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Abstract

Metamodeling is raising more and more interest in the field of language engineering.
While this approach is now well understood for the definition of abstract syntaxes,
the formal definition of concrete syntaxes is still a challenge. Concrete syntaxes
are traditionally expressed with rules, conforming to EBNF-like grammars, which
can be processed by compiler compilers to generate parsers. Unfortunately, these
generated parsers produce concrete syntax trees, leaving a gap with the abstract
syntax defined by metamodels. This gap is usually filled by time consuming ad-hoc
hand-coding. In this paper we propose a new kind of specification for concrete
syntaxes that takes advantage of metamodels to generate tools (such as parsers or
text generators) which directly manipulate abstract syntax trees. The principle is
to map abstract syntaxes to concrete syntaxes via EBNF-like rules that explain how
to render an abstract concept into a given concrete syntax, and how to trigger other
rules to handle the properties of the concepts. The major difference with EBNF is
that rules may have sub-rules, which can be automatically triggered based on the
inheritance hierarchy of the abstract syntax concepts.
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1 Introduction

Languages for the definition of metamodels such as MOF [15], model inter-
change facilities such as XMI [18] (to be seen as XML representation for ab-
stract syntax trees) and tools such as Netbeans MDR [21] or Eclipse EMF
[4] can be used for a wide range of purposes, including language engineer-
ing. While this approach is now well understood for the definition of abstract
syntaxes, the formal definition of concrete syntaxes is still a challenge, even
though concrete syntax definition is considered as an important part of meta-
modeling [1].

Being able to parse a text and transform it into a model, or being able to
generate text from a model are concerns that are being paid more and more at-
tention in industry. For instance, Microsoft with the DSL Tools [9] or Xactium
with XMF Mosaic [2] in the domain-specific language engineering community,
are two industrial solutions for language engineering that involve specifica-
tions used for the generation of tools such as parsers and editors. A new
OMG standard, MOF2Text [16], is also being developed regarding concrete
← abstract mapping. It is also likely that some other approaches concern-
ing concrete syntax composition from a model, see for instance [14], may be
improved to support analysis and synthesis of concrete syntax. However, at
this time, we are not aware of a unified formal bidirectional specification of
concrete syntax that would allow both concrete → abstract and concrete ←
abstract mappings.

In this paper, we explore such a bidirectional mapping by defining a lan-
guage for the specification of textual concrete syntax in a context where ab-
stract syntax is represented by metamodels. This language will be referred
as TCSSL for Textual Concrete Syntax Specification Language. Concrete
syntaxes written in TCSSL may be used by compiler compilers to generate
text analyzers that produce models as instances of metamodels, instead of
merely concrete syntax trees. It should also be possible to generate, again
from that concrete syntax specification, pretty printers, IDEs, or even incre-
mental synchronizers that update the textual views representing a model, and
symmetrically update a model when the textual representation changes. Fig.
1 summarizes an example of usage of such specification.

Of course, a TCSSL specification dedicated to a given metamodel does not
prevent defining another TCSSL specification dedicated to the same meta-
model to provide another concrete syntax. One could thus imagine different
teams working on the same model using different concrete syntaxes, i.e. tex-
tual views of the model, each one adapted to the different stakeholders’ needs
and preferences. Even though the model is viewed with different clothes, it is
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Fig. 1. Usage of a Formal Textual Concrete Syntax Specification Example

still the same model that everyone manipulates.

To achieve such requirements, we propose that each representable concept
of the metamodel (i.e. each concept that should be possibly rendered using
the concrete syntax to be described) is complemented with EBNF-like rules
which state the mapping between a model element and a concrete syntax
fragment. The major difference with EBNF is that properties of the concept,
i.e. relations with other concepts, are interpreted as calls to other rules. In
this case, at text analyzing time, the correct rule for the associated concept
is triggered and returns a model element that has to be referenced by the
property in the model. The text analyzer detects the appropriate rule for
a given property by choosing between the rule of the awaited concept (if it
exists), and all the rules corresponding to sub-concepts (i.e. rules of inheriting
concepts). For instance, if a property references a real, the text analyzer has to
trigger either the rule for reals, or the rule for integers, as the integer concept
inherits from the real concept. Such behavior can be symmetrically applied
for text generation. Of course, such adaptation of EBNF has side effects, and
special features had to be added, such as a different system for rule choices or
for loops. We will develop these points in the rest of the paper.

