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Abstract

ACCUFIELD is a commercial application for
electro-magnetic field analysis currently being
developed by Fujitsu Ltd. It can be used to
simulate the emissions for computer hardware
sub-systems such as a printed circuit board, a
combination of circuit boards and wire connect-
ing boards, or even a cabinet.

The ACCUFIELD software consists of a pre-
processor, a solver and a postprocessor. The pre-
processor is used to input or modify a model of
the sub-system to be analysed. It converts the
model to a dense complex symmetric indefinite
linear system, which can then be solved for vari-
ous EM frequencies by the solver. These systems
are often ‘weakly indefinite’, that is, most diag-
onal elements are considerably larger than the
off-diagonal elements in the same column. The
postprocessor displays the resultant electromag-
netic fields. ACCUFIELD also has a highly de-
veloped user interface, enabling many convenient
model editing functions and graphical displays of
the resulting analysis.

The size of the linear system /N depends on the
model to be analysed. For a Note PC, N = 5000,
but for more complex systems, N = 30,000
is required. The memory and computational
requirements of such a large system requires
parallel processing, for example on a 24 node
Fujitsu AP3000 distributed memory multicom-

puter, with each node being a 300 MHz Ultra-
SPARC II with 1.5 GB of memory.

This paper describes the design, implemen-
tation, performance and validation of the AC-
CUFIELD application. The main computa-
tional challenges lie in the solver stage, where
an O(N?) computation is required for the direct
solution of the linear system about a central fre-
quency w,. Some of this cost is amortized using
a frequency stepping method, where the system
can be solved for nearby frequencies w by O(N?)
iterative methods, using the solution at w, as a
preconditioner. This reduced parallel solution
time by a factor of 2 for moderate-sized matri-
ces, with much larger improvements expected for
large matrices.

The performance of the solver stage is of key
importance. For ACCUFIELD, the first known
parallelization of a dense direct symmetric indef-
inite solver was made, requiring many issues to
be solved in order to minimize communication
costs. The algorithms used are variants of the
Bunch-Kaufman diagonal pivoting method, such
as those used in the LAPACK routine zsysv(),
which is one of the fastest publically available of
such routines. However, our corresponding rou-
tine, called pzsysv(), out-performs zsysv() by
~ 15% for large matrices on the UltraSPARC
family of processors. Further performance gains
were achieved from developing a new variant of
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the Bunch-Kaufman method that reduces sym-
metric interchanges while maintaining the same
growth bound. This algorithm’s efficiency is
demonstrated by its parallel speedup of 12-13
for large matrices on a 16 node AP3000.

To give ACCUFIELD high performance on
the UltraSPARC family of processors, a heavily
optimized implementation of the complex pre-
cision UltraSPARC BLAS was developed. A
combination of various techniques are described
in the paper that improved the solver’s perfor-
mance by over 40% over the commercially avail-
able Sun Performance Library 1.2 BLAS.

1 Introduction

The design of electronic devices is severely
limited by the country-specific Electromagnetic
Compatibility (EMC) requirements.  Hence,
minimizing the undesired radiation and avoiding
malfunctions caused by intruding electromag-
netic radiation is required in the design of these
devices. Recently, the MPU operating speed has
become faster, resulting in higher emission fre-
quencies. In addition, the electronic circuits be-
come smaller and more highly integrated. Thus,
the undesired electromagnetic wave radiation
from these devices tends to increase. In such a
situation, the estimation of EMC via simulation
becomes more and more important.

ACCUFIELD is a 3D simulator. It was de-
veloped to simulate the electromagnetic wave
radiation and the immunity of many kinds of
electronic devices by using the moment method.
ACCUFIELD has been used mainly to simu-
late relatively simple electronic devices, such as
printed circuit boards.

ACCUFIELD calculates the electromagnetic
field in the frequency domain, and so, a ma-
trix calculation, being a dense complex symmet-
ric linear system solve, is executed repeatedly.
When a large scale complicated model of an elec-
tronic device is being analysed, the computing
time becomes long, as a direct solution requires
O(N?3) floating point operations. So, the reduc-
tion of this execution time is desired to estimate
the EMC phenomenae of such devices efficiently.

The Fujitsu AP3000 [12] is a distributed mem-
ory multicomputer, comprised of RISC Ultra-
SPARC scalar processors [22] with a deep mem-

ory hierarchy (having a 16KB top-level data
cache and a 1MB 2nd-level cache, both direct-
mapped, and a TLB of |[TLB| = 64 entries). It
has communication networks with characteris-
tics shared by most other state-of-the-art distrib-
uted memory computers, that is, high communi-
cation costs relative to floating point speed, and
row or column broadcasts having to be simulated
by point-to-point messages. For the AP-Net, the
AP3000’s communication network, communica-
tion latencies (from software) has been measures
at ~ 20us, with a transfer rate of up to 80 MB/s
sustained for large messages [17]. The AP3000
also has many properties of the cluster comput-
ing model; this extra flexibility contributes to its
communication costs.

For solving complex linear systems of the or-
der N = 30,000 that can be generated by AC-
CUFIELD, a machine such as a 24 node AP3000,
with each node being a 300 MHz UltraSPARC
IT with 1.5 GB of memory, is required to meet
the computational and storage requirements.

This paper is organized as follows. Section 2
explains the moment method used by ACCU-
FIELD. An overview of the ACCUFIELD appli-
cation, including its user interface and valida-
tion, is given in Section 3. Section 4 outlines
the fast frequency stepping method of the solve
stage, which can reduce the number of direct sys-
tem solutions for analysis with multiple frequen-
cies, and describes its parallel implementation.
Section 5 describes in detail the direct solution
methods required by the solver stage, including
algorithm choice, parallelization issues and new
algorithmic variants suitable for use parallel AC-
CUFIELD. Section 6 describes how the Basic
Linear Algebra Subroutines (BLAS) computa-
tional kernels used by the solver were heavily
optimized for the UltraSPARC processor. Per-
formance results are given in Section 7, with con-
clusions being given in Section 8.

2 The Moment Method

ACCUFIELD calculates the electromagnetic
field of the wave radiated from the model elec-
tronic device by using the moment method [10].
Here, we describe this method briefly.

The material of the analysed model is the
metal or dielectric with or without loss. The an-
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Figure 1: Expansion functions for (a) thin wire
mode, (b) surface patch mode and (c) attach-
ment mode

alyzed model is segmented to triangular or rec-
tangular patch elements or thin wire elements
[16]. The surface current on the metal J; and
dielectric Jj and the surface magnetic current
M? on the dielectric are expanded in terms of
the basis expansion functions J.pn, Jy, and K
as follows:

Nc Nd Nd
Je= ZIc,nJc,na Ji= ZId,an,n, M?* = ZMnKn
n=1 n=1 n=1

1

Here, Ic,l:Nca Id,l:Nd and Ml:Nd are the N =
N, + 2N4 unknown coefficients. The expansion
function is specified in three types i.e., thin wire
mode, patch mode and attachment mode applied
to wire/surface junctions. These expansion func-
tions are shown in Figure 1.

