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Abstract
This paper presents a framework for exploration and incre-
mental mapping of unknown environments. The framework
allows for evaluation and comparison of different acquisi-
tion strategies. During exploration a visibility graph is con-
structed which holds correct topology information about
the environment and provides a means for immediate plan-
ning in the partially known map. The framework has been
implemented in simulation and on a real platform equipped
with a 360 degree laser scanner, an algorithm for line and
segment extraction and an extended Kalman filter for local-
ization. Structured environments have been explored and
mapped in a fully autonomous mode, simultaneously local-
izing the robot yielding results of satisfying precision. Lim-
itations and problems of our implementation will be
discussed as well.

1. Introduction

The burden to build practicable a priori maps by hand is one
of the major motivations for autonomous map building.
Others, not less important ones, are perceptual compatibili-
ty, i.e. acquisition and operation is done with the same sen-
sory system, and environments dynamics, making a priori
maps laborious to keep up-to-date.

For the purpose of map building three elementary ques-
tions need an answer.

(i) How is the world and the robotrepresented?
(ii) Which formalism for integrating new

information is employed?
(iii) Where to acquire new information?

Several world representations are in use which are best
separated by their degree of abstraction: From raw data
maps with no abstraction, to metric maps with geometric
features and their spatial dependencies, via topologic maps
holding relationships between locally distinct locations up
to semantic high-level descriptions of the world [5].

For the purpose of compact environment models and pre-
cise navigation, metric, feature-based maps are a good
choice and will be employed here. This leads to the problem
of representing and managing uncertain spatial relation-

ships, constituting a globally referencedstochastic map
[12]. The environmental entities of our map are line se
ments with their first order covariance estimate. Position e
timation is simultaneously performed with an extende
Kalman filter during exploration.

In the stochastic map, all features are referenced in
common world frame. The robot and the map entities a
modeled as uncertain spatial relationships by estimat
their first two moments in that frame. They are stacked in
the estimated system state vector and the estimated
tem covariance matrix . The matrix has a block-wis
organization where the robot and each individual map fe
ture has its associated covariance matrix in the diagonal.
important point is that is not block-wise diagonal. Th
off-diagonal sub-matrices are the cross-covariances
tween the spatial relationships and encode their depend
cies. It is important to maintain these cross-correlations
demonstrated in [7] and [3]. When inter-feature and robo
to-feature correlations are neglected, phenomena ea
leading to inconsistencies in the world model can be o
served (see chapter 5). However, as pointed out in [
maintaining these dependencies is not the solution to
problems when doing simultaneous localization and m
building. The approach initially proposed in [12] has bee
shown to be sensitive to bias due to incorrect error mod
and inadequate error propagation [11]. Several propositio
have been made to alleviate these difficulties, includin
suboptimal schemes [10][11], or improved techniques f
error propagation in nonlinear systems [8].

The abovementioned problems and remedies are sub
of on-going research and can be assigned to the secon
the three elementary questions initially raised. We belie
that approaching the problem from the viewpoint of th
third issue, that is, by means of adequate exploration stra
gies, is an alternative worth to be investigated. The freque
cy and succession of observations and re-observations
features play a role for system convergence especially in
presence of bias. For this reason, an exploration framew
is needed which allows, according to certain (possibly d
namically changing) criteria, to change, examine and co
pare different exploration strategies with respect to t
quality of the resulting map. This paper presents first resu
in the attempt to push forward the limits of feature-base
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map building by a deliberative choice of exploration strate-
gies.

Opposed to [13], where the frontier is the boundary be-
tween open space and uncharted territory, our approach pri-
mary focuses on the frontier between explored and
unexplored area. The exploration is feature-based and, as
described in [6], driven by unknown ends of features. The
accuracy of the resulting map and the time taken to produce
it are measures of exploration quality [9] and provide a
means to compare different strategies.

For the implementation on the robot platform, some im-
portant simplifications have been done however. They are
discussed in section 4.1, together with problems of the cur-
rent implementation in section 5.