In section 2, we will discuss requirements of model-driven textual language
engineering and provide a simple example that will be studied in the rest of
the paper. Then, in section 3, we will present the concepts of the textual con-
crete syntax specification language (TCSSL) that we propose. Considerations
about complex mapping requiring several passes will be given in section 4. An
example of a parser and text generator which implements our approach will
be developed in section 5. Finally section 6 draws some general conclusions
and outlines future works.

2 Model-Driven Language Engineering

In this section, we introduce language engineering and its relations to model-
driven engineering. We also present the basics of a single example, a textual
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statechart language, that will be used to illustrate our proposal in the rest of
the paper.

Model-driven methodologies [11,12] promote models as first class assets.
They also promote iterative development by refinements and refactorings.
This implies a number of different kinds of models, thus a number of differ-
ent metamodels and variations of metamodels. A model is usually built with
some purpose in mind. It can be source for (semi-)automatic computations
(i.e. model transformations, refinement, refactoring, code generation...), or it
can be merely documentary. Even if models are used in an automatic way,
they clearly need to be represented in a human-readable way, so that they can
be described and understood. This is where concrete syntax comes into play.
Because of the number of metamodels and the necessity to edit or visualize
models, it is desirable to find how to derive specific IDEs form concrete syntax
specification. This paper concentrates on textual concrete syntaxes, although
ongoing researches deal with graphical concrete syntaxes (see [3,8]).

To illustrate the requirements of model-driven engineering, one can study
a simplified but yet illustrative version of statecharts [10], whose metamodel
is shown in Fig. 2. A transition has exactly one source vertex and one target
vertex. A vertex is either a pseudo state (initial state, choice, etc.) or a state,
which is in turn either a composite state (i.e. containing other vertices and
transitions), or a simple state. Transitions may be triggered by events. A state
machine is given by its top state. Not shown in Fig. 2 are well-formedness
rules that complement the metamodel and stipulate, for example, that an
initial pseudo-state can never be the target vertex of any transition.

StateChart

ModelElement

name : String [0..1]

StateMachine

StateVertex Transition

State

Composite
State

Simple
State

Event

PseudoState

kind : PseudoStateKind
«enumeration»

PseudoStateKind

initial
...

1

1

source

target

outgoing

incoming

*

*

state

*

0..1

container

top 1

0..1trigger

*

1

*

Fig. 2. Simplified State Chart Metamodel

Fig. 3 represents various possible representations for a simple state chart
controlling a door. Part (a) uses a standard graphical state diagram notation.
A door may be opened or closed. If the door is closed, it may be locked or
not. A locked door cannot become opened. Part (b) represents the same
model using a textual syntax that we propose to study below in the paper.
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Part (c) represents the model as an instance of the metamodel of Fig. 2 (i.e.
the abstract syntax) using the MOF object diagram notation. For sake of
readability, events have been omitted.

Door

closed

opened

lock unlock

close

unlocked

locked

open

unlocked

(a) Graphical No-
tation

file:///f:/Articles/2006/LDTA/umlsc/door.html
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StateMachine Door

CompositeState {
  initial State opened
  CompositeState closed {
    initial State unlocked
    State locked
    Transition from unlocked
        to locked on lock
    Transition from locked
        to unlocked on unlock
    Transition from unlocked
        to opened on open
  }
  Transition from opened
      to closed on close
}