From the surface equivalence theorem and the
reaction matching moment method, the follow-
ing equation is obtained:

Zé),c . Zg,d ; . Bg,d ; I. Vi
By, BiatBaga Yia—Yaa | M 0

(2)

The matrix of the left side of Equation 2 is an
immittance matrix and each element of it repre-
sents the mutual impedance Z, the mutual ad-
mittance Y and the reaction B between two el-
ements. Here, superscripts 0 and d indicate the
field material and corresponds to the air and the
dielectric, respectively. Subscripts d and c¢ in-
dicate the material of the segmented elements
and correspond to dielectric and conductor, re-
spectively. Explicit equations of the immittance
are shown in [16, 15]. I.1.n,, Ig1:n, and M.y,
are the unknown expansion coefficients which

appear in Equation 1. V; is the driver voltage.
From Equation 2, the current distribution of the
model surface and the electromagnetic field of
the radiated wave are calculated.

For convenience, we will use Z(w)I = V(w) as
an abbreviated form of Equation 2, where w is
the frequency of the incident electric field V (w).

3 Overview of ACCUFIELD

The analysis procedure of ACCUFIELD is
shown in Figure 2. ACCUFIELD consists of a
preprocessor for inputting or editing the model
of the electronic device, a solver for the calcu-
lation of the electromagnetic field and a post-
processor for the output and interpretation of
the calculation results.

Many libraries are supplied for entry and re-
trieval of commonly used parameters of circuit
components, specific constants of the materials
and so on [8]. By using these libraries, it be-
comes easier to create the model.

The preprocessors’ editing functions include
the changing of routing paths (both on printed
circuit boards and of cables), the addition or
deletion of components such as filters and damp-
ing resistors, and changing the structure of the
shielding.

The solver calculates the electromagnetic field
generated by the model with the moment
method described before. The transmission line
approximation method is also employed to take
into account the effects of components or sub-
systems beyond the moment method [16, §].

The postprocessor displays the simulation re-
sults of the solver part, by using a GUIL. Graphi-
cally displayed results are helpful for easy under-
standing of physical implementation of the EMC
phenomena. The following results are available.

e 2D radiation pattern.

For a given frequency, the electromagnetic
field strength can be plotted as a function of
the angle from the centre of the electronic
device being analysed.

e Contour map of the electromagnetic field.

The electromagnetic field across any plane
can be plotted, enabling an easy-to-
understand display of the field behavior.



Electronic CAD

Wocharical CAD

Modeling

=

Solring

-

Displaying

o
Ty

.._',"
b

Figure 2: ACCUFIELD Analysis Procedure

e Frequency spectrum of the radiated wave.

These show the electric field strength for
each frequency and compare this with the
maximum strengths dictated by EMC reg-
ulations of various countries.

e Current distribution and vector plots.

These can display the amount and direction
of the current flowing across a conductor
(eg. cable), aiding in the understanding of
the emission mechanisms.

e Gradients of the electric field.
e Input impedance diagrams.

...and so on.

The analysis can demonstrate mechanisms
such as the shielding effectiveness of enclosures,
the influence of finite ground plates, common-
mode and differential mode current emissions
and the effectiveness of components such a fil-
ters in handling EM emissions.

Here is an example of an ACCUFIELD analy-
sis [8]. The model is illustrated in Figure 3. It
contains a printed circuit board (PCB) and a
coaxial cable. By using the preprocessor of AC-
CUFIELD, the model is created and displayed
as shown in Figure 4.

The radiation pattern of the electric field cal-
culated by ACCUFIELD is shown in Figure 5.
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Figure 3: The PCB with coaxial cable. Mi-
crostrip line: height 1.6, width 0.4, ¢, = 4.7.
Source: 1.1V sine wave, frequency 150 MHz,
Zy = Zg, = 5092

Figure 4: The PCB model displayed in the model
display window. The model is created by using
the preprocessor and the library. It consists of
291 patch elements and 5 wire elements



The solid curve indicates the electric field inten-
sity of the wave radiated from the model shown
in Figure 4. The measured electric field inten-
sity is also shown with the closed circles. The
numerical results agree well with the measured
ones. This demonstrates the validity of the elec-
tromagnetic simulation with ACCUFIELD.

Consider the parallel implementation on PQ
processors of an ACCUFIELD analysis over
a range of frequencies Q = {wi,wo,...,wy;},
where w; < w;y1 for 1 <4 < ny. The preproces-
sor broadcasts the (required parts of) model’s
information to all processors. MPI is used as
the communication library, enabling wide porta-
bility of the application.

The immittance matrices Z(ws,), ..., Z(ws,,)
are then generated, where {w;,,...,w,, } C Q.
Here {ws,,...,ws,, } (typically s; =1,s,, = ny,
and n is small) is a set of sampling frequencies
chosen for the analysis.

As the elements of these matrices can be gen-
erated independently, this process is done in par-
allel so that the matrices conform to a r xr block-
cyclic matriz distribution over a logical P x Q
processor grid [5], where r is the fixed storage
block size.

The remaining matrices Z(w;) are generated
by interpolation on the sampled immittance ma-
trices Z(ws, ), ..., Z(ws,,). As they will have the
same distribution, this step requires no commu-
nication.

At this point, the solver stage can begin on
each Z(w;). In the following two sections, we
describe in detail issues in the parallelization of
this stage.

4 The Fast Frequency Stepping
Method

ACCUFIELD often calculates field emissions
over a range of EM wave frequencies. To avoid
the cost of directly solving Equation 2 at each
desired frequency in the range, the following can
be performed:

e instead of obtaining a direct solution of
Z(w;)I = V(w;) for each wj, the fast fre-
quency stepping method (FFS) chooses a
central frequency w;,, 1 <i. < ny.

For w;,, a direct solution is obtained.
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Figure 5: Radiation pattern of the PCB’s elec-
tric field, (a) horizontal components (b) vertical
components. The distance between the model
and the measured point is about 10m
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Figure 6: Preconditioned Congugate Gradients
for Complex Symmetric Equation Az = b

e the factorization of Z(w; ) is then used
to precondition iterative solutions for
Wip—1,Wig—2,--. and wj 4+1,Wi,+2,... until
convergence rates slows down to the extent
that the iterative solution time exceeds half
that of a direct solution.

Here, the Preconditioned Conjugate Gradi-
ents method is used [9, 11]. For a posi-
tive definite matrix A, the preconditioning is
A — (LOT)’IAL(;1 : Ag = LILo where Ly
is the Cholesky factorization of the precondi-
tioner Ag. This algorithm converges in rank(I —
(LE)~1ALg") iterations [9]; however, in practice
this quantity is difficult to estimate.

We have adopted this method for complex
symmetric indefinite matrices by using the
LDLT factorization for the preconditioner ie.
Ay = Z(w;,) = PoLoDoL{ Py. Figure 6 de-
scribes the algorithm.

Thus, the FFS method reduces the number
of O(N3) direct solutions potentially required,
replacing them by O(N?) iterative methods, re-
sulting in potentially large gains in efficiency.

The iterative method for FFS is implemented
using the DBLAS parallel BLAS (see Section
5) routines for symmetric matrix-vector multi-
ply pzsymv (), vector inner product and norm
routines, as well as the complex indefinite back-
solve routine pzsytrs() that will be described
in Section 5. The above routines have a compat-
ible interface to ScaLAPACK’s PBLAS [5].

Here, to economize on storage space, the fac-
tored preconditioner Ly and Dy are stored in the
lower half of the matrix, and the current matrix
A = Z(wj) is stored in the upper half (with one
column shift).

