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Abstract. This paper addresses the problem of the odometry error estimation during the robot navigation. The robot is
equipped with an external sensor (like laser range finder). Concerning the systematic error an augmented Kalman Filter
is introduced. This filter estimates a vector state containing the robot configuration and the parameters characterizing the
systematic component of the odometry error. It uses encoder readings as inputs and the readings from the external sensor
as observations. The estimation of the non-systematic component is carried out through another Kalman Filter where the
observations are obtained by two subsequent robot configurations provided by the previous augmented Kalman Filter. Both
synchronous and differential drive systems are considered.
Key Words: Robot Navigation, Kalman Filter, Odometry, Autocalibration

1 Introduction

Determining the odometry errors of a mobile robot is very important both in order to reduce them, and to know
the accuracy of the state configuration estimated by using encoder data.

Odometry errors can be both systematic and non-systematic. In a series of papers Borenstein and collaborators
[3, 4, 5, 6, 7, 8, 18] investigated on possible sources of both kind of errors. A review of all the types of these sources
is given in [8]. In the work by Borenstein and Feng [7], a calibration technique called UMBmark test has been
developed to calibrate for systematic errors of a mobile robot with a differential drive. Larsen et al. [11, 12] suggested
an algorithm that uses the robot’s sensors to automatically calibrate the robot as it operates. In particular, they
introduced an augmented Kalman filter (AKF ) which simultaneously estimates the robot configuration and the
parameters characterizing the systematic odometry error. This filter uses encoder readings as inputs and vision
measurements as observations. They referred to a mobile robot with a differential drive system.

Many investigations have been carried out on the odometry error from a theoretical point of view. Wang [17]
and Chong and Kleeman [9] analyzed the non-systematic errors and computed the odometry covariance matrix
Q for special kind of the robot trajectory. Kelly [10] presented the general solution for linearized systematic error
propagation for any trajectory and any error model. Martinelli [14] derived general formulas for the covariance
matrix and also suggested a strategy to estimate the model parameters for a mobile robot with a synchronous
drive system. This strategy is based on the evaluation of the mean values of some quantities (called observables)
which depend on the model parameters and on the chosen robot motion.

In this paper we suggest a method to estimate both systematic and non-systematic odometry error of a mobile
robot, during navigation. Concerning the systematic component, we adopt the same AKF introduced by Larsen
et al. [11, 12] by considering also the case of a synchronous drive. Concerning the non-systematic parameters,
we introduce a new filter (the Observable Filter, OF ) where the state to be estimated contains the parameters
characterizing the non-systematic error and the observations are provided by the observables as defined in [14]
and which can be evaluated by knowing two subsequent robot configurations.

In Section 2 we introduce the models adopted to characterize the odometry error for mobile robot with both
synchronous and differential drive. In Section 3 we summarize the AKF introduced by Larsen et al. [11, 12]. The
new filter (OF ) is presented in Sect. 4. In Section 5 we show some results obtained through simulations. Finally,
some conlcusions are given in Sect. 6

2 The odometry error model

We consider two different drive system: synchronous and differential. Concerning the former we adopt the same
model introduced in [14] whereas for the latter we adopt a simple model similar to the one introduced by Chong-
Kleeman ([9]). In the next subsections we briefly summarize these odometry error models.
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2.1 Synchronous Drive

In the synchronous drive system each wheel is capable of being driven and steered. Let denote with δρi and δθi

respectively the robot translation and rotation in the ith time step with respect to a global world-coordinate frame.
Because of the odometry errors these values differ from the encoder readings. The model here adopted assumes
that δρi and δθi are random variables, uncorrelated, with gaussian distribution. In particular their mean values
are given by the encoder readings corrected for the systematic error. It is assumed that the systematic errors (both
in translation and rotation) increase linearly with the distance traveled by the robot. Therefore,

δρi = δρδρ
e
i δθi = δθe

i + Eθδρ
e
i (1)

where δρe
i and δθe

i are the encoder readings respectively for the robot translation and rotation, and δρ and Eθ

characterize the systematic errors. Finally, it is also assumed that the variances increase linearly with the distance
traveled by the robot. We therefore can write:

δρi = δρi + νρ
i δθi = δθi + νθ

i νρ
i ∼ N(0, Kρ|δρe

i |) νθ
i ∼ N(0, Kθ|δρe

i |) (2)

The odometry error model here presented is based on 4 parameters. Two of them ( δρ, Eθ) characterize the
systematic components whereas the other two (Kρ, Kθ) characterize the non-systematic components. Clearly,
these parameters depend on the environment where the robot moves.

