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Abstract—We derive an information theoretic scaling law for Il. APPROACH

the maximum achievable rate per communication pair in a two- We consider a constant density network ofusers (or
dimensional random ad-hoc wireless network. Our scaling law

holds for non-absorptive media and when the path loss exponent 10d€s) where the users are independently and uniformly
(describing the decay of the amplitude of the signal) is between 1 distributed on the two-dimensional domdih= [—+/n, \/n] x
and 2. The key ingredient of our result is the recently established [0, /n]. Let us divide this domain into two equal parts
in_forlmation theire_tic r?caling law for o_ne-dir?t_ansional ad-hoc [—/n,0] x [0,+/n] and [0, y/n] x [0, /n]. We are interested
wireless networks In the attenuation regime of interest. in bounding the total information flow from one half of the
. INTRODUCTION network to the other, or equivalently the sum of the rates of

The seminal work of P. Gupta and P. R. Kumar [1] o§ommunications passing the imaginary boundary on yghe

the capacity of ad hoc wireless networks implies that tiis, say from left to right.

maximum achievable rate per communication paiin a d- Let us make a series of optimistic assumptions: in parallel
dimensional extended network with uniform traffic pattern, & [4] and [5], we first introduce: additional “mirror” users
bounded above by that help relaying traffic, where the mirror location (@f;, y;)
R< K 1) is (—x;,y;). After the introduction of mirror users, there are
~ni exactly n users on each side of the domain, symmetrically

Recent attempts (see [2], [3], [4], [5]) have confirmed thicated with respect to the-axis and moreover independently
result from information theoretic point of view for absorptivetnd uniformly distributed on each side. Let us also assume that
media or under strong assumptions on the attenuation. In i€ users on each side of the domain can share instantaneous
more interesting case when there is no absorption and wHefprmation and power among themselves so that we are in
the path loss exponent is between 1 and 2, there is a ¢Bp following MIMO channel setting,

between the results presented in [4] and the upper bound (1). n

This gap has been closed recently in [5] for one-dimensional Vi= ZGf}”Uj + Zi, i=1,..n

networks. In this paper, using the result of [5], we derive an j=1

information theoretic upper bound on the maximum achievabi¢here Z = (Z,, ..., Z,,) is a vector of circularly symmetric

rate per communication pair in a two-dimensional random agdemplex Gaussian random variables with unit variance and the
hoc wireless network which improves the already known uppentries of then x n channel matrixG%" are given by

bounds in the attenuation regime of interest. s 1
Main Result: If the attenuation function describing the Gy = 5 2
decay of the transmitted signals over distance is given by (@i + ;)% + (yi — y5)?)?
1 where (L; := (x;,y:),i = 1,...,n) are the right-hand side
g(r) = o node locations. In the following sections, we will use the
wherel < ¢ < 2, then for alle > 0 notationG®" {L,, ... L,} to refer to then x n matrix G*"
- K corresponding to a specific configurati@hy, ... L,,) or omit
R < i S E— as. the argument when no confusion can arise. Under the power
n

. . o _— nrin’?E[ -2}<P,h ity of the abov

in a large uniformly distributed two-dimensional network,CO stra tzﬂ:l Usl"| = n . the capac t)_/ ort e_abo ©

where K > 0 is a constant independent of channel upper bounds the maximum flow.of |_nformat|on from
Remark: It is not difficult to extend our result and show"e Nalf of the network to the other and is given by

that the transport capacity of such a network is almost surely

_ 2
bounded above by Cn = szo:zn’,}i(PkgnP,; log (1+ PyA)

1+ 5 +e
< 2(5+4) . .
Cr < Kn where \;, are the eigenvalues of the symmetric matfi%”.

which we will not prove here due to space limitations. Noting that P, < nP and A\, > 0 for eachk, we further
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obtain where now we usé; to refer to the configuration of the strip

n ) n 2 S;. Let us now consider the expected value of this upper bound
Cn <Y log (1+nPA7) < log (1 + VnP}\k) over random node locations, thus
k=1

k=1 n
E(w17y1),~~~7(wn7'yn) [logdet(I—I— \/’IIPG5’ )

— 210g det (I n \/npaﬁx”) . )
<FE ) .
The proof of the fact that>" is non-negative definite can be = "~ [ X (1), X (8n);¥ (81, ¥ (Sn)
found in [4]. N .
If we assume a uniform traffic pattern, there will be order {Z log det(I +VnPG*™ {Si})H

communication requests that need to pass the boundary from N =1
left to right which gives n

’ ° . =" B, [Excs [Byesy [logdet(r + vaPasm (s3]