(b) Textual Notation

Door:StateMachine

:CompositeState

:Transition

:PseudoState

kind=initial

opened:SimpleState

closed:CompositeState

:Transition

:Transition

source

:PseudoState

kind=initial

locked:SimpleState

unlocked:SimpleState

:Transition

:Transition

top

source

target

target

source

source

target

source

target

subvertex

subvertex

subvertex

subvertex

target
subvertex

subvertex

transition

transition
transition

transition

transition

(c) Abstract Syntax as Instantiation
of Metamodel

Fig. 3. Three Representations of the Same State Chart

3 Textual Concrete Syntax Specification

This section is the core of the paper and presents the most important concepts
of the Textual Concrete Syntax Specification Language (TCSSL). To illustrate
these concepts, we use the example of section 2 and define the abstract ↔
concrete syntax mapping as presented in Fig. 4 using TCSSL.

As the TCSSL is a language, it needs its abstract syntax and concrete
syntaxes to be defined. For sake of briefness, we will not introduce the concrete
syntax although this would be possible using the TCSSL itself. Abstract
syntax is defined using metamodeling, and presented using the MOF concrete
syntax [15], which is close to UML class diagram notation. Concepts are
thus represented using metaclasses, relations between them are modeled by
associations (i.e. properties put face to face), and basic properties by attribute
using basic data types (String, Boolean, Real, Integer).

The main concepts of the TCSSL are summarized in Fig. 5. A TCSSL
syntax (SyntaxDefinition) is a set of TCSSL rules. It has a name (name),
defines a default language interpreter for expressions (defaultLanguage), and
a set of tokens that are ignored by the parser (like blanks or line feeds -
ignoredLexems). A TCSSL rule (Rule) is assigned to each representable
concept (MetaElement) of the metamodel. A rule may have a name (name).
A rule may be a default rule for its concept (isDefault), which is the case in
Fig. 4 line 9, which is the rule to be fired when no specific rule name is invoked.
A rule may also be an entry rule (isEntry), as in Fig. 4 line 5, meaning that
this may be the main rule of a model textual representation.
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1: syntax UMLSequenceCharts 
2: with defaultLanguage KerMeta 
3: and ignored  "\ ", "\t", "\n", "\r", "\f"; 
 
5: entry rule for StateMachine ::= 
6: "StateMachine" self.name 
7:  
8: self.top; 
 
 
9: rule for SimpleState ::= 
10: <initial>"State" self.name 
11: ; 
 
12: rule for CompositeState ::= 
13: <initial>"CompositeState" self.name "{"  
14:  mixed(self.state || self.transition) 
15: "}" 
16: ; 
 
17: macrorule initial ::= 
18: (<< {self}.isInitial := {true} >>"initial"  
19: |_ 
20: ); 
 
21: rule for Transition ::= 
22: "Transition" self.name "from" self.source<name> 
23:       "to" self.target<name> (self.event opener "on") 
24: ; 
  
25: seekrule name for State with criterium {self.name} ::= 
26: [1](self.name); 
 
27: singletonrule for Event with criterium {self.name} ::= 
28: [1](self.name); 

Fig. 4. The State Chart Language Specified Using the TCSSL

SyntaxDefinition

name:String
defaultLanguage:String
ignoredLexems:String

Rule

name:String[0..1]
isDefault:Boolean
isEntry:Bolean

*1

rules
MetaElement

* 1

rules

*1

properties

CreationRule SeekRule

SigletonRule

Expression

language:String
body:String

Query
0..1 1

criterium

MetaProperty

multiplicity:Multiplicity[*]

«structure»
Multiplicity

lowerBound:Integer
upperBound:Integer

Fig. 5. Main TCSSL Concepts

There exist three kinds of rules, which behave differently only in case of
concrete → abstract transformation. Macrorules are not real rules as they
behave as syntactic sugar to avoid repetitive constructs. This is the case
in Fig. 4 line 17, where the macro initial is used both in default rule for
SimpleState and rule for CompositeState.