2. Segment-Based Maps

This work relies on the so called 2D assumption, that is, the
environment can be sufficiently described in 2D since all
percepted structures keep their form in the vertical dimen-
sion. The main idea where our exploration relies on, is that
every horizontal slice of an obstacle has a closed contour
(Figure 1). The goal is to build a closed chain of extracted
features around each contour in the environment (for defi-
nition what a feature is see section 2.1). Open ends of a
chain (in [6] called “non-terminal endpoints“), i.e. the end
of a feature, where the successive one is still missing, indi-
cate a frontier where new information can be gathered. The
map is the collection of all chains of features.

2.1 Feature Representation and Handling

The line extraction method is taken from [1]. This algorithm
delivers lines and segments together with their first order
covariance estimate. The distinction of lines and segment is

done as follows: A line is represented according to the He
sian model

(1)

where is the raw measurement in polar coordinat
and the model parameters. They come along w
their second moments which hold the propagated uncerta
ty from the raw data level. Segments have a four dimensio
al representation. Either by the Cartesian coordinates
their endpoints or by a position, an inclination and a leng
[3]. In a hierarchical order, segments are below lines sin
they lie on a line (the supporting line) and thus have th
same -pair. In all comparisons, matchings and u
dates of map entities only pairs of with their covar
ance matrix are used. Although this representation provid
consistent treatment of all feature model parameters a
thus permits ‘blind’ comparison and manipulation of fea
tures, this choice is a subpotimal one, as exposed in cha
5.2.

The problem with segments as elements for comparis
is that it is difficult to obtain physically based uncertaint
models in all four dimensions. For example, the length of
segment is noisy. For consistency reasons with our stati
cal formalism, we would like to have an uncertainty mod
of that noise. When extracting segments from laser scan
data, their endpoints typically exhibit a variability which
spans multiple raw points at the segment extremities. Fo
true uncertainty model it would be necessary to incorpora
the segmentation criterion of the extraction algorithm sin
it classifies a raw measurement point as a model inlier o
model outlier. It is therefore not sufficient to consider th
angular noise of the current endpoints for a model of se
ment length uncertainty since it yields too optimistic est
mates. This shortcoming might not be important for ma

Figure 1: Every object can be surrounded by a chain
of features (black) applied to the shape. This simple scene
shows two chains. One is closed, the other one is open.
The robot is heading to such an open end. If all chains are
closed the environment has been completely explored.
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Figure 2: The representation of a line is given as a
Gaussian distribution in model space (right) with heading

and distance as the first moments. Ellipses are iso
probability contours showing feature position at a certain
probability level. All operations like matching, fusing and
update are done in this space. To get line segments th
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building while in the localization case the length parameter
should be excluded from the robot pose updates.

When matching lines, their squared Mahalanobis dis-
tance is used. An extracted line is assigned to its best match-
ing analogue in the map if it complies with a given level
chosen from a distribution. Matching segments require
an additional criterion. For example, walls at the left and
right of a door may have the same location in model space,
but fusing them would, incorrectly, close the door. To pre-
vent this, we compare the minimal distance between seg-
ments against an Euclidian threshold.

Feature update is done by determining the weighted av-
erage of both estimated lines ,

with in model space ac-
cording to the multivariate weighted mean

(2)

(3)

which is a non-recursive form of the Kalman filter with a
measurement model equalling identity. Since all operations
on features like matching and fusion are done in -
space, a rule is required to update the segment endpoints.
This is performed in the environment space where these
points are orthogonally projected on the new line .

