
Abstract. Scaling down robots to miniature size introduces many new challenges including memory and program size 
limitations, low processor performance and low power autonomy. In this paper we describe the concept and implementation 
of learning of safe-wandering and light following tasks on the autonomous micro-robots, Alice. We propose a simplified 
reinforcement learning algorithm based on one step Q-learning that is optimized in speed and memory consumption. This 
algorithm uses only integer-based sum operators and avoids floating-point and multiplication operators.  
 

1 INTRODUCTION 
 
Swarm Intelligence metaphor [1] has become a hot topic in recent years. The number of its successful applications is 
exponentially growing in combinatorial optimization, communication networks and robotics. This approach emphasizes 
collective intelligence of groups of simple and small agents like ants, bees, and cockroaches. Small robots are also good 
frameworks to study biology. 
Miniaturizing robots introduces many new problems in behavior implementation. The robot parts must have low power 
consumption. This forces the designer to add parts e.g. sensors conservatively. Due to simplicity of hardware parts, the 
control program must handle all additional processing such as filtering. The instruction set of processors is reduced. The 
robot behavior must be coded compactly and efficiently while having limitation on program size, memory and processing 
speed. Additionally, due to limited power autonomy, there is a serious limitation in long-time tasks such as learning.  
The Alice micro-robot [2] is one of the successful micro-robot implementations. To test its capabilities, we demonstrate in 
this paper the feasibility of implementing an online learning algorithm. 
Different learning algorithms have been designed by researchers on micro-robots such as evolutionary algorithms [6] and 
neural networks (e.g. [5] based on ROLLNET or [6] based on spike neurons). Unfortunately, all of them have problem in 
online learning, learning time, or task complexity. So it is very hard (if not impossible) to utilize them on autonomous micro-
robots with limited power autonomy and acquire complex learning behaviors. We decided to use Reinforcement Learning 
since it has been one of the most successful learning methods in real robotics. 
In this paper we describe how to tackle the learning problem practically and optimize it in program and memory 
consumption. The next section deals with Reinforcement Learning and one-step Q-learning algorithm. The third section 
discusses the problems when applying simplifications to Q-learning and introduces an optimized algorithm in size, process 
time, and memory consumption based on integer-calculation and low-level instructions. Section four presents the micro-
robot Alice and its hardware and software features. In the next section the learning of safe-wandering is described and the 
experimental results are discussed. The sixth section describes extra learning experiments on learning of light following and 
the last section discusses the results and future works. 

2 REINFORCEMENT LEARNING 
 
Reinforcement learning [8] is one of the widely used online learning methods in robotics. With an online approach, the robot 
learns during action and acts during learning, which is neglected in supervised learning methods. With reinforcement 
learning the learner perceives the state of its environment (or conditions at high level), and based on a predefined criterion 
chooses an action (or behavior). The action changes the world’s state and as a result the agent is given back a feedback signal 
from the environment, called "reinforcement signal", indicating the quality of the new state. After receiving the 
reinforcement signal, it updates the learned policy based on the type of signal, which is positive (reward) or negative 
(punishment). 
The reinforcement learning method that we use in this paper is the one-step Q-learning method [9][10]. However, we have to 
adapt the algorithms in accordance with the robot’s limitations. In the one-step Q-learning algorithm the external world is 
modeled as a Markov Decision Process with discrete finite-time states. After each action, the agent receives a scalar 
"reward" or "punishment".1 The action value table, the Q-table, determines the learned policy of the agent. It estimates the 
long-term discounted reward for each state-action pair. Given the current state x and the available actions ai, a Q-learning 
agent selects action "a" with the probability “P” given by the Boltzmann probability distribution: 

                                                            
1 We do not cover delayed reward. 
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where τ  is the temperature parameter which adjusts the exploration rate of the action selection decisions. High τ  values 
give high randomness to selection at the beginning. The exploration rate will be decreased when Q-values increase gradually, 
and make exploitation more probable at the end.  
After selecting the useful action based on the probability distribution, the agent executes the action, receives an immediate 
reward r, moves to the next state y, and updates Q(x,a) as follows: 

γ  V(y))  (rββ  )Q(x,a)(Q(x,a) ++−← 1                                                               (2) 
Where β  is the learning rate, γ ( )0 1≤ ≤γ  is a discount parameter and V(x) is given by: 

Q(y,b)actionsbV(y) ∈= max                                                                      (3) 
Q is improved gradually and the agent learns to maximize the future rewards. 
Studies by Sutton [8] showed the convergence of reinforcement learning can be guaranteed. In all of the above and other 
used formula, numbers are floating-point numbers or at least need floating-point operations, so no discretization or 
interpolation is applied. In the next section we show what happens to the convergence when the numbers are limited to 
integers. 