Simple rules (CreationRule), like in Fig. 4 line 9, are rules that will in-
stanciate the corresponding model element when triggered at text analyzing
time. This is the case, as in Fig. 3 (b), when it is stated State locked: as
specified by the rule, a new instance of the SimpleState concept in meta-
model of Fig. 2 is instanciated in the model, with its name property filled with
the “locked” string value.
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Seek rules (SeekRule) are rules that do not create anything in the model.
They merely look for existing concept instances in the model that satisfy a
criterion given in the with criteria clause, as for Fig. 4 line 25. In the
example, the rule looks for the name of the state, as it can be found in the
textual representation. That kind of rule may be interesting for referencing an
already existing model element. Here, it is a rule for concept State ; as the
rule has a name, it is not considered as the default rule for that concept. So, to
call that rule one needs to explicitly name it. This is the case in Fig. 4 line 22
and 23, when the rule calls the self.source<name> and self.target<name>

properties that are in relation with the State concept.

Singleton rules (SingletonRule) have almost the same behavior as cre-
ation rules, but will avoid instanciation in case a given criterion is satisfied. If
there is no model element that satisfies the criterion, then that element will be
created, otherwise, the existing element is returned by the rule for referencing.
This is the case for the Event rule of Fig. 4 line 27. If the event already exists,
there is no need to create it, otherwise, a new Event instance will appear in
the model.

An expression (Expression), or its side-effect free variant (Query), is ex-
pressed in any kind of language able to navigate and, if necessary, to alter
the model. Examples of such language are Kermeta [13] and MTL [22] for
languages able to alter the model, or OCL [17] for queries. If necessary, as for
most compiler compiler specifications, expressions may be included within rule
atoms for some purpose (by the mean of the SideEffectRuleAtom concept).
Of course, altering the model is only necessary for concrete → abstract syn-
tax mapping, and the latter concept is inactive during a concrete ← abstract
syntax mapping.

RuleAtomContainer

RuleAtom

*1

atoms
{ordered}

Rule

ParallelRuleAtom AlternativeRuleAtom EmptyRuleAtom

SideEffectRuleAtom

SubRuleCall
LoopRuleAtom

MetaProperty

Alternative

ExplicitSubruleCall

ruleName:String

Alternative LoopRuleAtom

MultipleRuleAtom

multiplicity:Multiplicity[*]

Expression

Action

{xor}

0..11

0..1 0..1

*
alternatives

{ordered}

0..1

1

1 property

expression

action

TokenRuleAtom

name:String
kind:Integer

* separators {ordered}

* openers {ordered}

* closers {ordered}

0..1 0..1 0..1

Comparison

ComparisonExpression LeftComparisonExpressionQuery

comparisons

source

1 0..1

1 1right left1 1

0..1

1 property

1

1..*

Fig. 6. TCSSL Rule Atoms

Rule elements are presented by Fig. 6. A rule contains an ordered suite
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of rule atoms (RuleAtom). A choice (AlternativeRuleAtom) is composed of
alternatives (Alternative) of rule atoms. An alternative can be guarded
(Action). A guard explains a comparison, or a conjunction of comparisons
(Comparison), between a property of a model element found by an expression
(LeftComparisonExpression) and a value (RightComparisonExpression).
If triggered, that guard behaves differently depending on the direction of the
mapping. In case of concrete→ abstract mapping, the property in the model is
affected with the value. In case of concrete← abstract mapping, the guard se-
lects the correct rule alternative according to information stored in the model.
In a choice, only one alternative, so called the default alternative, is not pro-
tected by a guard, otherwise there would have an indeterminism in case of
concrete ← abstract mapping. Such a construct is visible in Fig. 4 line 18-20.
Here, in case the first alternative has to be chosen, the property isInitial

of the considered model element has to be “true”. Otherwise, the second
choice (the defaut one, as not guarded) is the good one. In this case, the
first choice is a keyword (Token), and the second choice is an empty rule
(EmptyRuleAtom): if the considered model element has property initial as
“true”, then the representation should contain the word “initial”, and only in
this case. The careful reader may notice that there is no initial property
in metaclass State of the metamodel of Fig. 2. Although this rule sounds
ill-formed, this is an extension construct that will be explained in section 4.