2.2 Integrating New Information

Simultaneous localization and map building is performed
by separating robot and map update using the relocation-fu-
sion scheme from [11]. This strategy updates the robot po-
sition before integrating the new observation into the map
(steps 2–4 below). Like this, the influence of robot position
bias commonly introduced by odometry has reduced influ-
ence onto the map. The relocation-fusion scheme is subop-
timal (there is a loss of information) but has been observed
to increase map quality and stability, and is compatible with
the simplifications of our current implementation (see chap-
ter 4.1). A system update consists of seven steps:

1. Extract features from the sensory input

2. Match observed features to the best fitting equivalent
from the map

3. Localize the robot with matched features

4. Matchfeatures with their re-prediction based on the
new robot pose.

5. Updatemap features with their matched re-observation
andstore unmatched features as new ones

6. Initialize a new chain for each new segment

7. Connectopen ends of chains if their Euclidian distance
falls below a certain threshold.

3. The Exploration Framework

In order to get a scalable and transparent architecture of
framework envisaged, we take advantage of recursion. T
job of map building is split into several layers. The top laye
manages the entire task at a high degree of abstract
whereas the lower layers get subgoals with increasing
spect to reality. Figure 3 shows the framework including th
main data flows. Each layer is discussed in the followin
chapters.

3.1 Wall Following Layer

The wall following component has to:

• Follow a given wall at defined distance. If the end of the
wall is reached, the robot continues to drive around th
endpoint holding the same distance until no collision-
free motion is possible anymore.

• Change to the opposite driving direction if the follow-
operation is no longer possible. Together with the abov
behaviour, this leads to a ping-pong movement along th
wall making it irrelevant in which direction the robot
started to follow the given wall. In favour of more effi-
cient exploration an additional direction information
could be passed to this layer.

• Approach a wall from an arbitrary direction. Used to
change the actual wall to be followed.

The only input of this layer is the actual wall the robot ha

χ2
2
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Exploration Strategy

Figure 3: Flow diagram of exploration framework,
robot and mapping components. Functional blocks wit
thick borders constitute the exploration framework and
are dicussed in the text. It transforms feature informatio
successively into executable robot motion commands.
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to follow. Its output are motion commands for a velocity or
position controller.

3.2 Navigation Layer

The navigation component adds the capability of moving
the robot from one place in the (partially known) map to an-
other. The input of this layer is a wall representing the goal,
its output is sequence of walls to be followed.

A representation for modeling the environment topology
is sought which allows for global planning. For this, a visi-
bility graph is used (figure 4). The visibility graph consists
in nodes, unidirectional and bidirectional edges between the
nodes. Unlike most other works where the termvisibility re-
fers to ‘from one place in free space to another‘, e.g. onto a
Voronoi Graph, our approach is similar to [4]. The graph
consists in the map features and their visibility relation.
Each line in the feature based map appears as a node in the
graph (numbered circles in figure 4 b). An unidirectional
edge between two nodes indicates the possibility to observe
a wall from an other one. Applying a conservative attitude,
the conclusion that visibility is valid also in the opposite di-
rection is not made. A bidirectional edge is registered when
two walls turn out to be adjacent and with that are physical-
ly attainable in both directions. This is the case with chain
2-6-8-10 in figure 4.

The task of global path planning is then a well known
search algorithm for this type of graphs. Once a node se-
quence is planned, it remains to pass its elements to the wall
following layer. Due to the properties of the this layer, a sin-
gle command is sufficient to approach, follow and drive
around a wall.
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Figure 4: A simple environment consisting of one cycle
with a dead end (a) and a partial visibility graph (b).
Peripheral connections between nodes denote direct
neighbourhood in a chain (i.e. 2-6-8-10) whereas arrows
indicate the possibility to observe a wall from the other.
When the robot is following e.g. wall 8 and would like to
get to wall 16, it can switch to wall 3, follow around the
corner to wall 12, then wall 15 where it will finally see
the goal.

(b)(a)

Figure 5: The ‘next to actual position’ strategy. Shad-
ing indicates traversal frequency. The initial position is
marked with a circle. During the whole exploration the
robot passes there only once. The exploration behavio
is straight forward, comparable to a depth-first search.