When executed on a P x () processor grid, each
iteration involves a vector transpose-broadcast,
one vector reduction and two scalar reduc-
tion/broadcasts, as well as the communications
required in the call to pzsytrs (). For large ma-
trices, eg. % > 1000, the AP3000 execution time
is dominated by the level-2 computational per-
formance (matrix-vector multiply); for smaller
matrices, execution time is dominated by com-
munication startup costs.

5 The Direct Solution of Sym-
metric Indefinite Systems

In electromagnetic scattering and compatibil-
ity applications, the linear systems generated
by the moment method often have diagonal
elements (representing the self-impedance or
self-admittance of the corresponding 'moment’)
which are relatively large compared with the off-
diagonal entries of the same column. Such a ma-
trix we will call weakly indefinite.

This means that (faster) transformations ap-
propriate to definite systems can be applied to
eliminate most columns of these matrices, with-
out sacrificing numerical stability.

Stable algorithms for solving N x N symmet-
ric indefinite systems and yet exploit symmetry
to have only NTg + O(N?) floating point oper-
ations are well known (see [9] and the refer-
ences within, especially [1, 6]). While several
performance evaluations of variants of these al-
gorithms have been given [4, 2, 13, 14, 3], all
but [13] consider only uniprocessor implementa-
tions, and [13] only considers parallelization on
a small-scale shared memory machine.

In this section, we describe how to derive vari-
ants of the Bunch-Kaufman diagonal pivoting
method to yield improved performance, espe-
cially on parallel platforms, and especially for
weakly indefinite systems.

The parallel routines are coded entirely in
terms of the DBLAS Distributed BLAS Library
[19, 21], which is a portable version of paral-



lel BLAS. It has been used to implement very
efficient parallel matrix factorization applica-
tions using various techniques [20]. The use of
the DBLAS has enabled rapid development and
prototyping of several variants of the Bunch-
Kaufman algorithm, while enabling high reliabil-
ity and performance from its highly tested and
optimized components.

5.1 Choice of Algorithms

In the 1970’s, two efficient and stable algorithms
for symmetric indefinite systems were proposed
and refined: the tridiagonal reduction method
(Aasen’s method [1]) and the diagonal pivoting
method (the latest of that era being the Bunch-
Kaufman method [6]). Variants of the diago-
nal pivoting method have since been proposed
[13, 14, 3], but the LAPACK implementation of
the Bunch-Kaufman method [2] has proven to be
very competitive in terms of performance with
the newer methods over a range of platforms.

Aasen’s method involves exploiting properties
of Hessenberg matrices to perform the decom-
position A = PLTL" PT, where A isan N x N
symmetric matrix, L is an N —1 x N —1 lower
triangular matrix with a unit diagonal, P is a
permutation matrix, and 7' is a tridiagonal ma-
trix [9]. For the same reasons as for LU decom-
position, pivoting must be applied to the sub-
diagonal portion of each column, with the diag-
onal elements always remaining in 7.

The diagonal pivoting methods perform the
decomposition A = PLDL" PT, where here L is
an N x N lower triangular matrix with a unit di-
agonal, and D is a block diagonal matrix with ei-
ther 1x1 or 2x2 sub-blocks [9]. A 2x2 sub-block
indicates a 2 x 2 pivot was required for the stable
elimination of the corresponding columns; the
corresponding sub-diagonal element of L will be
0. In a practical implementation of this method,
A can then be overwritten by L and D, with
a ‘pivot vector’ recording any symmetric inter-
changes (including the position of the 2 x 2 piv-
ots) [9, 2, 13].

In the elimination of column j, four cases can
arise with the Bunch-Kaufman method:

D1 |A;j| > alA;j|, where j < ¢ < N and
N )
ij| = max,_. . ,
|A; ;] aXp_jy; |Ak,j|- Here, a 1 x 1 pivot

from Aj;; will be stable; no symmetric in-
terchange is required.

D2 the conditions for D1 and D4 do not hold.
Here, A;; is used as a 1 x 1 pivot, and no
symmetric interchange is required.

D3 A 1x1 pivot from A;; will be stable. Here, a
symmetric interchange with row / columns
1 and j must be performed.

D4 A 2 x 2 pivot using columns j and ¢ will
be stable. Here, a symmetric interchange
with row / columns i and j+1 must be per-
formed; however, both columns are elimi-
nated in this step.

« is a tuning constant for the algorithm; it can
be shown that o = HT\/I? maximizes stability of
this algorithm [9, 6]. For definite systems, only
case D1 is needed; case D3 is also needed for
semi-definite systems, and case D4 is needed for

indefinite systems.

Case D2 exists primarily to avoid a situation
where case D4 might be unstable. By stability,
it is meant that the growth of the trailing sub-
matrix (A" in Figure 7) is bounded; however, due
to cases D2 and D4 there is no guarantee that the
growth of L is bounded [3]; recently a bounded
Bunch-Kaufman algorithm has been presented
which overcomes this problem [3].

The stability of both methods has been shown
to be sufficiently high for most practical pur-
poses [4]; choosing between them for a particular
application is then essentially an issue of perfor-
mance. In [4], a comparison of unblocked ver-
sions of these algorithms was given; their conclu-
sion was there was no decisive difference under
the tests performed. More recently, a compari-
son between blocked versions of these algorithms
was given for a Cray 2 [2], showing the LA-
PACK implementation of the Bunch-Kaufman
algorithm to be superior by ~ 5% for large ma-
trices.

However, in the case of ‘weakly indefinite’ sys-
tems, and especially for distributed memory ar-
chitectures, a choice can be made between these
methods, as we shall explain in the next section.



5.1.1 Parallel Symmetric Interchanges

To maintain their advantage of requiring NTg
floating point operations, symmetric factoriza-
tion algorithms must maintain the symmetry of
the matrix A being factored. Numerical stabil-
ity considerations will however require pivoting
to be performed; therefore the pivoting must be
symmetric, ie. both rows and columns i and j
must be exchanged. In the case where A is
stored in its lower triangular half, this exchange
is illustrated in Figure 7. Algorithmically, this
symmetric interchange consists of a row swap, a
transposition and a column swap, ie:

!

(ajg, af) & (aig, af); af  aj; (I, a5) ¢ (1, a7)

VRS

Here, a;- = Aj, k:jo CI,; = Ai7 k:jo aé- =
Aina,j, ab = Apna,i, and aj =
Aj—|—1:z'71,j; a;-' = Ai, L1 - Thus, using such
a combination of row and column segment ex-
changes, the diagonal elements are exchanged,

and A; ; remains unchanged.

N
/i
Ij 3
N L |
| K
A A
ko]
A
Figure 7: Symmetric interchange during an

LDLY factorization, showing the current panel
to be factored A

The dashed trapezoid in Figure 7 represents
the panel A% of the matrix currently being fac-
tored.

From Figure 7, the following observations may
be applied to the symmetric interchange on a
distributed memory platform:

1. the amount of data exchanged is the same as
partial pivoting in LU. This implies, relative
to the number floating point operations, the
communication volume cost per exchange is

double that of LU.

2. The interchange requires three separate op-
erations. Furthermore, as all processors
may have to potentially contribute to the
new value of Aj.n 1, which is within the
current panel, the factorization cannot fur-
ther proceed unless the value of ¢ is broad-
cast to all processors. This is unlike LU
factorization in the case where the panel
is contained in a column of processors, in
which only processor in that column can
contribute to the updated panel.