Another family of rule element is loops (MultipleRuleAtom). Loops may
be simple loops à la EBNF (LoopRuleAtom), or properties triggering subrule
calls (SubruleCall). Indeed, properties may not have a [1..1] multiplicity:
they can range from 0 to infinite (*): property calls are thus implicit loops. A
simple loop contains an ordered sequence of rule atoms that can occur a given
number of times, according to a multiplicity (multiplicity). Items partici-
pating in a loop may be separated by specific elements (separators). Loops
may also be opened (openers) or closed (closers) by specific rule atoms.
For instance, in Fig. 4 line 23, it is stated (self.event opener ‘‘on’’).
This means that the rule awaits a subrule call for Event 0 or 1 time, ac-
cording to the event property multiplicity in the metamodel. If it appears
once, as in Fig. 3, an “on” will appear before the event. Multiplicity may
be restricted compared to the property’s multiplicity. For instance, in Fig. 4
line 26, the name is absolutely required, so we restrict multiplicity to [1..1]
even though in the metamodel the name property is declared with [0..1]. An-
other example is mixed(self.state || self.transition) in the rule for
CompositeSate. Here, both state and transition have a [0..*] multiplicity.
This means that subrules for SimpleState, CompositeState, and Transition

may fire any number of time in any order. Property calls are composed within
a choice where they can happen in any order, according to the mixed keyword
(ParallelRuleAtom replaces here AlternativeRuleAtom to express alterna-
tives that do not need any guard). This means that in a state machine textual
specification one could find for example a simple state, then a transition, and
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then another simple state, without violating the rule.

Now, according to the metamodel of Fig. 2 and to the concrete syntax
expressed in Fig. 4, an automatic tool should formally be able to transform
part (b) to part (c) of Fig 3 (concrete → abstract mapping), and part (c) to
part (b) (concrete ← abstract mapping). In the first case, it is even possible
to have text properly formatted following the scheme given in the TCSSL
specification by inserting a space when there is a space in the specification,
inserting a carriage return when there is a carriage return in the specification,
etc.

4 Towards more Complex Mappings

That paper aims at solving the abstract↔ concrete syntax mapping by spec-
ifying rules in an EBNF-like textual concrete syntax specification language
(TCSSL). However, the proposed solution does not claim to solve all the prob-
lems encountered in compiler construction. In particular, it does not avoid
the necessity of multiple pass, for instance to perform type checking. This
part presents a solution to integrate multiple pass analysis in the proposed
solution of section 3.

The main idea is to keep the classical way of solving the problem, that is
transforming decorated abstract syntax trees. The advantage in our approach
is that abstract syntax trees are models, conforming to metamodels. This
offers the possibility to formally define a pass and what decorations are avail-
able for a given pass: decorations are no longer typeless key-value pairs, but
attributes that are added to the metamodel. A pass is then merely a model
transformation [20] “treating” attribute slots information that have a deco-
ration role in the model. To formally add an attribute to a metamodel (i.e.
a decoration), one might use higher order hierarchies [7]: this technique uses
refinement of modeling elements, to add compatible additional features, such
as adding attributes to a class. It works in a similar way than inheritance,
but at the metamodel level: one can use a model only with the knowledge of
the metamodel, or a parent of the metamodel. So, to add a new decoration
attribute to a class, one should make a new metamodel “inheriting” from the
official metamodel and refine some classes by adding new attributes as place-
holders for decorations. An n-pass architecture includes then n−1 refinements
of the main metamodel, a TCSSL specification for the n−1th refinement, and
n − 1 model transformation arranging the model so that information from
refinement level x is available from level x − 1. Note that for the approach
to be valid both at concrete → abstract mapping and concrete ← abstract
mapping, the participating model transformations have to be bidirectional.