Figure 6: The ‘next to start position’ strategy causes a
path that is about three times longer than the ‘next to
actual position’ path from figure 5 and results in a pendu
lum-like exploration behaviour around the starting point
Dark shaded cells indicate often traversed areas. Th
motivation of this strategy is to slow down the growth o
accumulated uncertainty of features and robot at th
extremities of the charted terrain by regularly passing th
most certain region around the start point.
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3.3 Exploration Layer

The exploration strategy is situated in the top layer. No
command input is needed for that component. Its output is
the goal-wall to where the planning and navigation layer
shall bring the robot.

The task of exploration is accomplished by choosing a
feature that is currently the end of a chain and passing it to
the navigation layer. When the robot approaches unknown
territory, new information will automatically influence the
map. The explorer continuously checks whether the actual
feature is still interesting (i.e. that is an end of a chain) or
not. The environment is completely explored, in the sense
of this method, when all boundaries are closed.

There are two questions that mainly determine the behav-
iour of the exploration strategy:Whento choosewhichfea-
ture for exploration? For the first question, the following
rule was used:

• Abandon the actual feature if it is no longer the first or
last one in the chain to be explored. This condition can
be extracted directly from the map, no additional infer-
ence is needed.

For the second question, three possible strategies shall be
given:

• Choose the feature with the open end that isclosest to
the actual robot position (figure 5). This leads to a
depth-first search behaviour resulting in a fast explora-
tion (further referred to as ‘next to actual position’).

• A more restrictive strategy is to decide for thenext open
end in the actual chain. This leads to a behaviour which
closes a chain completely before beginning a new one. A
very similar method is used in [6].

• Choose the feature with the open endclosest to the start
point (figure 6). This yields a breadth-first search behav-
iour generating a pendulum-like exploration around the
start position. The initial position has an important prop-
erty: It is the place where the robot had its lowest posi-
tional uncertainty and is therefore surrounded by the
best known features in the map (further be referred to as
‘next to start position’).

The idea of the third strategy is to traverse well known
area for accurately relocalizing the vehicle before starting a
new attempt into unknown terrain. Further strategies where
decision are made on the basis of feature or robot uncertain-
ties is subject of current work.

3.4 Simulation

For the purpose of evaluating different exploration strate-
gies we developed a simulation environment. A map drawn
by hand can be loaded and explored. Errorless motion and
perception (i.e. perfect odometry and line extraction) allow

to easily develop strategies but do not provide quantitati
measures of map quality. See figure 6 and figure 5 where
two simulation runs, the same environment has been
plored by two strategies previously described.

4. Implementation

For the real-world experiments a differential drive robot d
picted in figure 7 was used. It is equipped with a VME car
carrying a PowerPC at 100 MHz. Two SICK LMS200 lase
range finders covering together 360° with a resolution of 2°
and a radial error of measurement less than±20mm were
used. All range values beyond 4 m were rejected. The entire
code was written in XOberon, a deadline-driven hard rea
time operating system developed at Institute of Robotic
ETH Zurich [2]. Figure 7 shows the robot in front of an ob
stacle placed inside free space.

4.1 Simplifications

An important simplification of the current implementation
originates from the exclusive use of line segments as en
ronment features. The environments in figure 8, figure
and figure 10 c are modified such as to have a degree
structuredness compatible with this constrain. Otherwise
chain of features could not have been closed. This loss
generality is neither imposed by the stochastic map whi
is strictly general with respect to the feature type nor by o
exploration framework which principally works also in en

Figure 7: The robot which was used in the experi-
ments. It is equipped with two Sick LMS200 laserscanne
covering 360°. The robot is a VME based system, cur-
rently carrying a PowerPC@100MHz. It runs the dead-
line-driven real-time operation system XOberon. The
exploration framework is implementable such that the
system could execute the task in a fully autonomous mod
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vironments with less frequent feature appearance. This sim-
plification allows us to disregard a treatment of raw data
like collision avoidance.