Furthermore, these interchanges has to be
applied twice to the right hand side vector in
the back-solve stage for LDLT, as opposed
to only once for LU.

These imply (potentially) greater absolute
startup costs than for LU.

3. The transposition A;.; 1; ¢+ A; jq. further
exacerbates these costs, but its cost can be
minimized if a square processor grid is used.

In other words, symmetric interchange is po-
tentially an expensive operation in a distrib-
uted memory implementation. For the Bunch-
Kaufman method, case D1 can be applied for
most columns of a ‘weakly indefinite’ matrix;
even for random matrices, experiments have
shown it is applied approximately 40% of the
time (this results from a =~ 0.64 being signifi-
cantly less than 1).

On the other hand, tridiagonal methods are
likely to require a symmetric interchange on
most columns, even for ‘weakly indefinite’ ma-
trices, as the values of diagonal elements play no
role in determining the pivots.

Furthermore, the tridiagonal solve T 'X
must be serialized [3], whereas the diagonal solve
D~'X can be fully parallelized. This gives a fur-
ther disadvantage to tridiagonal-based methods,
such as Aasen’s method.



The choice between the bounded and original
Bunch-Kaufman algorithm deserves some treat-
ment. While the bounded algorithm offers better
stability, empirical and analytical studies show
that it requires on average at least 2.5 column
searches every time the test for case D1 fails
[3]. Furthermore, empirical studies on random
matrices have shown that the average number
of symmetric interchanges of the bounded algo-
rithm is = 1.7 times greater [3]. Unless such
stability is required for a particular application,
this extra overhead favors the original algorithm.

Thus, for distributed memory implementa-
tion, methods that offer reduced symmetric in-
terchanges for the matrices of interest should
have a distinct performance advantage.

5.2 The LAPACK Diagonal Pivoting
Algorithm

In this section, we describe an implementation
of the Bunch-Kaufman algorithm, essentially a
simplification of that used in LAPACK _sysv(),
which is publically available from NetLib [7]. A
formal matrix-notation description of this algo-
rithm can be found in [18]; an informal descrip-
tion of the partial factorization (cf. Figure 7) is
given in Figure 8.

Note that a; = Ajin,; = (aj,j,a;‘,aé-) rep-
resents the entire jth column. Correspondingly,
we define Qi = Aj;N,11j+1 = (aj,jﬂ,ag-‘ﬂ,aéﬂ)
and CL;_H = Aj—l—l, k:j-

A temporary matrix W (aligned with A) is
used; the notations w; etc. refer to the sections
in W as do a; etc. in A. Of course, in an actual
implementation, explicit storage for only those
elements of W in the current panel is required.

For the sake of simplicity, it is assumed that
the input matrix is invertible.

Step -(14) undoes the row swaps applied to
Al instead of applying these row swaps to
Ap:Na1,0:k1 (now over-written by L). In the
LAPACK source codes, this is referred to as
“[LAPACK] standard form”. Provided the rou-
tines which subsequently use L (eg. the X <«
(LDLT)~'X back-solve routine zsytrs()) take
this into account, this potentially can speed up
the factorization stage.

However, the decision to use the LAPACK
standard form must be also considered from the

for each column j in current panel

wj + (wj)" Aj + aj; -(1)

find the pos. ¢ of the max. in w; -(2)
if case D1 does not apply:

Wip (ai,j7 a;', ai) -(3)

wip (W) Aj +wip -(4)

find max. of wjy (excluding w; j1) -(5)

if case D3 applies /* complete interchange */

Wj < Wi - 7)

(aigy ) + (az5, a¥); abaf  -(8)

(w), @)  (w),a) (9)

if case D4 applies /* complete interchange */
(aij, af) « (aj 1, a¥y); ab + aky -(10)
(Wit > Wi, 415 Qg i1, G 1) €

(wéa Wi, 15 a27 ai7j+1) '(11)
if case D4 applies /* apply 2 x 2 Dj’1 */
D. = ( Aji A
’ Aj Ajrrin
(aj,a11) ¢ (wj,wjp1)D; -(12)
skip column j + 1
else
aj « wj/Aj; -(13)
undo row swaps applied to ay,aj ... in AL -(14)
Al-=AL(WIT ~(15)

Figure 8: LAPACK algorithm for partially fac-
torizing an N X N symmetric indefinite matrix

A



point of view of the efficiency of the total factor
and back-solve computation. A formal matrix-
notation description of the back-solve algorithm
can also be found in [18]; the informal descrip-
tion below will suffice for our purposes.

Let P denote the (symmetric) permutation
matrix representing the interchanges from the
factor stage. First the updates associated with
column j of D™!, L™, P are applied to Xj.n1,
in a loop iterating from 7 = 0: N—1. Note that
here, a rank-1 update (or rank-2, in the case of
D4) using Ljy.n—1 ; is applied to X . n.

The pivoting on X has to occur in this sin-
gle loop (rather than in a separate loop) is a di-
rect consequence of using the LAPACK standard
form. This makes blocking of the computations
(and communications) of this algorithm difficult.

Second, the updates associated with column j
of P"'L~T are applied to Xo:j21 in a loop iter-
ating from j = N—1:0.

5.3 Parallelizing the Diagonal Pivot-
ing Method

The LAPACK LDLT algorithm, based on BLAS
operations with a high fraction of level-3 com-
putations due to the blocking factor or panel
width w > 1, has been shown to be efficient on
memory hierarchy uniprocessors [2, 13, 14, 3].
Thus, in principle, as other processor’s memory
can be regarded as an extra level of the mem-
ory hierarchy in the distributed memory context,
the algorithm depicted by Figure 8 should have
a straightforward parallelization that is also rea-
sonably efficient. However, several modifications
and optimizations can still be performed.

We will consider the r x s block-cyclic ma-
trix distribution over a P x @ logical proces-
sor grid [5], where, for an N x N global ma-
trix A, block (4,7) of A will be on processor
(¢ mod P,j mod Q). For this distribution,
two established techniques can be used to par-
allelize this algorithm: storage blocking, where
w = r = s, and algorithmic blocking, where
w > 1r = s = 1. The latter has load balance ad-
vantages, at the expense of extra communication
startup costs; it has been shown to yield better
performance across platforms with relatively low
communication costs [20]. Our implementation
encompasses both techniques.
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For parallel implementation, the optimiza-
tions of the following subsections can be per-
formed on the symmetric solver.

5.3.1 Array Element Access

In the distributed memory context it is im-
portant to minimize the communication startup
costs associated in the manipulation or use of
single array elements, which occurs extensively
in the diagonal pivoting algorithms.

The DBLAS vector maximum finding function
returns both the index and the value of the max-
imum element (eg. < and W;; in step -(2)) of
Figure 8.

This function involves a parallel reduction
and broadcast operation (in this case, requiring
21g P + 1g @ startups). To determine whether
case D1 applies, all processors similarly require
the value of W;;. By writing a modified max-
imum finding function which chooses the cell
holding Wy, ;. as the root of the column-wise re-
duction and broadcast, Wy can be broadcast
along with ¢ and W, ;, saving lg P + lg () star-
tups per column.

This was applied similarly to step -(5). Fur-
thermore, here, the condition ‘excluding w; j1’
suggests two separate column searches, as is
done in the LAPACK code. For the parallel im-
plementation, it is more efficient to temporarily
zero W; 11 so that a single search can be used,
saving 21g P+ 1g Q startups (for each time cases
D2-4 apply).