3 SIMPLIFIED Q-LEARNING ALGORITHM 
 
In order to implement Q-learning on the micro-robot Alice, we need a simplified Q-Learning algorithm that is able to cope 
with the limited memory and processing resources and by the restricted power autonomy. Thus we propose a new algorithm 
based on integer operations only. 

3.1 Integer vs. Floating point Operators 
 
Floating-point operations take too much processing time and program memory. For the sake of comparison, we have listed in 
Table 1 the number of instructions generated by a C compiler2 for four floating-point operations: a=b+c, a=b-c, a=b*c, and 
a=b/c and we compared them to integer-based operations. For each operator instance (except for integer sum) there is a call 
overhead for preparing the registers and copying the results back to memory, and a function execution cost. 
Call overhead takes both processing time and program memory for every instance of operator. Function executions need 
program memory one time but takes processing time for every operator occurrence. Therefore, We prefer to use only integer 
sum operators since they have no call overhead and require just a few instructions. Moreover, we prefer to use unsigned 
operations to save memory bits, ease computations and reduce overflow-checking. 
 

Table 1: Program memory consumption of floating-point and integer operations on Alice micro-robots 
Floating point operator # of Instructions Call overhead  % of Alice memory for the first call 

+, - 322 26 4.25 
/ 204 25 2.8 
* 119 25 1.76 

Total (only for one call to each operator) 8.81 
Integer operator # of Instructions Call overhead  % of Alice memory for the first call 

+, - 3 0 (no function call) 0.04 
/ 21 7 0.34 
* 37 7 0.54 

Total (only for one call to each operator) 0.92 

3.2 Q-Learning problems with Integer operators 
 
To our knowledge, all reinforcement learning algorithms deal with real numbers at least in the action selection mechanisms. 
The proofs for convergence are valid when numbers are real. In this section we discuss some problems that happen when 
trying to switch to integer numbers. 
The first problem rises in the Boltzmann probability distribution (1). This formula is processing power intensive because of 
the computation of the powers of e. It also needs a float-type memory cell (generally 4 bytes) to be assigned for probability 
of each action, since they will be used then to select an action accordingly. So, the action selection mechanism needs 
revision. 
From now on, let us assume a typical configuration and describe the difficulties with integer operations. Assume at the 
beginning, Q cells are initialized to c. Since the Q-values must be of type integer, they must be incremented or decremented 
by one (not a fraction). Applying these conditions to (2) and assuming β=m/n, γ=p/q, where m, n, p, and q are integer 
numbers (to ease integer operations), it is straightforward to show that the reward value at the beginning must be at least: 

   )1(/1/)(/ γβ −+=−+ cqpqcmn                                                                (4) 

                                                            
2 PCW Compiler from Custom Computer Services Inc. 



to have an effect on the new Q-value; otherwise the table remains unchanged and learning task will not converge. Since a 
typical learning rate is a number around 0.1, the reward value must be at least 10. Also the reward value should be increased 
according to Q-value increase (see the c factor in (4)). This implies that the reward needs many bits. 
Furthermore, there are many states and actions that do not give any reward but lead the learner to near-goal states. In (2) the 
responsibility of γ v(y) term is to increase the value of such actions. It can be shown that the value of v(y) must be at least: 

   γβγ //1// cpcqmpnq +=+                                                                     (5) 
For a typical β=0.1 and γ=0.9, v(y) must be at least 12 to increment the Q-value bye one. 
Also, let’s take v(y) out and consider only rewards around zero, or punishments less than or equal to zero. There will be a 
decrement in the Q-value because of the integer division operator3 i.e.: 

   )/n(n-m)Q(x,amr)/n,a)( (n-m)Q(x(x,a)newQ ≈+=                                                       (6) 
which is less than or equal to Q-1. While, it is better in this case to leave the Q-value unchanged. 
Also assume, after some learning episodes, the value of a cell in the Q-table increases to a high integer value4. The Q-values 
in the previous state-chain will be increased by a big integer number, which result in overflow in all states rapidly. Then even 
a big punishment cannot decrease the Q-values and the learning process gets caught in a local maximum. 