Although earlier work has demonstrated the need of
maintaining cross-correlations in the stochastic map – [7]
with simulations, and [3] with experiments on a real plat-
form –, the current implementation neglects any cross-cor-
relations between features and between robot and features
yielding a blockwise diagonal system covariance matrix .
As already mentioned in chapter 2.2, concurrent localiza-
tion and map building is performed by separating robot
pose update and map update according to the relocation-fu-
sion scheme from [11] (where all cross-correlations are
maintained). The absence of cross-correlations lead to prob-
lems which confirm the results in [7] and [3]. See chapter 5
for their discussion.

4.2 Results

In the first experiment a cyclic 7m x 7m environment has
been autonomously explored with our simplest strategy
‘next to actual position’ (figure 8). Map update and robot
localization were done at each step on the drawn trajectory.
The complete length of the exploration path is 33 meter.
Three cornersA, B andC are marked and their distances
were measured by hand and taken from the resulting map.
The map shows no significant mismatch when taking a look

at table 1. Figure 9 shows a sequence of exploration step
a 12m x 9m environment which has been explored with t
same strategy.

One of the most difficult problems in map building in cy
clic large environments is to correctly close loops. The
represent the crucial situation of a very uncertain robot, po
sibly suffering from unintentionally injected position bias
which is confronted with an already visited area of relativ
high confidence. When integrating the local map into th
global one, ambiguous matching situations are likely to o
cur with the danger of system state divergence due to inc
rect pairings. In view of the ignorance of any cross
correlations, also regarding the simulation results in [7] a
the suboptimal feature representation, we rate it as surp
ing that, as figure 9 shows, the robot was able to match
local map correctly after a 16 meter path around the big o
stacle. We believe that the precision of the laserscann
employed and a line extraction method furnishing accura
feature estimates have the predominant contributions to
quality of these results.

5. Limitations and Problems

5.1 Map Inconsistencies and Nonconservative
Estimates

The effect of ‘positive feedback’ between recorded featur
and the robot position has been observed and is illustra
in figure 10 and figure 11. With a stationary robot succe
sively re-observing, matching and updating already mapp
features, the uncertainty of robot and features converge
zero. This phenomenon is caused by the absence of cro
correlation between robot and features since then, each
servation is interpreted as new and independent informat
on the global feature position which is not the case. As
consequence, system update yields nonconservative, ‘o
mistic’, estimates of robot and feature uncertainties. Wh
attempting to match extracted lines to their charted rep
sentation in the map, their squared Mahalanobis distan
becomes too great and they are incorrectly recorded as n
features producing thus inconsistencies in the map. Such
consistencies are visible in the map of figure 9 (at top bo
der, small segment in v-shaped structure) and figure 10 

Λ

Figure 8: Cyclic environment autonomously explored
and mapped by the real robot with our simplest strategy
‘next to actual position’. The distances between the cor-
ners marked with A, B and C have been measured and
compared to those from the map (table 1). The grid equals
one meter, like in all other maps.

C

A

B

A to B A to C B to C

Measured by hand 6.50 m 8.35 m 7.60 m

Map 6.50 m 8.30 m 7.65 m

Table 1: Distances of the marked corners in figure 8.
Values rounded to 5 cm.
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5.2 Feature Representation

The uncertainty propagation in the line model from (1)
not invariant against frame transformations. The lineariz
measurement relationship for ( ) with respec
to makes this evident. is the current robo
pose estimate at time index , the line param
ters in the coordinate system , whereSdenotes sensor
frame,Wworld frame, and the measurement model o
a line also used in Kalman filter measurement prediction

(4)

The right hand side of the relationship (4) contains the rob
pose in world coordinates thus incorrectly magnifying
with the current robot position estimates

6. Conclusions and Future Work

This paper presented an exploration framework for evalu
tion and comparison of different acquisition strategies f
the purpose of autonomous incremental map making. T
entire framework is implementable such that a fully auto
omous system can execute the task. No off-board, off-li
or post-processing procedures are required to get a pract
environment model. Experiments in simulation and on

Figure 9: This 12m x 9m environment was autono-
mously explored also by the ‘next to actual position’
strategy. Each open end of a chain is marked with a cir-
cle. As the sequence of pictures show, the robot was able
to successfully close the chain around the big obstacle
and to correctly integrate the local map into the global
one. The distance error of the two most afar corners in
the map, top right to bottom left, has been measured and
is less than 20 cm.