2.2 Differential Drive

A simple way to characterize the odometry error for a mobile robot with a differential drive system is obtained by
modeling separately the error in the translation of each wheel [9]. The actual translation of the right/left wheel
related to the ith time step is assumed to be a gaussian random variable satisfying the following relation:

δρ
R/L
i = δρ

R/L

i + ν
R/L
i δρ

R/L

i = δρ
eR/L
i δR/L ν

R/L
i ∼ N(0, Kw|δρeR/L

i |) (3)

In other words, both δρR
i and δρL

i are assumed gaussian random variables, whose mean values are given by the
encoder readings (respectively δρeR

i and δρeL
i ) corrected for the systematic errors (which are assumed to increase

linearly with the distance traveled by each wheel), and whose variances also increase linearly with the traveled
distance. Moreover, it is assumed that δρR

i and δρL
i are uncorrelated. With respect to the Chong-Kleeman model,

only one parameter (Kw) is here adopted to characterize both the variances for the right and left wheel. The robot
translation and rotation are given by the following relations:

δρi =
δρR

i + δρR
i

2
δθi =

δρR
i − δρL

i

dδd
(4)

where d is the estimated distance between the wheels and δd characterizes the uncertainty on this estimation.
Clearly, the robot translation and rotation are correlated accordingly to the equations (3-4). The odometry error
model here proposed is based on 4 parameters. Three of them ( δR, δL and δd) characterize the systematic
components whereas the last one (Kw) characterizes the non-systematic components.

In Sect. 3 and 4 we suggest a strategy to simultaneously estimate all these parameters during the robot
navigation.

3 Systematic Parameters Estimation during Navigation

In order to estimate the parameters characterizing the systematic error (both for synchronous and differential
drive) we adopt the same AKF introduced by Larsen et al. [11, 12] for the differential drive. This filter estimates
a state (the augmented state) containing the robot configuration and the systematic parameters, through an
extended Kalman filter (EKF ).

Let denote with X the robot configuration (X = [x, y, θ]T ) and with Xa the augmented state. We have,
respectively for the synchronous and differential drive

Xa = [x, y, θ, δρ, Eθ]T Xa = [x, y, θ, δR, δL, δd]T

The state X evolves accordingly to the dynamical equation Xi+1 = f(Xi, Ui) where Ui = [δρi, δθi]T for the
synchronous drive and Ui = [δρR

i , δρL
i ]T for the differential drive. The observation at the ith time step depends

on the current robot configuration and it is assumed to be affected by an error wi with a gaussian distribution,
zero-mean and covariance matrix Ri =< wiw

T
i >



zi = h(Xi, wi) (5)

The dynamical equation for the augmented state Xa is given by the equation:

Xai+1 = fa(Xai, Ui) (6)

The function fa, restrictly to the first three components, is obtained directly from the function f including the
dependence on the systematic parameters in the input Ui; concerning the last components (two for the synchronous
drive and three for the differential drive) fa is the identity function since there is no evolution in time for the error
parameters.

In order to obtain the EKF equations for the augmented state (i.e. the equations of the AKF ), it is necessary
to compute the Jacobian Fa of the function fa with respect to Xa and the Jacobian Ga of the function fa with
respect to the vector ν, which is [νρ, νθ]T in the synchronous drive (eq. (2)) and [νR, νL]T in the differential drive
(eq. (3)):

Fa = ∇Xafa|Xa(i|i),U i
Ga = ∇νfa|Xa(i|i),U i

where Xa(i|i) is the state estimated at the previous time step and U i is the mean value of the vector Ui

previously defined. The computation of these matrix can be found in [11, 12] for the differential drive and can be
easily carried out for the synchronous drive. Once these matrix are known it is possible to implement the AKF
by applying the standard equations of the EKF ([2, 13]).

4 Non-Systematic Parameters Estimation during navigation

The non-systematic parameters cannot be evaluated following the previous method. Indeed, by including in the
augmented state the non-systematic parameters, the Kalman gain related to these parameters is null.

