
 

Abstract

 

In this paper we present an approach to obstacle avoidance
and local path planning for polygonal robots. It decompos-
es the task into a model stage and a planning stage. The
model stage accounts for robot shape and dynamics using
a reduced dynamic window. The planning stage produces
collision-free local paths with a velocity profile. We present
an analytical solution to the distance to collision problem
for polygonal robots, avoiding thus the use of look-up ta-
bles. The approach has been tested in simulation and on
two non-holonomic rectangular robots where a cycle time
of 10 Hz was reached under full CPU load. During a long-
term experiment over 5 km travel distance, the method
demonstrated its practicability.

 

1. Introduction

 

In most mobile robot applications, unmodeled obstacles in
the environment make it necessary to locally replan a path
in order to attain a goal autonomously. Obstacle or colli-
sion avoidance is the motion generating component in a ro-
bot’s architecture with this purpose. Although a
considerable amount of work on obstacle avoidance for
mobile robots exist, many approaches are still restricted to
a certain robot setting. Common restrictions are a simpli-
fied robot shape (mainly circular), a high sensitivity to lo-
cal minima or impractical computational requirements for
real-time if the former two points shall be met.

 

2. Related Work

 

Early work in this topic includes the 

 

potential field

 

 ap-
proach where the robot complies to a superposed force field
from obstacles and the goal [6]. It has been shown that this
approach suffers from many shortcomings, for example the
sensitivity to local minima [9]. Further developments im-
prove the classical approach: In [8] the driving behavior of
the vehicle is improved by a decomposition of the field into
a 

 

rotation potential field

 

 and a 

 

task potential field

 

. The
problem of local minima is addressed in [4] using a 

 

har-
monic potential field

 

 based on an analogy from fluid dy-
namics.

In [12] the 

 

elastic band

 

 concept is proposed which is fur-
ther extended in [7] to non-holonomic robots. A bubble is
defined as the maximal collision-free space around the ro-
bot. They are then used to form a band of bubbles connect-
ing the start with the goal point. Although it is a global path
planning method, local obstacle avoidance is realized by
adapting the bubble band to unmodeled objects during tra-
versal.

In [11] the concept of the 

 

nearness diagram

 

 is presented
identifying five different navigation laws according to a ro-
bot security measure. In choosing different motion com-
mands for each of the five cases, a simple reasoning is
realized in order to choose the appropriate action.

In contrast to this are approaches which deduce a motion
command from the current sensor readings by applying a
single rule. This rule then yields a steering angle [16] or a
velocity tuple [14][5]. The latter ones include the 

 

dynamic
window approach

 

 [5] or the 

 

curvature velocity approach

 

[14] explained below.

All approaches of this type have been improved. The 

 

vec-
tor field histogram

 

 concept of [16] has been ameliorated in
[17] with a look-ahead functionality: An A*-algorithm
searches for the proper action on a spatial tree spanned by
a set of candidate directions. Looking ahead is based either
on an a priori map or the current local map. In [15] the 

 

lane
curvature approach

 

 overcomes problems in [14] which
came from the assumption that the robot always moves on
circular arcs. [3] presents a globalized version of the dy-
namic window approach. In combination with a NF1 path
planner (see below) on a incrementally built open-loop
map, a minima-free path planning is achieved provided that
the map remains globally consistent. The dynamic window
with a NF1 path planner is also used in [13] where a non-
circular robot shape is assumed. Real-time capability is
achieved by using a robot-specific look-up table.

With the exception of [7] and [13] all propositions use a
circular shaped robot. But in many scenarios for service
and personal robots, it is the 

 

application

 

 which determines
the geometry. A circular shaped robot might be practical in
some cases but is rarely the ideal geometry given a specific
task. And approximating a non-circular robot with a circle
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is not a solution since a too conservative avoidance behav-
ior is the result. We furthermore think that the dynamics of
the vehicle should be explicitly modeled, even if e.g. [5]
and [14] only use a very simplistic model. However, as re-
ported in the literature and also according to own experi-
ments, the dynamic window approach (and similar
approaches) are sensitive to local minima if solely em-
ployed.

Therefore, this work relies mainly on the extensions of the
dynamic window approach presented in [3] and [13]. Alike
[3] and [13], it combines a model stage with a planning
stage. The paper goes beyond these contributions by 

• the presentation of an analytical solution to the dis-
tance to collision problem for polygonal robots. We
show that it remains feasible in real-time avoiding the
look-up tables of [13]

• the introduction of a velocity profile along a locally
planned path and thus the reduction of the dynamic
window to a 

 

dynamic line

 

The approach is furthermore validated by experiments in
simulation and a five kilometer test with a real robot.