Merging the row swaps in A and W (steps -(9)
or -(11)) saves 2 startups each time these cases
apply.

Before step -(10), temporarily set A; ;1 to
W (= Ajaj). As W and A are aligned, this
requires no communication. Thus, the RHS of
of the first sub-step of -(10) becomes simply
Aj.i1 s, saving 1 startup for each instance of
case D4.

Similarly, this was applied to the RHS of step
-(8), saving a startup for each instance of case
D3.

In the factor stage, we record the elements of
D (W; ; for cases D1-3, and the elements of D;
for case D4) in a column-replicated vector. This
saves N lg (@) startups in the back-solve stage.
Note that for case D4, the values of all elements



of each D; were broadcast to all processors in
steps -(2) and -(5).

Consider the net effect of these optimizations
for storage blocking (w = r > 1) and P = Q
(which will minimize startups) on the combined
factor and back-solve stages. For a definite ma-
trix (D1 applies in all cases), these have re-
duced the number of startups from ~ 7N Ig P
to = 4N 1g P. For an indefinite matrices with
for example %, %, %, % columns eliminated by
cases D1, D2, D3 and D4 respectively, they
have reduced the number of startups from =
(11.51g P+ 5.3)N to =~ (61g P +4)N.

5.3.2 Improving Performance in the

Back-Solve Stage

While the back-solve stage has only O(N?) float-
ing point operations, it has high associated over-
heads which makes its optimization particularly
important in the distributed memory context.
This can be achieved by improving load balance
and reducing communication volume costs, as
well as increasing computation speed. Of most
interest is the case where X has a small number
of right hand sides; for the ACCUFIELD com-
putation, there is only one. The back-solve stage
is also used for the FFS method of Section 4.

The LAPACK algorithm updates X by each
column of A individually. Thus, if implemented
by a series of parallel BLAS calls, this would
have 2 results: (1) all of A would be communi-
cated in each of the loops, and (2) only the cells
holding part of X would perform any computa-
tion (the independent parallel BLAS calls have
no scope for performing any load balancing in
such a situation).

However, by completing the row swaps in L
during or after the factorization, in other words
not using the LAPACK standard form, the back-
solve stage can be implemented by the standard
DBLAS triangular matrix solve routine to per-
form the second and fourth steps of:

X+ PlX; X« L'X; X<D'X;
X+ LTX; X<PTX

Here P is the permutation matrix of the accumu-
lated interchanges from the factorization stage.
With the scheme of L and D overwriting the
original matrix A, the implicit zero sub-diagonal
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elements of L, which occur where D has 2x2 piv-
ots, must be made (temporarily) explicit. This
routine we name pzsytrs().

Although this scheme results in increased
communication volume costs in the factor stage,
this is compensated for in its greater reduction
in the back-solve stage, as the DBLAS triangular
matrix solve routine communicates only X. Fur-
thermore, the completion of the row swaps in L
can be done in blocks; for column-major matri-
ces, this permits optimization of memory access
patterns. Furthermore, for algorithmic blocking,
this allows an effective reduction of message cost
by a factor of at least 2 [20].

The DBLAS triangular solve routine achieves
a very high degree of load balance. Furthermore,
it has two computational advantages: it imple-
ments blocking of the computations (in the case
of multiple RHS, most of the work is done in
level 3, rather than level 2, BLAS), and it is
matrix-vector multiply based (faster on most cell
architectures, including the UltraSPARC, than
rank-1 updates.

As a parallel BLAS triangular solve routine is
a standard component, this method can take ad-
vantage also of any other optimizations already
present, including blocking of the communica-
tions of X by the storage block size r. Such
an optimization would be difficult to perform on
the LAPACK algorithm, as the pivoting espe-
cially in the first loop hinders the blocking of
communications.

5.4 A New Reduced Interchange Vari-
ant

As explained in Section 5.1.1, minimizing the
amount of symmetric interchanges (while keep-
ing the algorithm stable) has potentially large
gains in the parallel algorithm performance.

One method of achieving this is implement-
ing a key idea in the algorithm in [13], which
is to use the accumulated growth of the previ-
ous columns in the test for case D1. This algo-
rithm was largely motivated by the requirements
of band matrices, where the minimization of in-
terchanges helps preserve the structure of these
matrices [13].

Let j be the current column of A” to be elim-
inated, and let column j —p, 0 < p < j be the



last column not eliminated by case D1. Let \;
be the absolute value of the maximum element
of the ith subdiagonal. Then the condition for
determining case D1 can be relaxed to:
(Wil 1

A )S(l-i-a)p

= Hi j— p—l—l(l + (3)
This scheme is no worse than the original Bunch-
Kaufman algorithm in the sense that it attains
the same growth bound in the reduced matrix
A’ [13]. Intuitively, this can be thought of as the
existence of large diagonal elements in preced-
ing columns reducing the growth bounds on A’
sufficiently to compensate for a smaller current
diagonal element.

The algorithm in [13] is based on a different (3-
case) variant of the diagonal pivoting method [6],
and furthermore uses an a priori growth bound
instead, which requires a (worst-case) estimation
of \; before the updates from columns &, ...,i—1
are applied. This is necessarily more conserv-
ative than using the actual );; indeed for the
purposes of most ACCUFIELD matrices, and a
target blocking factor w = 44, it was found to be
too conservative to be useful.

In the algorithm of [13], the value of p be-
comes reset whenever the target blocking factor
w is reached, or the a priori bound was exceeded.
This has two undesirable consequences. Firstly,
the behavior of algorithm can vary slightly, de-
pending on the value of w (this makes it hard,
for example, to evaluate the performance of the
algorithm as a function of w).

Secondly, and more importantly, the blocking
factor p often falls short of the target blocking
factor w [13], resulting in a potentially serious
reduction in computational performance. Table
1 indicates the blocking factors p achieved by
the a priori growth bound of [13] on simulated
matrices of the form A = A’ + I, where A’
has random elements from the unit square and
0 < B <10 (ACCUFIELD matrices show similar
pivoting behavior to these simulated matrices for
1 < 8 <10). These small values of p are all the
more disappointing as when applying Equation
3 a postiori, as described below, no interchanges
were found to be necessary for the experiments
of Table 1.

Furthermore, in a distributed memory imple-
mentation, it would compromise the advantages
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Table 1: Average blocking factor p using a priori
growth bounds for complex simulated matrices
of various @ for N = 528 and a target blocking
factor w = 44

of using storage blocking, as often the panel A"
would be straddling a storage block boundary.
Our implementation of this idea is different in
that Equation 3 is applied a postiori, resulting in
a greater reduction of interchanges, and we ap-
ply it to the 4-case LAPACK diagonal pivoting
algorithm. Our implementation also limits p to
the range 0 < p < pmax = 64, which is necessary
to avoid overflow in p;. This can be efficiently

7,z|

achieved by storing the values of 14+—2% | in a cir-
cular queue of size pypax. Thus, p; can include
contributions from columns in previous blocks.
Furthermore, the optimal blocking factor is al-
ways met regardless of whether Equation 3 is.
We call this the reduced interchange variant.