3.3 The proposed algorithm 
 
Based on the problems described in the previous section we propose a very simple algorithm dealing with only unsigned 
integer sum. We assume that Q-values are unsigned integers and have a minimum value of zero. 
The probability assignment formula are changed to roulette selection as following: 
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where Actions  is the size of action set. Q-values are increased by one so that zero-valued actions have a small positive 
probability. This method has been widely used in Reinforcement Learning and Genetic Algorithm. 
The formula is capable of adjusting the exploration and exploitation rate during the learning. At the beginning randomness is 
high since all Q-values are nearly equal and the probabilities are very close. But at the end, some Q-values are raised and 
then the big value of the sigma term makes the probability of non-efficient actions close to zero, making more exploitation 
possible. 
For implementation we can simplify the action selection mechanism even more. First, a uniform random number between 0 
and ∑
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a loop starting from the first action i.e. i=1. The first action, for which the random number is less than or equal to the partial 
sum, is the randomly selected action with the probability distribution of (7). So there is no need to divide numbers to form 
probabilities chain in (7). 
The policy update formula is changed to: 

), x,(),(),( yafraxQaxQ ++←                                                                   (8) 
where r is the positive or negative reinforcement signal and f(x,a,y) is defined as following: 
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where θ is a threshold, v(y)is the same as (3), and γ is the discount function that depends on v(y)and could be implemented 
via conditional operators without use of multiplication (e.g. if v(y)>32 then γ(v(y))=2). Using function f limits the 
unsatisfactory effect of high-value Q-cells discussed formerly. 
We recommend using reinforcement signal r, as following: 
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because it needs very few bits and can be handled by increment and decrement operations adapted to low-level 
programming. To work with unsigned numbers, reinforcement signals could be shifted up to 2, 1, 0 and then decremented 
one unit when adding to Q-value. 
A drawback of the proposed algorithm is the lacking of the learning rate, but we do not have any better choices since each 
reward must result in a Q-value increment as described previously. In order to decrease the negative effects of the missing 
learning rate we have to scale down r and γ as much as possible. Otherwise we have to add multiplication and division 
operators (or in the simplest case, shift operators) to compute β(r+f(x,a,y)). 

                                                            
3 Remember that e.g. 9/5 =1 in integer division 
4 Since Q-values are incremented by one this case easily happens 



4 THE ALICE MICRO-ROBOT 
 
The Simplified Q-Learning Algorithm has been tested on safe-wandering and light-
following tasks on the micro-robot Alice, equipped with a PIC micro-controller. Alice 
(Fig. 1) is one of the smallest autonomous mobile robots in the world [2]. Its high 
energetic autonomy of up to 10 hours makes it suitable for collective robotics and 
learning experiments. The autonomy can be increased by adding an extra battery if 
needed. In its basic configuration it has two motors for locomotion, four active infrared 
sensors, a micro-controller, a battery, and an IR TV remote receiver for 
communication. 
Alice is a programmable and modular robot and a number of modules can be added to 
it, such as a camera (Fig.2), long or short radio or IR communication, touch sensors, 
interface to personal computers, and recharging pack. Table 2 details all the parts and 
characteristics of the Alice version 2002 used for this experiment. Thanks to its 
programmability and interface with personal computers, Alice has been used in various 
research [4] [2] and educational projects [3]. 
The micro-controller PIC16F877 from Microchip(R), whose entire package occupies 
22 x 21 x 20 mm, is the central part of the electronics and control of the robot’s 
behaviors. It directly drives the two low-power watch motors through 6 pins and reads 
the values of the analog-digital converters for proximity sensor measurement.  
The PIC16F877 is an 8 bit RISC (Reduced Instruction Set Computer) micro-controller 

and has only a set of 35 simple instructions, including bit wise, sum, conditional and unconditional branch operations. To 
save energy, the clock speed is set to 4 MHz. Each instruction takes four clock-cycles, so each instruction takes 1 us (except 
for jumps which take 2 us). The specification of PIC16F877 is detailed in table 3. 
A high percentage of the memory resources is taken by the management of the sensors and motors. The software core is 
composed of a simple real time operating system, which handles different time-critical tasks: 
1. Communication with a TV remote controller to receive remote commands from observer. Currently there are four 