An example of such decoration is the attribute State::isInitial that
does not exist in metamodel of Fig. 2, but which is used by grammar of
Fig. 4: it would be quite hard to describe the meaning of the initial key-
word in the TCSSL specification on Fig. 4. It is actually much easier to
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add an isInitial:Boolean=false decoration to the metamodel that is set
to true in case a state is declared as initial (see macro rule initial). This
also requires to write a second-pass model transformation that, for each state
marked as initial, creates or gets the initial state of the container and creates
a transition to the considered state. The example is summarized in Fig. 7:
the first pass is undertaken by the parser (generated from the TCSSL spec-
ification), and the second one is a hand-written model transformation that
handles the isInitial decoration. As DecoratedStateChart is compatible
with StateChart by refinement, the latter transformation does not need to
transform for example DecoratedStateChart::Transition instances into in-
stances of StateChart::Transition.

DecoratedStateChart
Textual
Model

Parser
(1st pass)

Statechart
TCSSL

specification

Syntax
Compiler

StateChart

InitCreator
(2nd pass)

(a) General Architecture

StateChart DecoratedStateChart

State

State

isInitial:Boolean=false«refine»

«merge»

(b) Metamodel Refinement

Fig. 7. The 2-Pass State Chart Compiler Architecture

5 Early Implementation

This section describes our prototype implementation. The TCSSL has its own
metamodel and a concrete syntax; it is therefore interesting to develop and
test the tool chain on the TCSSL itself. A bootstrap can then be realized.
A hand-created tool parses the TCSSL specification defining the TCSSL tex-
tual concrete syntax, and creates the TCSSL model conforming to the TCSSL
metamodel in the model repository. From that model, tools are generated
as suggested by Fig. 1. These tools are then able to parse again the TCSSL
specification for TCSSL and to create a TCSSL model, that in turn can gen-
erate the same TCSSL tools. TCSSL tools are developed in the context of
the MDDi [6] open-source Eclipse project. Currently, a prototype parses the
TCSSL specification, and generates the parser for its textual notation. A code
generator is being developed to generate the TCSSL textual notation from the
model repository. From Fig. 8, it is possible to extract the architecture of the
tool chain. It is divided into two main parts : a parser and a text generator.
The parser analyzes the text in the editor and fills the model representation
in the repository. A second tool generates text from the model repository.
This section will be divided into two parts, the first one describes the textual
parser generation, and the second one will present the code generator.
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textual
notation

Model

MetamodelParser + model filler

Code Generator

(1)

(2)

Fig. 8. Division of the Prototype into 2 Parts

5.1 From Textual Notation to Model

This part requires a text parser. The input for this parser is the content of the
generic editor. The parser creates the corresponding elements into the model
repository. ANTLR [19] is used to simplify the parser generation. Accord-
ing to its author, ANTLR is a language tool that provides a framework for
constructing recognizers and translators from grammatical descriptions con-
taining Java actions. ANTLR generates a parser from an EBNF-like grammar
that describes the concrete syntax of the language. For the first developments,
elements are directly created in the model repository using the actions em-
bedded in the grammatical description.

Rules in the ANTLR grammar are mapped one-to-one to the TCSSL rules.
In the state chart example, the rule SimpleState is directly translated into
an homonym ANTLR rule. This rule returns a reference to a model element
of type SimpleState. When this rule is called by the parser, a SimpleState

instance is created in the model. Subrule calls returns the features or asso-
ciations of the SimpleState element. For example, “self.name” returns the
string corresponding to the name of the SimpleState. This name is then
added to the name feature of the element.

The State element case is interesting: there is no default rule for the State
element. In fact, according to Fig. 2, State is an abstract element. So no
concrete syntax can be defined for it. In the rule StateMachine, “self.top” is
a subrule call atom that refers to an element of type State. The parser expects
subclasses of element State, i.e. a SimpleState or a CompositeState. A rule
is defined for the element State in the parser. This rule is defined as a choice
between each default rule corresponding to the child elements of State. In this
case, the rule for State is a call to the rule SimpleState or CompositeState.
SimpleState rule returns an element of type SimpleState, which is a State

by inheritance. Fig. 9 corresponds to an excerpt of the generated grammar
for the ANTLR parser. It defines the rule generated for element State and
the rule for element SimpleState. The creation of elements in the model is
left over in the figure.