σrr
S{ } σr

2 S{ }
=

α W{ } x̂k ŷk θ̂k, ,( )
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Figure 10: As a consequence of neglecting cross-cova
iances, optimistic estimates of robot and feature unce
tainties are produced. This can be seen e.g. in the trace
the robot pose covariance matrix (a). It is incorrect that
the trace becomes inferior than its initial value. The envi
ronment (c) contains multiple entries for the same wal
The newly observed segment A* should be assigned to t
supporting line A. The problem can also be visualized i
the model space ((b), situation at step 9 of the exploratio
path in (c)). Wall A appears already as a small ellipse, too
small such that A* is matched and fused correctly.

(a) (b)

(c)

A A A*
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real platform were carried out. Equipped with a 360° laser-
scanner, an algorithm for line and segment extraction and
an extended Kalman filter for localization, structured envi-
ronments have been explored and mapped. During explora-
tion a visibility graph is constructed which allows for
immediate planning in the partially known map. First re-
sults were presented producing maps of encouraging quali-
ty. Limitations and problems of the current implementation
were discussed.

The problems encountered and described in chapter 5
mark the most urgent points for improvements. The sto-
chastic map shall firstly be implemented in its initial rigor-
ous form under account of all cross-correlations [12].
Choosing a more appropriate feature representation which
is compatible with the statistical formalism is the second
question to be envisaged. It is further planned to develop
additional exploration strategies and to examine the benefit
of adaptive on-the-fly strategy changes. Finally the step to
semi-structured, unmodified environments is to be made.
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Figure 11: In this example the robot starts at the circle
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it shows the desired effect of relatively decreasing uncer-
tainty when repassing the same place, the values fall
below the initial uncertainty which is unrealistic.


	A Flexible Exploration Framework for Map Building
	Abstract
	1. Introduction
	2. Segment-Based Maps
	Figure 1: Every object can be surrounded by a chain of features (black) applied to the shape. Thi...
	2.1 Feature Representation and Handling
	Figure 2: The representation of a line is given as a Gaussian distribution in model space (right)...

	2.2 Integrating New Information

	3. The Exploration Framework
	Figure 3: Flow diagram of exploration framework, robot and mapping components. Functional blocks ...
	3.1 Wall Following Layer
	Figure 4: A simple environment consisting of one cycle with a dead end (a) and a partial visibili...

	3.2 Navigation Layer
	Figure 5: The ‘next to actual position’ strategy. Shading indicates traversal frequency. The init...
	Figure 6: The ‘next to start position’ strategy causes a path that is about three times longer th...

	3.3 Exploration Layer
	3.4 Simulation

	4. Implementation
	4.1 Simplifications
	Figure 7: The robot which was used in the experiments. It is equipped with two Sick LMS200 lasers...

	4.2 Results
	Figure 8: Cyclic environment autonomously explored and mapped by the real robot with our simplest...
	Table 1: Distances of the marked corners in figure 8. Values rounded to 5 cm.


	5. Limitations and Problems
	Figure 9: This 12m x 9m environment was autonomously explored also by the ‘next to actual positio...
	5.1 Map Inconsistencies and Nonconservative Estimates
	5.2 Feature Representation
	Figure 10: As a consequence of neglecting cross-covariances, optimistic estimates of robot and fe...


	6. Conclusions and Future Work
	Figure 11: In this example the robot starts at the circle with a cross and an uncertainty unequal...

	7. References