The idea we suggest here is based on the observables defined in [14]. The observables are random variables
related to a given robot motion whose properties (mean value and variance) depend on the parameters character-
izing the odometry error and on the robot trajectory in the odometry reference frame. It is possible to evaluate
the observable mean value only by knowing the actual initial and final configuration. We build another kalman
filter where the state to be estimated contains the non-systematic parameters and the observation are directly
provided by the observable mean value estimation obtained from two subsequent robot configuration estimations
obtained from the AKF . Let denote with K the vector containing the non-systematic parameters. The dynamical
and observational equations are:

Ki+j = fK(Ki) = Ki zObs
i+j = mObs(Ki+j) + wObs

i+j (7)

(we use i + j instead of i + 1 to remark that the frequency of this second filter is not necessarily the same
of the previous one). mObs(Ki+j) is the mean value of the chosen observable computed with the non-systematic
parameters at the (i + j)th time step, and wObs

i+j is a zero-mean random variable whose covariance matrix contains
both the covariance matrix of the chosen observable and the error in the robot configuration estimated by the
AKF (i.e. the matrix Pa(i|i) and Pa(i+j|i+j)), since the observable mean value is estimated from two subsequent
robot configuration estimations obtained from the AKF and these estimations are affected by the error given by
the matrix Pa.

In order to introduce the adopted observable we define the following quantities. Let ∆Xe, ∆Y e and ∆θe the
displacements respectively in the x-axis, y-axis and orientation between the (i+j)th and ith time step as evaluated
by the odometry corrected for the systematic errors by using the systematic parameters estimated by the AKF
at the (i+ j)th time step. Moreover, we denote with ∆X , ∆Y and ∆θ the same displacements as evaluated by the
AKF . The observable we adopt is:

zObs =
[
(∆X − ∆Xe)2 + (∆Y − ∆Y e)2, (∆θ − ∆θe)2

]T
(8)

The mean value of the second component of this observable can be computed without approximation for any
trajectory followed by the robot between the (i + j)th and ith time step [14]. Concerning the first component the
same property holds only for the synchronous drive. However, even in this case we show here the result obtained by
approximating the trajectory by an arc of circumference for the sake of simplicity [15]. In the next subsection we
compute the mean value of this observable for the synchronous drive. Concerning the differential drive we adopt
a simpler observable consisting only of the second component of the previous observable, zObs = (∆θ − ∆θe)2.



4.1 Synchronous Drive

It is possible to define the robot trajectory by giving the orientation as a function of the curve length. In the
synchronous drive both the orientation and the curve length are directly estimated by the odometry. We obtain
for the increments in the orientation and translation between the (i + j)th and ith time step respectively ∆θe =∑i+j

k=i δθe
k and ∆ρe =

∑i+j
k=i δρe

k. Moreover, we obtain for the mean value of the observable in (8), ([15])

< zObs >= mObs(K) =
[
Kρ∆ρe + 2(δρ∆ρe)2

(
�{F (z)} − 1 − cos(∆θe)

(∆θe)2

)
, Kθ∆ρe

]T

(9)

where F (z) = z−1+e−z

z2 and z = Kθ∆ρe

2 + i
(
Eθ + ∆θe

∆ρe

)
∆ρe. We do not report here the computation of the

covariance matrix. It can be carried out following similar computation as described in [14].

4.2 Differential Drive

From the equations (3-4) it is easy to obtain the mean value and the variance of the observable zObs = (∆θ−∆θe)2

([16]):

< zObs >= mObs(K) =
Kw(∆ρeR + ∆ρeL)

(d δd)2
CovObs =

2K2
w

d4 δ4
d

(
∆ρeR + ∆ρeL

)2
(10)

where ∆ρeR =
∑i+j

k=i

∣∣δρeR
k

∣∣ and ∆ρeL =
∑i+j

k=i

∣∣δρeL
k

∣∣.

The state estimated at the ith time step by the OF is, respectively for the synchronous and differential drive:

K = [Kρ, Kθ]T K = Kw (11)

The equations of the filter are the equations of the EKF . Clearly, the matrix F = ∇KfK is the identity and
the matrix G is the zero-matrix since the dynamical equation in (7) is not affected by any error. The matrix
H (i.e. the jacobian of the observational equation with respect to the state estimated by the filter) is, respec-
tively for the synchronous and differential drive, the jacobian of the function in equation (9) and in equation
(10) with respect to the state K in (11). Finally, the matrix R (i.e. the error matrix of the observable when
the state K is known) is given by the sum of the covariance matrix of the observable (CovObs) plus the error
matrix which takes into account the errors in the used configuration estimations both at (i + j)th and ith time
step (

[∇XzObs
i+j

]
[P (i + j|i + j) + P (i|i)] [∇XzObs

i+j

]T , where the matrix P is the submatrix of Pa containing the
covariance of the robot configuration X). Observe that in the most of cases the function mObs(K) is linear in K
(second component in the synchronous drive and in the differential drive). However, the kalman filter is still not
optimal since the distribution of wObs is not gaussian.