 

3. The Approach

 

The sensitivity to local minima of the dynamic window ap-
proach lead us to the division of the problem into two inde-
pendent components: a 

 

model stage

 

 and a 

 

planning stage

 

.
The model stage accounts for robot shape and dynamics,
while the planning stage generates paths of -points
from the start to the goal position.

 

3.1 The Model Stage

 

We briefly review the dynamic window approach. The al-
gorithm assures at all times for a safe operation by selecting
only motion commands which allows the robot to come to
stop before collision. A motion command is a set of 
where  is the translational velocity and  is the rotational
velocity of the vehicle. The dynamic window itself is a dis-
cretized part of the -plane. It is spanned by all values
of  and  which are reachable within the next timestep
given the extremal accelerations of the vehicle (figure 1).
Each grid cell represents a motion command  which
thereby implies that the robot always moves on circular tra-
jectories whose radius is . Given all known ob-
stacles, the distance to collision on a specific circular arc
can be found. Accordingly, to each grid cell a value can be
assigned which is the distance until collision at that .
In figure 1 distance values are shown in gray; dark gray
means short distance to collision, light gray long distance
to collision.

Here, we deviate from the standard dynamic window in
the way how the translational velocity is chosen. In most
implementations the weight function in the dynamic win-

dow contains a factor which favors high speeds. As a result,
the highest allowed speed is chosen in 95% of the cases as
it has been observed in simulation experiments. This leads
to the idea to only calculate the dynamic window for this
speed and to control the highest allowed speed by other
means. The result is a 

 

dynamic line

 

 which requires much
less processing power (figure 2). 

The control of the speed is in a natural way influenced by
the curvature of the path. A long straight part of the path al-
lows high speed, a bend typically requires lower speeds.
The robot accelerates on the straight parts and decelerates
when approaching a bend.

Once  is given by the maximal allowed speed in the path
and the acceleration capabilities of the robot, it is time to
chose a new . This is done by maximizing a simple selec-
tion function with two weight factors (equa-tion 1).  fa-
vors trajectories with long distance to collision,  favors
heading towards the goal. The goal point is either the actual
global goal point or an intermediate goal point generated by
the path planner.
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Figure 1. The standard dynamic window. The example
shows a robot turning right ( ) with an obstacle
blocking the way to its left. As in this example, we
observed that a weighting factor which favours high
velocities yields a selection of the highest allowed velocity
in 95% of the cases.  denotes rotational acceleration,

 translational acceleration, and  the cycle time.
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The first term in equation 1 increases as the distance to col-
lision increases.  is here a constant which defines the
maximum considered distance and  is the distance to
collision for a specific . The second term in the equa-
tion has a maximum value when . This means
that the rotation  during the next timestep  will bring
the robot to the desired goal heading alpha .

 

3.2 The Planning Stage

 

The chosen path planner makes use of the distance trans-
form which is a grid based wave propagation technique.
Obstacles and the raw laser scan points are put into a grid.
A wave spreads out from the goal point until all grid cells
have been reached by the wave. A path from the start to the
goal point is found by following the negative gradient from
the start to the goal point (figure 3). The technique, also
called NF1, is explained in detail in [10]. Clearly, the local
minima problem is not solved in general as long as the grid
does not contain the whole environment as in [3]. But al-
ready with a local grid around the robot, the problem is sig-
nificantly reduced. We use a centered square grid of 8 m
length and a resolution of 5 cm.

 

3.3 When To Replan Paths?

 

For this question we employ a quite obvious strategy.
When the robot advances and senses an obstacle which
goes through the planned path (thus blocking the path), the
path is replanned at that position. We obtained good results
with this scheme allowing to avoid all sorts of 

 

U

 

-shaped
obstacles as long as they are detectable within the local
grid. Oscillating replannings in badly conditioned obstacle
configurations occur occasionally but never endanger the
mission to reach the goal.

Another point is the way how the path and the dynamic
window work together in order to keep the robot on the
path’s track and to deviate from it where shape and dynam-
ic constraints ask for it. The dynamic window obtains path
points as intermediate goal points. Thereby  controls
also the ‘path fidelity’. We only pass those path points
which mark a change in path direction and switch to the
next one if the robot is closer than a disk radius around
these points. This results in a stable yet flexible driving be-
havior with a smoothening effect on the paths generated by
the NF1.