The prototype of the tool is fully written in Java. Queries in the model
are developed using the interfaces generated by EMF. More complex queries
would require a dedicated language, like MTL [22] or Kermeta [13].

The ANTLR grammar file is the only element to produce for the transfor-
mation concrete → abstract syntax. This grammar file embeds the interac-
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[5.1 …] 
Rules in the ANTLR grammar are mapped one-to-one to the TCSSL rules. In the state 
chart example, the rule SimpleState is directly translated into an homonym ANTLR rule. 
This rule returns a reference to a model element of type SimpleState. When this rule is 
called by the parser, a SimpleState instance is created in the model. Subrule calls 
returns the features or associations of the SimpleState element. For example, the seek 
rule name for the State element seeks and returns the corresponding element in the 
model repository. This element is then referenced by the source feature of the newly 
created SimpleState instance. 
The State element case is interesting: there is no default rule for the State element. In fact, 
according to Fig. 2, State is an abstract element. So no concrete syntax can be defined for it. In 
the rule StateMachine, “self.top” is a subrule call atom that refers to an element of type State. The 
parser waits subclasses of element State, i.e. a SimpleState or a CompositeState. A rule is defined 
for the element State in the parser. This rule is defined as a choice between each default rule 
corresponding to the child elements of State. In this case, the rule for State is a call to the rule 
SimpleState or CompositeState. SimpleState rule returns an element of type SimpleState, which 
is a State by inheritance. Fig. 9 corresponds to an extract of the generated grammar for the 
ANTLR parser. It defines the rule generated for element State and the rule for element 
SimpleState. Elements creation in the model is not displayed for overview. 
 
1: state returns [State state=null] 
2:    : 
3:         state = simpleState 
4:     |   state = compositeState 
5:     ; 
 
6: simpleState returns [SimpleState simpleState = null] 
7:    :     
8:    “State” name 
9:    ; 
 
Fig. 9. extract of the ANTLR grammar for StateChart 
 

 
 
 
Attention, il faut incrémenter chaque figure suivante de 1 !!!! 

Fig. 9. Excerpt of the ANTLR Grammar for State Charts

tions with the model. This grammar file produces the parser for the textual
notation. Fig. 10 summarizes the generation of the textual parser.

ANTLR 
grammar

Java 
parser

TCSS Tool (part 1)

TCSS 
Model

ANTLR Tool

Automatic generation

Fig. 10. Concrete → Abstract Mapping with ANTLR

5.2 From Model to Textual Notation

The second part of the tool generates code from the model. The generic editor
is based on the Eclipse IDE and its EMF model repository. The EMF project
contains a tool for generating source code named JET [5]. JET is a generic
template engine that can be used to generate code. The templates are defined
in file using a JSP-like syntax. These templates files are translated into Java
classes. These classes have a method named generate that produces a string
for a given object (the context). Fig. 11 displays the rule for the element
Transition taken from the State Chart TCCSL.

1: syntax UMLSequenceCharts 
2: with defaultLanguage KerMeta 
3: and ignored  "\ ", "\t", "\n", "\r", "\f"; 
 
5: entry rule for StateMachine ::= 
6: "StateMachine" self.name 
7:  
8: self.top; 
 
 
9: rule for SimpleState ::= 
10: <initial>"State" [1](self.name) 
11: ; 
 
12: rule for CompositeState ::= 
13: <initial>"CompositeState" [1](self.name) "{"  
14:  mixed(self.state || self.transition) 
15: "}" 
16: ; 
 
17: macrorule initial ::= 
18: (<< {self}.isInitial := {true} >>"initial"  
19: |_ 
20: ); 
 
21: rule for Transition ::= 
22: "Transition" self.name "from" self.source<name> 
23:       "to" self.target<name> (self.event opener "on") 
24: ; 
  
25: seekrule name for State with criterium {self.name} ::= 
26: [1](self.name); 
 
27: singletonrule for Event with criterium {self.name} ::= 
28: [1](self.name); 

Fig. 11. TCSSL Definition for Transition

A template file is associated to each rule in TCSSL. JET templates are
separated into two main parts. The first part of the template is written in Java.
It calls each subrule templates and stores the resulting string. “Alternatives”
are basically transformed into test loops. The second part has a JSP-like
syntax and simply associates the strings coming from the subrule calls to the
rest of the text, like keywords and tokens. Fig. 12 displays the corresponding
JET file for the element Transition.