5 Results

We simulate a mobile robot moving in an environment consisting of a square with side measure 10m. Therefore,
the map consists of four straight line and it is a priori known. The external sensor is simulated through a function
which provides the distance of the map lines from the actual robot configuration. In particular, at each time
step, 36 distances are provided yielding a 10deg angular resolution. An error source is introduced by adding
at each distance a gaussian random variable, zero-mean, and whose variance is equal to (3cm)2. The random
variables corresponding to different distances are independent. The errors in the encoder readings are obtained
by introducing gaussian random variables accordingly to the models described in the sections 2.1 and 2.2. The
AKF introduced in section 3 is used to estimate the robot configuration (x, y, θ) and the systematic parameters
(δρ and Eθ for the synchronous drive and δR, δL and δd for the differential drive). The systematic parameters are
initialized in order to have a null systematic error (δρ = 1, Eθ = 0 and δR = δL = δd = 1). The non-systematic
parameters are initialized at a value which differs from the actual one by a factor 100 (we both considered the
cases of smaller and larger initial value obtaining similar results). Table 1 shows the values of the adopted actual
parameters.

We simulated the same robot motion (a circumference with radius equal to 5m) 100 times. The length of each
robot motion is about 30m. The error on the estimated robot configuration at each time step is about 1cm for



δρ = 1.1 Eθ = 1 deg
m

Kρ = (1.0e − 3)m Kθ = 1 deg2

m
δR = 1.1 δL = 0.9 δd = 1.1 Kw = (2.5e − 4)m

Table 1. The actual systematic and non-systematic model parameters for the synchronous and differential drive

the position and 1deg for the orientation (and this is consistent with the experimental results obtained in our
laboratory [1]). Finally, the filter frequency is set to the same value (1 cycle per cm) for both the AKF and the
OF .

0 10 20 30
1

1.05

1.1

m

δ ρ 

0 10 20 30
−0.5

0

0.5

1

1.5

2

2.5x 10
−4

m

E θ 

0 10 20 30
0

2

4

6

8

10

m

%

δ ρ 

0 10 20 30
0

20

40

60

80

100

m

%

E 
θ 

(a) (b) (c) (d)

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

m

K ρ 

0 10 20 30

2

4

6

8

10x 10
−6

m

K θ 

0 10 20 30
0

20

40

60

80

100

m

%

K ρ 

0 10 20 30
0

50

100

150

200

m

%

K 
θ 

(e) (f) (g) (h)

Fig. 1. Simulation results for the synchronous drive. The units adopted to represent the model parameters are rad
for angle and cm for length

Fig. 1 shows the results related to the synchronous drive. Fig. 1a and 1b display the mean values of δρ and
Eθ at each time step i (δρi and Eθi). These mean values are plotted vs the traveled distance (in m). These values
are obtained from the 100 simulated robot motion (for instance, concerning the former, δρi =

∑100
sim=1 δρisim). Fig.

1c and 1d display the accuracy on the previous parameter estimations (in %) (for instance ∆δρi

δρ
× 100%, where

∆δρi =
√

1
100

∑100
sim=1(δρisim − δρ)2). Figures 1e-1h show the results related to the non-systematic parameters.

The frequency of the OF is the same as for the AKF (i.e. j = 1 in the equations (7-9)). Fig. 1e and 1f show the
obtained mean values of Kρ and Kθ at each time step. Fig. 1g and 1h show the accuracy on the previous estimated
parameters in %.

Fig. 2 show the results related to the differential drive. We plot the same quantities as in the previous case.
Fig. 2a-f concern the systematic parameters and fig. 2g and 2h concern the non-systematic parameter Kw.

We can conclude that it is possible to reach good accuracy on the parameter estimation by moving the mobile
robot along quite short distances (30m)

6 Conclusions and Future Research

A new filter, the OF , was introduced for the estimation of the non-systematic odometry error during the robot nav-
igation. This filter is based on the Observables (introduced in a previous work [14]) which provide the observations
for an EKF which estimates a state containing the parameters characterizing the non-systematic odometry error.
When this new filter is used together with the AKF (introduced by Larsen et al. [11, 12] and here extended to the
case of a mobile robot with a synchronous drive) the simultaneous estimation of the systematic and non-systematic
odometry error can be carried out during the robot navigation. Both cases of synchronous and differential drive
were considered and the performance of the proposed method was successfully tested through simulations. We are
implementing the proposed strategy on a real mobile platform.
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Fig. 2. Simulation results for the differential drive. The units adopted to represent the model parameters are rad
for angle and cm for length
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