As a further practical issue, we also reduce the computa-
tional load of the dynamic window by choosing only a sub-

set from the laser scan. The subset contains range readings
below a certain radius. This radius is dynamic and depends
on the maximum speed of the robot. A thinning strategy to
remove obstacle points which are very close to each other
is also used. This is especially relevant when the robot is
near a wall, where many obstacle points lie close to each
other. The resulting algorithm is illustrated in figure 4.

 

4. Distance To Collision: An Analyti-
cal Solution For Polygonal Robots

 

Given the shape of the robot, an obstacle point  and a ve-
locity set , this section presents a general method to
determine the distance to collision as it is needed in the dy-
namic window approach [14][5]. To exemplify the method,
a rectangular shaped robot is used. Extension to an arbi-
trary polygon is straight-forward although expression be-
come more complex than equations (4)–(7). In theory, the
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Figure 3. An example of the dis-
tance transform and the resulting
path (S means start, G goal).
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Figure 4. Block diagram of the algorithm. The raw range
scan is used by the path planner to plan a path to the
desired goal. Each path point contains a recommended
speed dependent on the curvature of the path. The
dynamic line, operating on a subset of the scan points,
tries to follow the path within the acceleration limits of the
robot and assures at the same time for a safe and collision
free navigation. The new translational velocity  is cho-
sen by combining the recommended speed and the accel-
eration constraints. The new rotational velocity  is
determined by maximizing the selection function of
equation 1. 
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method is not limited to polygonal shapes as long as the ro-
bot contour has an analytical expression.

Instead of searching for the distance to collision in the
world frame we use the robot frame . This is important
to note since performing the same calculations in the world
frame will yield complex and intractable expressions for
anything but a circular robot shape.

Once this has been seen, we will need the trajectory which
the obstacle point  makes in the robot frame. Then, the
point  where the obstacle hits the robot can be found eas-
ily by calculating the intersection between the robot con-
tour and the trajectory of . No intersection means no
collision with that point. The solution can be found from a
simple equation system. We first introduce the vectors and
variables (figure 5)

(2)

All vectors are represented in the (temporarily stationary)
robot coordinate system  which in the start point coin-
cides the global frame, i.e. .

We determine now the circle of  as seen from the robot.
This circle, dashed in figure 5, has the same center point as
the circle on which the robot moves (continuous line in fig-
ure 5). Its radius, , is found as the length of vector .
The equation of the circle gives

. (3)

This result and the analytical expression for the robot con-
tour gives the contour collision point . In the case of Pyg-
malion and Donald (figure 7) the expressions are

particularly simple since they both have a rectangular
shape. This is a further reason to use the robot coordinate
system since the robot contour quite obviously always fol-
lows the axis direction of the robot frame. The left and right
side of the robot can be expressed by two lines parallel to
the -axis. In the same way the front and back side can be
described by two lines parallel to the -axis. In equations
(4)–(7) the collision point  for front, left,
right and back collision is found by solving the resulting
equation systems for each case:

Front side: with 

(4)

Left side: with 

(5)

Right side: with 

(6)

Back side: with 

(7)

If any of the above equation systems yields a non-imagi-
nary solution, the robot will collide at . The distance 
travelled by the robot until collision is then calculated by

(8)

(9)

A single obstacle point can collide at several positions of
the robot contour. Therefore the final distance to collision,

, is determined as the minimum of the collision dis-
tances from all intersection points

. (10)

 

5. Experiments and Results

 

Obstacle avoidance is a safety-critical task – critical for the
environment, the robot and the mission. It therefore merits
particular attention for the implementation on a real robot.
With the real-time OS XO/2 we use [2], obstacle avoidance
is implemented as a so called hard real-time tasks. The op-
erating system schedules such a task at a given frequency
while guaranteeing its completion within a specified dead-
line. Under full CPU load, we measure 23.2 milliseconds
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maximal processing time which includes dynamic line and
path planning. The SICK scanners deliver new data with 10
Hz, yielding thus a cycle time of 10 Hz and the task’s dead-
line of 100 ms. The implementation is running on the ro-
bots Pygmalion and Donald (figure 7). 

5.1 Laboratory and Simulation Experiments

Identification experiments for Pygmalion yielded the val-
ues for the minimal and maximal accelerations which are
needed in the dynamic window: max. translational acceler-
ation  (set smaller than maximal possi-
ble for aesthetic reasons), maximal translational
deceleration , maximal rotational speed

, and max. rotational acceleration
. A run in simulation and in the labora-

tory is shown in figure 6. The figures show the superposed
range readings and the trajectory of the vehicle. Several re-
plannings were necessary to bring the vehicle to the desired
positions. We also see that the rectangular robot shape is
properly taken into account. A cluttered environment with
outlier measurement was simulated (figure 6, top) and en-
countered in reality (figure 6, bottom).