One of the issues for this tool is the management of the indentation, in
case of multi-line generated strings. For example, the Transition template
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FigXX : from text to model 

1.2. from model to textual notation 

The second tool part generates code from the model. The generic editor is based on the Eclipse IDE 
and its EMF repository. The EMF project contains a tool for generating source code named JET[JET]. 
JET is a generic template engine that can be used to generate code. The templates are defined in file 
using a JSP-like syntax. These templates files are translated into java classes. These classes have a 
method named “generate” that produces a String for a given object (the “context”). 
 
21: rule for Transition ::= 
22: "Transition" self.name "from" self.source<name> 
23: "to" self.target<name> (self.event opener "on") 
24: ; 

Fig XX : Transition in TCCS language 
 
A template file is associated to each TCSS rule. JET templates are separated into two main parts. The 
first part of the template is written in java. It calls each subrule templates and stores the resulting 
string. “Alternatives” are basically transformed into test loops. The second part has a JSP-like syntax 
and simply associates the strings coming from the subrule calls to the rest of the text, like keywords 
and tokens. 
 
1: // Template for Transition element 
 
2: // Java Part 
3: String name = transition.getName(); // simple element 
 
4: State source = transition.getSource(); // get the source state 
5: String source_name = StateNameTemplate.generate(source); // name of the state 
 
6: State target = transition.getTarget(); // get the target state 
7: String target_name = StateNameTemplate.generate(target); // name of the state 
 
8: Event event = transition.getEvent(); 
9: String event_name = “”; 
10: if(event != null) { event_name = “on” + EventTemplate.generate(event); } 
 
11: // JET part 
12:  Transition <%= name %> from <%= source_name %> 
13:  to <%= target_name %> <%= event_name %> 
24: ; 
 

Fig XXX Template corresponding to Transition rule 
 
One of the issues for this tool is the management of the indentation, in case of multi-line generated 
strings. For example, the “Transition” template returns a String that is three-lines long. The TCCS 
language defines a relative indentation for the element Transition. When text for transition is 
generated and used in the template for the composite state, there is an offset for the indentation. This 
means that the indentation must be computed in the java part, reducing the interest of using a 
template engine. 
 

Fig. 12. JET Code Generator for Transition

returns a String that is three-lines long. The TCCS language defines a relative
indentation for the element transition. When text for transition is generated
and used in the template for the composite state, there is an offset for the
indentation. This means that the indentation must be computed in the Java
part, reducing the interest of using a template engine. Fig. 13 summarizes the
procedure to generate the code generator.

Java 
Generator

TCSS Tool (part2)

TCSS 
Model

JET Engine

Automatic generation

Template
for 

Transition
rule

Java 
Generator

Java 
classes for

code 
generation

Fig. 13. Concrete ← Abstract Mapping with Jet

6 Conclusion

This work may be viewed as an experimentation in the specification of concrete
syntaxes in the context of meta-modeling applied to language engineering. It
is obviously far from bringing definitive answers to these complex problems.
However the presented material may contribute, with many other ongoing
research works on metamodeling and language engineering, to a better under-
standing of hard related research problems.

We have proposed a new approach, based on metamodels and EBNF-
like rules, which supports a formal bi-directional mapping of both concrete→
abstract, and concrete← abstract syntaxes. An early prototype which realizes
both analysis and synthesis of concrete syntax has been presented, based on
existing tools such as ANTLR and the JET template engine.

Future works include the specification of a graphical concrete syntax for
the TCSSL language and a better integration with executable meta-modeling
languages such as Kermeta.
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