commands for supervision of the learning process: 
• Start learning 
• Stop learning and behave based on the learned policy (for evaluation),  
• Save the learned policy to EEPROM so that it can be downloaded after learning, and  
• Load the saved policy from EEPROM to continue the learning task in case the task is too long to be completed in 

one battery life cycle 
2. Proximity sensor reading and state detection 
3. Action selection  
4. Control of right and left motors to do the selected action correctly  
5. Updating the policy and learning, and 
6. Computing statistics and quality measures and writing them to EEPROM for later evaluation purposes. 

5 SAFE-WANDERING 
 
The first learning task is safe-wandering in the two cross- and H-shape mazes shown in figs. 3 and 4. The H-maze is 
composed of very narrow parts and has a complex shape. The cross-maze is simpler and the walls have a greater distance to 
each other. The task of the robot is to wander in the mazes with a preference to forward movement and without hitting the 
walls.  
The robot states are defined based on the four proximity sensor values at the front, front-left, front-right and rear side of the 
robot. Each sensor corresponds to one bit in the state bits and a threshold is defined for the value of sensors to show the 
presence or absence of obstacles. The number of states is 16 but it can be reduced to 15 since no state exists where all 
sensors show an obstacle. 
To decrease the size of the Q-table and save memory, we choose only 3 actions for robot: move forward, turn right, and turn 

 
Figure 1: The Alice micro-robot 

 
Figure 2: Alice equipped with a 

camera 

Table 2:Features and components of the Alice robot 
Dimensions 22 x 21 x 20 mm 
Weight 5 g 
Velocity Up to 40 mm/s 
Power consumption 12 - 17 mW 
System autonomy From 2 to 10 hours 
Mechanical structure Plastic frame and PCB 
Motors 2 bi-directional watch motors 
Motion 2 wheels on the minute axis 
CPU PIC16F877 @ 4 MHz 
Energy source NiMH rechargeable battery 
Sensors 4 infrared proximity sensors 
Communication IR TV remote receiver(one way) 

Table 3: Specifications of PIC16F877 
 micro-controller 

Flash Program Memory 8 K x 14-bit words 
RAM Data Memory 368 x 8 bits 
EEPROM Data Memory 256 x 8 bits 
I/O Ports 5 
Timers 3 
A/D modules 10 bit, 8 in/out channels 
Instruction set 35 
Operation Frequency DC-20MHz 
Power consumption Less than 0.6 mA @ 3V, 

4.0 MHz 



Figure 3 -The Cross-maze  

 
Figure 4 -The H-maze 

left with maximum possible speed. Each cell of Q-table has one-byte length (15x3=45 
bytes totally) and the values ranges from 0 to 240. Setting a maximum value is to 
avoid overflows in add or subtract operations. The reward function is defined as 
following: 
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We define another threshold to detect hitting the walls, so actually the robot may 
receive punishment without hitting any wall, only because it is very close to a wall. 
The threshold for discount function ( Qθ ) is 100 and the discount function is defined as 

follows: 
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The learning cycles are repeated every 200 ms. The program reads the sensor values, 
and then after state detection and action selection sets the velocities of the wheels5. 
During the 200 ms motors are controlled in one of the six phases to do the selected 
action correctly. At the end the program detects the next state, computes the reward 
and updates the policy. 
Sum of the received rewards is written every 15 seconds in the EEPROM so that it can 
be downloaded after learning for drawing the learning curve. Saving the learned policy 
on EEPROM is on-demand dependent upon evaluator decision. 
Also, it is possible to stop the learning and command the robot to behave according to 
the learned policy. If so, the robot selects actions with the maximum value in each 
state. If the robot behavior is acceptable, the policy could be saved and if the learning 
is incomplete it can be resumed from the last stopped point. 
A sample of the learned safe-wandering behavior is shown in fig. 5. The figure shows 
that the Alice robot has learned to avoid obstacles and move straight efficiently. The 
robot insists on moving forward and turns just near the walls. 
The graph in fig.6 shows changes of received rewards during 15 minutes of learning 
experiment in the cross-maze. The experiment could be stopped at 7 minutes but we 
intend to show stability of the results. Each point in graph denotes sum of the received 