A potential problem with such methods
is that, compared with the original Bunch-
Kaufman method, they allow increased growth
in L; by a factor of |a/{—]”| ~ o? [3]. A com-
promise, which we call the guarded reduced in-
terchange variant, would be to disallow case D1
when |%{—JL| > of?, where pg < Pmax, 1. po = 5,
even when Equation 3 is satisfied.

Table 2 lists the normalized residual (using
a random RHS vector with elements from the
unit square) for the original and reduced inter-
change variants of the algorithm for sample AC-
CUFIELD matrices. The normalized residual is
calculated in the same way as in LAPACK test
programs [7]; ideally, an accurate algorithm will
produce normalized residuals of less than unity,
although in practice it may occasionally exceed
unity (especially for small matrices) without im-
plying a significant loss in accuracy. It also
shows the fraction f of columns eliminated by
cases D2-D4. With the typically large diagonal
elements of these matrices, generally f < 0.1.

Figure 9 extends this study to simulated ma-
trices. These represent the averaged values of
the normalized residual (and f) for 20 such ma-

trices as functions of the diagonal bias 8. In



N :| 161 1601 4736
original: | .01 (.06) | .01 (.07) | .45 (.98)
reduced: | .02 (.07) | .02 (.01)| 1.2 (.03)
guarded: | .02 (.05)| .02 (.02)| 1.0 (.02)

Table 2: Comparison of residual (and f) for di-
agonal pivoting variants for ACCUFIELD ma-
trices

terms of the pivot distribution f, the range
5 < B < 7 corresponds to Table 2. In terms of
accuracy, the reduced interchange variants have
a residual generally within twice that of the orig-
inal variant, except at 8 = 4, where the average
of the unguarded variant is much higher, due
to greatly increased growth on a single matrix.
However, as these residuals are all within their
threshold value (unity), in most circumstances
this is not a serious point for concern. The re-
duced interchange variants does significantly re-
duce f for 8 > 1; in particular f = 0 for g > 5.

The guarded reduced interchange variant, as
it shows to be a suitable compromise between
accuracy and performance, is chosen for the AC-
CUFIELD solver.

6 Fast Computational Compo-
nents for the Solver

Parallelism is of course a means to an end:
speeding up the application. In this section,
we discuss the development of computational
kernels required by the solver which also have
brought substantial performance gains to the
ACCUFIELD application. While the techniques
presented here apply particularly to the Ultra-
SPARC processor, most can be applied, with
similar results, to other RISC processors with
a deep memory hierarchy.

From Figure 8, it can be seen that the impor-
tant computational operations include a (large)
triangular matrix multiply (step -15), a matrix-
vector multiply (zgemv (), steps -(1) and -(4)),
vector maximum finding (izamax (), steps -(2)
and -(5)), and vector scaling (zscal(), step -
(13)). The triangular matrix multiply is imple-
mented as a series of rectangular matrix multi-
plies (zgemm () ); a vector copy routine (zcopy())
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is required implicitly in many places. Note also
that zgemv() is the computationally dominant
component of the solve stage (Section 5.3.2) and
the FFS method (Section 4). Above, the corre-
sponding BLAS routines have been named; thus
an efficient implementation of the BLAS library
on the UltraSPARC is required.

In this section, we will describe how these op-
erations were optimized.

6.1 A Fast UltraSPARC BLAS Imple-
mentation

For optimal performance, the UltraSPARC re-
quires software pipelining, ie. a pair of depen-
dent instructions must be separated in software
by the latency of the first. Floating point add
and multiply has a latency of 3 cycles [22].

This technique is taken further in the case of
cache lookahead. This can be used to hide the
miss penalty for the top-level cache, which is too
small for most computations. The cache looka-
head requires each load operation to be initiated
at least 8 cycles before the first instruction using
that value [22].

Loop unrolling must be used to expose a suffi-
ciently large number of floating point operations
in order to perform such deep software pipelin-
ing. For nested loops (zgemm(), zgemv()), the
outer loop should be unrolled as this has the
effect of reducing the number of load opera-
tions and reducing startup costs. The latter
is especially important for good performance of
zgemv () when used in step -(1) of Figure 8.

Table 3 compares the performance of our
BLAS (ANU) with that of the commercially
available Sun Performance Library 1.2 (SPL).
These can be compared with the theoretical
maximum (max), which is what the Ultra-
SPARC is capable in the absence of instruction
dependencies, cache misses and startup over-
heads. Comparing the results 16 KB data size
with that of 256 KB gives an indication of the
effectiveness of cache lookahead in each imple-
mentation (noting that startup costs are less sig-
nificant for the latter).

6.2 Triangular matrix multiply

An efficient triangular matrix multiply algo-
rithm, capable of dealing with the added com-
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unroll | ANU SPL max
zgemm() | 3x2x1 | 314/ — [ 270/ — | 334
zgemv () 4x1 | 283 /312 | 238 /279 | 334
zscal() 4223/162 | 239 /177 | 250
zcopy () 4164 /164 | 164 / 165 | 167
izamax () 41165 /166 | 107 / 100 | 167

Table 3: BLAS performance in double MFLOPs
(16 KB / 256 KB data size) on a 170 MHz Ul-
traSPARC

plexities of block-cyclic matrices, is computa-
tionally the most important component of the
solver. The corresponding serial LAPACK al-
gorithm (in the routine lasyf ()) partitions A’,
assumed to be column-major, (see Figure 7) into
vertical strips of width AN = w, and applies
level 2 operations to update the triangular por-
tion of the strip.

The DBLAS routine partitions A’ into hori-
zontal strips of larger width AN = %, where
the effective cache size C' is the minimum of the
second-level cache size and half the TLB size
multiplied by the page size (256 KB for an Ultra-
SPARC under Solaris). Using horizontal strips,
as is shown in Figure 10, enables AN > |T'LB|
without causing a large number of TLB misses
Thus, at w = 44, AN = 90 for double-complex,
and the larger strip width enables better cache
performance.

The triangular portion of the strip is in turn
broken down into strips of width +/AN; thus
a very high fraction of level 3 operations is also
achieved.

The algorithm depicted in Figure 10 optimizes
cache and TLB usage as follows. AN is chosen
so that (the contiguous) A requires no more than
half of the UltraSPARC 64 TLB entries and no
more half of the second level cache. Thus, A
remains in the cache and TLB, while different
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Figure 10: Strip matrix multiply C + C' + AB,
A is AN X w, indicating optimal storage format
and order of iteration

columns of B and C are applied to it.

The innermost iteration (1) has unit stride for
both A and B; the next innermost iteration (2)
has unit stride on C. In the worst case, there
could be one TLB miss for each column segment
of C. However, as there will be 2WAN floating
point operations applied for each segment, the
effect of the TLB miss should be small for the
values of AN and w.

The above ideas were applied to a general rec-
tangular matrix-matrix multiply (zgemm(). For
large matrices (1-36 MB), the ANU zgemm()
sustained 280-295 double MFLOPs on an 170
MHz UltraSPARC, as compared with the SPL
zgemm() which sustained 220-245 MFLOPs.

It is thus argued that this algorithm is optimal
for rectangular matrix-multiply for such a cell
architecture.

A final issue is the storage format of A and B
required by this algorithm. In the context of the
parallel LDLT algorithm, these will come from



replicated AL and (WE)T respectively. It turns
out that for considerations of the efficiency of the
broadcast, these will have the opposite storage
format as required by Figure 10 [21].