5.2 Results From �Computer 2000�

“Computer 2000” is an annual tradeshow for computer
hard- and software at the Palais de Beaulieu exposition
center in Lausanne, Switzerland. Our laboratory was
present during the four days, May 2nd to May 5th 2000,

giving visitors the opportunity to control Pygmalion by
means of its web-interface (figure 8) and to discover our in-
stitute building at EPFL. The experiment took place during
normal office hours in an unmodified environment of 50
m 30 m in size which contains twelve offices, two corri-
dors, the seminar and the mail room. Note that the environ-
ment is relatively big and implies many co-workers. This
makes it impossible to prepare the environment in order to
comply with the needs of a 2D laser range finder. The main
concern of this experiment was to have a test-bed for our
localization [1], the obstacle avoidance and the complete
system as a whole.

During the 28 hours of system activity, Pygmalion trav-
elled more than 5 km and had about 60 collisions (table 1).
We never observed a case where the goal was not reached
due to a local minima problem. About 50 collisions were
due to objects which were not visible at all to the robot’s
sensors. These objects include (in decreasing frequency):
(i) tables, chairs and other furniture, (ii) opened doors
standing exactly in the blind zones between the two laser-
scanners, (iii) bags and luggage on the floor, (iv) students
or staff members who play with the robot and thereby pro-
voke collisions.

We counted ten collisions of unknown origin. This be-
cause the robot ran autonomously – without constant super-
vision – over extended periods of time. The a posteriori
reconstruction of the failure cause (by the hastily approach-
ing operator) was very difficult in these cases. A problem
which was occasionally observed was that the NF1 gener-
ated paths that cut corners in a undesirable way. Together
with a low-level security rule which stops the robot if
something is closer than five centimeters, this lead to situ-
ations of a blocked robot typically with doors which open
into the corridor. Although no collision occurred, manual
intervention was necessary.

6. Conclusions and Outlook

From the experiments we conclude that this approach is
very practical and exhibits a well-balanced distribution of
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Figure 6. A simulation run at  (top). A test run with
the real robot in the laboratory at  (bottom). In
order to reach the goal in the corridor, several replan-
nings were necessary in both experiments.
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the computational load to the model and the planning stage.
Shape and dynamics is taken into account by a reduced, fast
dynamic window and the local minima problem is signifi-
cantly diminished by a path planner operating on a local
grid. The use of a simple curvature-dependent velocity pro-
file along the path allows to reduce the dynamic window to
a dynamic line. This makes the approach fast even for po-
lygonal robots. The analytical solution of the distance to
collision we presented allows further an on-the-fly chang-
ing robot contour – for example from the presence or ab-
sence of a payload. This would be difficult with hard-coded
look-up tables or a simplified robot shape.

Clearly, The NF1 path planner is a suboptimal choice. It
has the already mentioned property to generate paths that
cut corners and produces in general an unsmooth robot mo-
tion. Improvements exist and we recommend to use them
although the NF1 seduces by its simplicity. A more sophis-
ticated path planner would eventually reduce the maximal
achievable cycle time.

Future work will address the problem of highly dynamic
obstacles and an improved local path planning. The results,
particularly from the “Computer 2000” event, are also a
compelling demand for 3D sensing. Even in this structured
environment, the most significant failure cause was the 2D-
assumption respectively its violation. If service or personal
robots shall be successful in applications whose environ-
ments can not be controlled, 3D sensing will be mandatory.
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Hours of operation 28 / 4 days

Environment size 50 x 30 m

Overall travel distance 5,013 m

Maximal travel speed 0.4 m/sec

Number of missions 724

Number of localization cycles 145,433

Number of localization lost-situation 0

Number of unknown collisions ~ 10

Table 1. Overall statistics of the “Computer 2000” event. 

Figure 8. The Pygmalion web-interface. It provides con-
text-sensitive menus with intuitive click-and-move-there
commands for robot teleoperation. Four different real-
time streams constitute the visual feedback: an external
web-cam (top-right), an on-board camera (top middle),
raw data from the laser range finder (top-left) and the
robot animated in its model map (left middle). By clicking
onto the map an office is defined as destination, clicking
onto the camera image turns the robot and clicking on the
laser scanner image defines a local -goal.x y,( )
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