rewards in 15 seconds periods. The maximum received reward during this time could be 75 i.e. if the robot moves forward 
during all 15 seconds. But some times the robot is forced to turn due to the specific configuration of environment and so the 
maximum could not be attained. However you can see that after 7 minutes the learning converges and the curve vibrates 
mainly between 20 and 40. Vibrations in the received rewards at some steps are because the robot is in different situations of 
the maze. 
The graph for H-maze is drawn in fig. 7. In this graph the experiment takes 30 minutes and each point shows the sum of the 
received rewards throughout each minute. The sum changes from –213 at the introductory steps to 33 at the final steps. The 
minimum peak at the 5th point is because of a new unforeseen situation in the maze where the robot does not know how to 
deal with.  
The resulted behavior is visually pretty good; however, due to special configuration of walls, the robot has to change the 
direction many times and cannot get many rewards.  The narrow space between the walls is a very important limit for 
movements in H-maze. The robot states only show presence or absence of wall (0 or 1) and do not deal with more details. As 

                                                            
5 Actually we do not set the velocity, the control of wheels is more complex and is done by setting pause parameters. 

Figure 5- A sample of the learned 
safe-wandering behavior 
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Figure 6- Changes in sum of the received rewards during 

each 15 seconds in the Cross-maze
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Figure 7- Changes in sum of the received rewards 

during each minute in the H-maze 



a result, the robot goes beyond the threshold distance several times (especially 
at sidewalls) and receives punishment; but actually it does not hit the wall and 
corrects the path by turning to the opposite side. 
The two learning tasks converge in 7 and 30 minutes respectively. Comparing 
to 10-hour autonomy of the Alice robots, it seems that an implementation of 
more complex and time-consuming learning tasks is possible. Moreover, the 
whole learning program plus the operating system takes 70 % of data and 33% 
of program memory. Therefore a large volume of them remains empty. It is 
important to know, that the operating system takes already about 37% of data 
and 20% of program memory. So the learning program plus the save, load, and 
evaluation procedures occupy only 13% of program memory. Recall that only 
3 floating-point operations (i.e. +, *, and /) consume 8.8% of program memory 
(see Table 1). 

6 LIGHT-FOLLOWING 
To test reliability of the simplified algorithm, another learning task is 
implemented and verified. In this task, the Alice learns to follow a moving 
light source, which is moved manually around a simple rectangular maze with 
a similar speed as Alice (fig.8). The IR sensors are used to measure the 
ambient light close to the robot. The state of the robot is denoted by the most 
illuminated side (totally 4 states). Actions of robot are the same as in safe-
wandering (3 actions). The robot is rewarded when it faces toward the 
brightest side and gets punished otherwise.  
The learning curve drawn in fig.9 shows effectiveness of algorithm. This task 
is simpler than the former and takes less than 3 minutes to converge. The 
learned behavior is nearly the same as human-written program. Unlike safe-
wandering, the curve shows no sensible fluctuation in learning curve due to 
independence of learning task and geometrical shape of maze.  

7 CONCLUSION AND FUTURE WORKS 
 
In this paper we described the problems we faced in programming micro-robots for learning tasks. The main problems in 
micro-robots are limitations in power autonomy, processing power and memory (both in program and in data memory). We 
showed how these limitations forced us to avoid floating-point operations and rely only on integer-based ones, mainly 
additions or subtractions. We also determined some problems that occur in regular reinforcement learning algorithms when 
they are limited to integer numbers.  
We proposed a simple and fast reinforcement learning algorithm optimized for data and program memory consumption. It 
was then verified on safe-wandering (with two different configurations) and light following tasks. The fast convergence of 
algorithm made it possible to save at least 95% of power autonomy. It offers the potential for more time-critic and complex 
behaviors. The small number of required instructions left around 70% of program memory unused. Since, data memory size 
depends mainly on Q-table representation, using integers for Q-values saves at least 75% of the required memory space.  
The convergence of the proposed algorithm has been demonstrated by experiments. However mathematical analysis and 
prove has still to be made. For future works we plan to test the algorithm on other, more complex tasks and implement 
cooperative learning among groups of robots.  
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Figure 8- Light following task 
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Figure 9-Changes in the sum of received 
rewards in the light following task 