Thus, an efficient local matrix transpose algo-
rithm is also required. By explicitly partitioning
the matrices into @ % chunks, large lo-
cal matrix transpositions were sped up by a fac-
tor of 4-8 [21] on the UltraSPARC, due to the
improvement in TLB usage over a naive trans-

pose algorithm.

7 Performance

This section evaluates the direct solver’s serial
and parallel performance; firstly in isolation and
secondly when integrated into the ACCUFIELD
application.

The DBLAS implementation of LDLT solver
allows the grid size P X @, the storage block size
r and the algorithmic blocking size w to be run-
time settable parameters. Thus, simply setting
w = r means that storage blocking will be used;
the DBLAS routines then ensure all the com-
munication savings from storage blocking then
occur. Thus, given a matrix of size N and PQ
processors, the optimum combination of these
parameters can then be chosen. The name of
the combined factor-solve routine is pzsysv().

In terms of performance, the reduced inter-
change and guarded reduced interchange vari-
ants of Section 5.4 were effectively indistinguish-
able; thus results in this section labelled as ‘re-
duced interchange’ apply to either of these two
variants.

7.1 Serial BLAS and Direct Solver
Performance

Table 4 compares the performance of the LDLT
solvers on a 300 MHz UltraSPARC II (U300)
for two ACCUFIELD matrices. The Sun Per-
formance Library 1.2 zsysv () performed almost
identically to the NetLib LAPACK zsysv() (but
also using the Performance Library 1.2 BLAS)
with the same blocking factor; as it is difficult
to use the former with different BLAS, the re-
sults below are given for the latter. The de-
fault blocking factor was 64; performance was
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zsysv() pzsysv(), aw sas
N | SPL BLAS | ANU BLAS | original reduced
161 75 80 73 74
1601 71 96 108 109

Table 4: LDLT solver performance in complex
MFLOPS for ACCUFIELD matrices on a U300
(w=44)

improved slightly by choosing a smaller blocking
factor (w = 44).

For small matrices (eg. N < 250), zsysv()
is slightly faster, primarily due to the software
overheads in pzsysv(), which is a parallel algo-
rithm in this case run on a single processor (these
overheads entail several extra layers of procedure
calls, redundant conditional evaluations, and ex-
tra error checking [19]).

For larger matrices, pzsysv() shows a clear
improvement in speed, even when using the same
(ANU) BLAS. This is primarily because the
DBLAS has a more efficient triangular matrix
multiply routine than that used in LAPACK’s
zsysv (), as previously mentioned. The overall
improvement on the Sun Performance Library
1.2 zsysv() thus amounts to 53%. Note that
the reduced interchange variant only offered a
marginal gain in serial performance. N = 1601
is sufficiently large to represent the general as-
ymptotic speed of the solvers.

Similar results were also found on a 170 MHz
UltraSPARC I, and 200, 250 and 360 MHz Ul-
traSPARC IT’s.

The back-solve stage component of these tim-
ings (see Section 5.3.2), while not having a
large impact on the overall performance, simi-
larly showed that zsytrs() was slightly faster
at N = 161, but pzsytrs() was 50% faster at
N = 1601, indicating that the method outlined
in Section 5.3.2 did indeed achieve some compu-
tational advantages.

7.2 Parallel
mance

Direct Solver Perfor-

For these results, MPI was used as the underly-
ing communication library.

Figure 11 gives parallel factorization perfor-
mance for simulated matrices with 8 = 7. It was



found that the pivoting ratio f increases signifi-
cantly with N. Eg. at N = 10000, f = 0.20 for
the original method, and f = 0.05 with reduced
interchange.

Comparing with Table 4, it can be seen
that communication overheads prevent efficien-
cies that are possible in the serial case. Com-
paring the plots for w = r = 44, we can see that
much of this overhead is from the interchanges,
with the reduced interchange version being faster
by ~ 10 —15% at the low-mid ranges, decreasing
to ~ 7% at the upper range.

Comparing the plots for the reduced version,
we see that storage blocking (w = r = 44) has
a small but consistent advantage over algorith-
mic blocking (w =~ 44 with r = 1,4). This is to
be expected for small N, as algorithmic block-
ing incurs an extra N lg (@) startups and an ex-
tra % lg @@ communication volume to reduce hor-
izontally a; for the vector-matrix multiply. For
moderate-large N, storage blocking has an un-
usual advantage on the AP3000: its larger mes-
sages in the broadcast of A” and W7 can take
better advantage of the protocol communication
method [17], effectively achieving a higher band-
width.

However, for LU, and to a lesser extent
LDLT without reduced interchanges, algorith-
mic blocking at w = 48,r = 4 slightly out-
performed storage blocking for N > 5000. While
the highly optimized LU implementation [20]
achieved somewhat higher speeds for a given N,
they are never greater than by a factor of 1.3 for
N > 2000. In other words, the LDLT factor-
ization is clearly quicker than LU in this range,
with the residuals for LU being only marginally
smaller.

7.3 Application Performance

This section investigates the performance of the
analysis stage of ACCUFIELD, where computa-
tion time is dominated by the solver stage (direct
solution only is used here).

The results here are for an AP3000 comprised
of 300 MHz UltraSPARC processors with 2 GB
memory.

Firstly, the computing time of the current
(nearly equal to the computing time of the ma-
trix) on the wire surface is measured for the di-
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Figure 11: LDLT factorization performance for
simulated complex N X N matrices with § =7
on a 4 x 4 300 MHz AP3000

1 CPU 16 CPU
pzsysv() | 2570s (0.6) | 203s (0.05)
SPL | 4131s (1) | -

Table 5: Comparison of the current comput-
ing time for the dipole antenna on a 300 MHz
AP3000

pole antenna model shown in Figure 12. A driver
is inserted in gap at the center of the wire. In
this analysis, a matrix equation with N = 9500
is solved, where N is the dimension of the immit-
tance matrix. The computing time of the current
with pzsysv() (with enhanced BLAS) or SPL
(SUN Performance Library zsysv() and BLAS))
is shown in Table 5. SPL is the conventionally
used library to solve the system of equations; it
can only run on 1 node. When the node number
is 1 and pzsysv() is utilized, the matrix calcu-
lation becomes 1.6 times faster, comparing with
the case utilizing SPL. As the number of nodes
increases from 1 to 16, the matrix calculation
becomes 12.7 times faster.

Next, the electromagnetic wave radiated from
the Note PC model is simulated as an example
of the analysis of the electronic devices at the de-
sign stage. The model is shown in Figure 13. In
this analysis, a matrix equation with N = 5041
is calculated. The dependence of the computing
time on the node number of AP3000 is shown in



wire wire

Figure 12: Dipole antenna model. The wire
structure to be modeled consists of 9501 seg-
ments. Diameter and Length of each element
are lmm and lcm, respectively. The frequency
of the driver is 300 MHz

Figure 13: Note PC model The model consists
of 2706 patch elements and 33 wire elements.
Analyzed frequency is 66.66MHz

Figure 14. In this figure, an open circle indicates
the computing time with SPL and closed circles
indicate the time with DBLAS. Compared with
the case using only one processor with SPL, the
calculation becomes 14 / 8 times faster when the
current is calculated with eight / four processors.

