share the 315  circulation area with ten robots.
In other words, the robots encounter environment dynam-
ics similar to a railway station at rush-hour, mostly benign
but also hostile (people who run into, play with, try to out-
wit or kick the robots). The overall travel distance was
3,316 km during an overall operation time of 13,313 hours.

Safety. It was never observed that a robot was the cause
of a dangerous situation e.g. with small children, elderly or
handicapped people (fig. 8). The lack of additional sensors
close above floor (IR or ultrasonic) is easily bearable with
the combination of tactile plates and soft bumpers.
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Blocked-situations due to bumper contact were also han-
dled by the interactive part (robot expressing friendly men-
aces). Further, there was almost no vandalism. Visitors
kicked the bumpers regularly and touched the (unprotect-
ed) two pan-tilt eyes of the face but never caused a real
damage.

Reliability. The division of obstacle avoidance into a
purely reactive part with high model fidelity and a plan-
ning part is a powerful conjunction. Very often, groups of
visitors form a U-shaped obstacle or leave only small
“holes” for passage. The robots have no difficulty to es-
cape from such situations, and due to the fact that we ac-
count for Robox’ true octagonal shape, narrow passages
are efficiently used (fig. 4). Further, the elastic band gen-
erates smooth and good-looking trajectories. No problems
with mutually interfering laser scanners from different ro-
bots have been observed.

We were surprised by the reliability of localization in
view of the environment dynamics and the fact that we
used laser data only. A fall-back solution with lamp fea-
tures extracted from a camera looking to the ceiling was
prepared but had not to be employed. However, lost situa-
tions occurred for two main reasons: staff members that
push/rotate the robot in order to untangle congestions of
robots or visitors and robots (see below), and visitors imi-
tating this behavior. Global localization as illustrated in
fig. 5 was then useful since it allowed to instantaneously
relocalize the robot within all people, enabling it to resume
operation. The geometry of the Expo.02 environment was
helpful here since it contained little symmetry.

We believe that the use of geometric features for naviga-

tion is a very appropriate choice for localization, particu-
larly for highly dynamic environments. During feature ex-
traction, sensor readings are filtered out that do not satisfy
the spatial model assumption from the feature (lines in our
case). Thereby, the extraction process says which reading
is to be taken for localization and which one is to be ig-
nored. This filter relies typically on sound regression tech-
niques and works independently on whether the robot is lo-
calized or not. People standing in front of the robot do not
produce evidence for the line extraction since legs are not
linear or too short (see also [4]). Spurious segments, for ex-
ample by line-like objects carried by people, do occur and
are treated by the star-branch in the localization algorithm.

The environment contained walls which differ by less
than five degrees in angle (bottom wall in fig. 3). Line ex-
traction had to be tuned for a slight tendency to overseg-
mentation in order to correctly detect the true wall seg-
ments. Otherwise the observed line segments would have
been too long and the unary constraint testing on the seg-
ment length would have prevented their match.

However, path-coordination (section 2.5) was not always
available and the robots relied on the fall-back solution of
section 2.5.1 during this period. But the concept for the ro-
bot-sees-robot problem turned out to be an oversimplifica-
tion. The employed model (blowing up a virtual contour at
the detected reflector position) caused the robots occasion-
ally to block each other. This happened when the reflectors
of two nearby robots were occluded (e.g. by visitors) and
became suddenly visible (when they moved away) causing
the virtual contours to overlap and to be within the hull of
the other robot. The motion planner then stopped both ve-
hicles and pavilion staff members had to intervene. By us-
ing a switch disconnecting the motors from the amplifiers,
the 115 kg robot can be easily pulled away (such an inter-
vention took a few seconds). However, wrong manipula-
tion of the switch made the robot slip and caused unmod-
eled odometry errors of such an extent that the robot often
went lost during such interventions (robot kidnapping).
Multi-hypothesis tracking presented in section 2.6.2 aims
at that problem. But recovering from robot kidnapping is
hard. The main problem is to reliably decide when in the
set of locally generated hypotheses the robot has to jump
to which hypothesis. The question persists and motivates
future work in this direction.

Precision. Localization accuracy varies and depends on
how much persons occlude the sensors and how much seg-
ments have been paired. Goal nodes were typically reached
with a relative error less than or equal to one centimeter.
This was measured by the traces on the floor at goal loca-
tions the robots left after several months of operation.

5. Conclusions
On 3,316 km travel distance, the framework and its com-
ponents as presented in this paper met the requirements of

e) Figure 8. Scenes from
Expo.02: (a) children
on the floor, possibly
invisible to the laser-
scanners, (b) a group
of people listening to
Robox and completely

blocking its path, (c) a blind visitor interacting with
Robox, (d) the queue in front of the Robotics pavilion, (e)
a compact group of visitors (~30) and robots (four).

a) b)

c) d)



safe and reliable operation in a highly dynamic environ-
ment very well. To the knowledge of the authors, this
project was the world-wide biggest installation of interac-
tive autonomous robots so far. Being the first one, we be-
lieve that it will not remain the last robot exhibition of its
kind. We have shown that the deployment of autonomous,
freely navigating robots in a mass exhibition is feasible.

We have also demonstrated that the feature-based ap-
proach to localization is an adequate choice for highly dy-
namic environments. This has been showed in former work
with two museum robot installations [8, 26] for the Mark-
ov localization approach. From its application at Expo.02,
we conclude that the feature-based approach allows to be
robust and precise, retaining its efficiency also in the “glo-
balized” form of section 2.6.

Finally, a mass exhibition with robots is not the experi-
mental platform as we initially hoped. The pavilion was
open between ten and a half and twelve hours per day, non-
stop during 159 days. In the evening batteries were empty
and had to be charged for the next morning. All experi-
ments had to be done under daytime conditions, that is,
within the visitors. The contracts did not allow to reduce or
even close the exhibition.

Partly as a consequence, the robots at Expo.02 still re-
quired manual intervention. The main reason for this is
twofold: the abovementioned problems on the level of the
robot collective and the sheer mass of people on a relative-
ly small surface exposing and amplifying the slightest in-
sufficiency in hardware and software.

The problems encountered reveal relevant directions for
future research: MHT to address the robot kidnapping
problem and refined models of visitors and robots for
multi-robot coordination in populated environments.

Further spin-offs of this project were: a great visitor feed-
back, a strong team effort, close collaboration with exhibi-
tion makers, visitor flow experts, architects, scenographers
and industrial designers, and an overall unique experience
in many technical and non-technical respects.
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