In the result shown in Figure 14, the current is
calculated for the single frequency (66.66 MHz).
In the actual design stage, the current is often
calculated repeatedly for wide-range of frequen-
cies as was described in the introduction. In case
of the Note PC model shown in Figure 13, the
calculation of the current requires few or more
hours. If pzsysv() is utilized, the current com-
puting time is found to be reduced to few or few
ten minutes and the electronic device such as the
Note PC can be designed more efficiently.
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Figure 14: The dependence of the current calcu-
lation time on the node number of AP3000 for
the Note PC model

7.4 Performance of the Fast Fre-
quency Stepping Method

This section describes the application perfor-
mance of the Fast Frequency Stepping method,
which as explained in Section 4, enables further
performance improvements for analysis with
multiple frequencies.

As mentioned in Section 4, we heuristically
stop the iterative solving with a LDLT precon-
ditioner if its computing time exceeds the half of
the time of a direct solve. In the examples below
executed in parallel, this resulted in the number
of iterative solves per central frequency being at
most two, which are for w;,_1 and wj 41, where
a direct solution is used at a central frequency
Wi,

Figure 15 shows the execution times and the
number of iterations r of parallel FFS for a POS
terminal, generating a linear system of size N =
7017. The frequencies are in the range 30 to 800
MHz. Note that the convergence is slow at lower
frequencies, which is a common phenomenon of
FFS. A value of r = 0 indicates a direct solution
was obtained for this frequency. The averaged
iterative solution time is 66.5s, and the average
direct time is 160.3s; thus the application of FF'S
(over using a direct solution at each frequency)
results in a speed up of 1.65.

Figure 16 shows the execution times of par-
allel FFS for a PenNote PC. Here the matrix
size N = 4608. The set of frequencies is a
union of two sequences {100n/3} and {24n},
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Figure 15: FF'S solution time ¢ and number of it-
erations r for each frequency for a POS terminal
on an 8 node 360MHz AP3000

n=1,2,3,.... So some adjacent frequencies are
close to each other and FFS is particularly effi-
cient for such pairs, as more rapid convergence
occurs (r = 10 for such pairs, half of the average
value for this model). Here, the averaged itera-
tive solution time is 16.2s, whereas that of the
direct solution is 57.7s. Hence, due to a faster
average convergence rate, a higher speedup of
FFS of 2.03 results.

When applying FFS to a sequential compu-
tation, we observed that a single preconditioner
covers wider range of frequencies. For example,
the PenNote PC analysis of Figure 16 required
only four direct solvings when sequential FFS
was applied. Compared with the sequential case
the speedup by the parallel FFS is not as large.

The reason for this is that the parallel speedup
of level 2 functions such as pzsymv() and
pzsytrs() is not as high as for level 3 computa-
tions. Over 95% of the execution time was spent
in pzsymv() and pzsytrs(). Of this, between
60% and 70% was spent in pzsytrs(), which
(even in the absence of interchanges) requires at
least 12N communication startups on an 8 node
machine.

However, for larger N, this speedup of
pzsytrs () will improve; this, together with the
O(N) reduction of floating point operations en-
abled by FFS, means that better improvements
for FFS are expected for larger models.
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Figure 16: FFS solution time for each frequency
for a PenNote PC on an 8 node 360MHz AP3000

8 Conclusions

The EMC application ACCUFIELD can accu-
rately analyse electromagnetic fields emitted by
electronic devices, using a combination of the
moment method and the transmission line ap-
proximation method. It also supplies extensive
libraries and tools for inputting or modifying
models of the devices, and for interpreting the
results of the analysis, which makes the applica-
tion highly usable.

However, for complex electronic devices, the
resulting models can be very large (up to tens of
thousands of elements), requiring huge compu-
tational and memory resources for the results to
be generated in an acceptable time. Distributed
memory parallel computing offers a cost-effective
and scalable way of providing these resources.

In this paper, we have shown how ACCU-
FIELD can be efficiently parallelized on a dis-
tribed memory multicomputer. The paralleliza-
tion occurs mainly over the compute-intensive
solve stage, which involves the solution of com-
plex dense symmetric indefinite linear systems.
Often, these systems are weakly indefinite, a
property which we have used to speed up their
solution.

The main method of solution is a direct
method that was based on the Bunch-Kaufman
LDLT factorization algorithm for symmetric in-
definite matrices, for several reasons. Firstly, its
implementation in LAPACK has been shown to



be highly competitive in terms of performance
with other methods. Secondly, as compared
with tridiagonal methods, the diagonal pivoting
method offers a reduced amount of symmetric
interchanges, especially for weakly indefinite sys-
tems, a property that we have argued is particu-
larly important for efficient parallel implementa-
tion. Thirdly, they afford a highly parallelizable
back-solve stage, which is important in this con-
text.

The efficient parallelization of the LAPACK
LDLT factorization and back=solve algorithms
required careful design in order to minimize com-
munication costs, potentially much higher than
for LU or LLT factorizations. By merging and
re-using communications over the two stages,
communication startup costs were reduced al-
most by a factor of 2. The factor stage also
had to be reorganized in order to achieve a back-
solve stage with high load balance and an O(N)
communication volume cost. The resulting back-
solve stage is not only simplified but has superior
serial performance and affords further reduction
in startup costs, by blocking communications.

To further speed up the parallel factorization
stage, we developed a new variant of the Bunch-
Kaufman algorithm which uses an accumulated
growth bound, and yet always achieved the tar-
get blocking factor, thus avoiding any perfor-
mance degradation. We found that only by ap-
plying this bound a postiori resulted in a highly
effective (further) reduction of symmetric inter-
changes over a range of weakly indefinite matri-
ces. After an evaluation of its accuracy, a guard
condition was introduced to keep this very close
to that of the original algorithm while retaining
most of the performance benefits.

When used in the ACCUFIELD application,
the direct solver achieved speedups of 12-13 on
a 16 node 300 MHz AP3000 for matrices of the
order of N =~ 10000, and achieved a floating
point speed within 30% of a heavily optimized
LU solver for 2000 < N < 10000.

To further speedup the application on
UltraSPARC-based machines, it is necessary to
use highly optimized BLAS kernels. As com-
pared with using commercially available BLAS
libraries, these kernels improved solver perfor-
mance by ~ 35% for large matrices. Further-
more, the efficiency of the triangular matrix-
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matrix multiply, the computationally dominant
part of the solver, should not be overlooked. Our
algorithm, which we have argued to be optimal
for modern RISC processors with a deep memory
hierarchy, achieved a further 15% improvement.

We have also explored an alternate approach
to speeding up the application for the case of
EMC analysis over multiple frequencies. The
FFS method employed the iterative conjugate
gradient method using the direct solution over a
central frequency as a preconditioner. While it
achieved a time reduction by a factor of only = 2
for parallel solution on moderate sized systems,
much greater reductions are expected for larger
systems.

Future work includes investigating further
methods of improving parallel performance for
the direct and iterative solvers. For the former,
the full potential of our reduced interchange vari-
ant could be realized by an algorithm that can
predict when a (sub-) block column can be elim-
inated by case D1; that elimination can then
be done using LLT-like transformations, which
yield computational and communication advan-
tages. Alternate diagonal pivoting algorithms,
also with potential for a reduced number of inter-
changes, could also be investigated on the crite-
ria of an accuracy—performance tradeoff. For the
latter, applying FFS simultaneously over several
(say 4) vectors could amortize the communica-
tion costs, as well as result in increased compu-
tational speed.
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