< Ko, i=1
=i ©

Hence, we are interested in determining the scaling of thghere the subscripts denote the variables with respect to which
sum-capacityC’, in the above described setting. the expectation is performed ai¥(S;) refers to the collection

In the one-dimensional case, the same approach leads ug;tp 'z, ) denoting thez-coordinates of the nodes i
the same upper bound (3) @#,, however the structure of the (and similarly for Y'(S;)). It is easy to see that the terms

n x n channel matrixG' ™" is given by in (9) governing different stripsS; are equal. Without loss
1o 1 @ of generality, we concentrate on the stfp with number of
ij - (z; +x]-)5 usersny and configurationS;. For notational convenience,

we denote the matri®™ {S;} by G*°, X(S,) by X and

in thi§ case. When the c.hannel mat'rix has this simpler str “(S1) by Y, however we keep in mind that the node locations
ture, it has been shown in [5] that, is bounded above by (@1,5:), 1 < i < my are now uniformly and independently

C,, < 2logdet (]+ \/ﬁng‘;‘”‘) < K(logn)*>t® (5) distributed on the sef0,/n] x [0, ¢]. Considering the inner
) ] most expectation for given; and a set ofX and recalling
for 1 <4 <2, whereK > 0 is a constant independent Ofinat 1o det(-) is a concave function on the set of positive
n andé, ando > 0 is arbitrarily small. The upper bound (5)gefinite matrices, we apply Jensen’s Inequality to obtain
is established for linear networks satisfying a minimum dis-

tance constraint, however the same bound holds for uniformly Ey [log det( + VnPGS’é)}
distributed large random networks in the almost sure sense.
ISTbU 9 Works | u < log det (I+\/nPEy [G“D. (10)
I1l. PROOF

. - S~6 . .
Our approach is to divide the planar network into horizontdi" €ntries of the matri™" are given by (2). Giverk,, each

strips and make use of the result obtained for linear networl%ﬁ.’ 1=t §|”1 s ungor:lly an((jj indepgnglentl_)/ distributed2 on
Hence, we start by dividing the domahinto N = @ equal th € 'ms.r\?éo’t.d and the ranto(;‘n vatﬂa gt N (yig_ yﬁ')
horizontal strips, namely as a distributiorp, (y) supported on the interval, e°] when

i # j. Thus the entries of the matriky {Gs,a} are given by
Si = [—vn, vn] x [(i —1)e, i€] for i=1,2..N. (6)
1

62
Let us denotc_a the totall number qf users in the stfip Ey lGS’?] :/ Py (y) ~dy
(with symmetric left and right-hand side configuration) by the i%j 0 (zi+ ;)2 +y)?
random variablen;. We recall the generalized Hadamard’s 55 1

Inequality (see [6], Thm 9.C.1): IA("™) is n x n Hermitian By {G“ } T 2n) (11)
positive definite matrix ang A", i =1,...,p) are the diag-

onal blocks ofA of given sizes{s;} (such thaty = 37, s;) The matrixEy [GS*‘S} can be written as a sum of two matrices
then

P S5 _ n° /%
det(A) < Hdet (A(sw:))_ @) Ey [G } =D +G

i=1 whereG” is the matrix whose entries are given by
We can apply this inequality to the positive definite matrix &2
(I +v/nPG%™) with the diagonal blocks being th¥ strips Gééj _ / Py (¥) 1 _dy
we have introduced. Hence, we can bound the sum-capacity ((z; +25)* +y)2
of the planar network by, andD” is the diagonal matrix that compensates the difference

C,, < 2logdet(I + vVnPG*™) between the diagonal entries 61’ and Ey- {GS"S . Thus,

vlor

2

N
< 2logdet(I + VnPG*" {S;}). (8) o1 / ‘ py(¥) <1 _ (1 n
=1 0

, N\
o (2ay)° (2$i)2>

) .



The entries of the diagonal matngj can be upper boundedwherea A b is minimum ofa andb. Applying this lemma to
by making use of the relation (15) and performing the last expectation in (9) with respect to
@ n, yields
1—-(142z)7¢ :/ a(l+2)"*tdz < ax Ly
0 En, [EX [1og det (I + \/ﬁD‘S)” < eK'n2@ logn
which yields
) 5/2 2 5e2 since the expected number of nodesSinis 5 (andN = @).
Dj, < 7“2/ ypy(Y)dy < o505 = DY (12) Combining all the results we have obtained until now yields
(2z;) 0 2(2x;) the following expectation result:
whereD? is defined as the upper bounding diagonal matrix. In

5 a,n
the appendix, we prove that the difference ma@is’ — G”’ E(ay y1)(@nyn) {log det(I + VnPG )}
whose entries are given by < K/\/ﬁnig(;jg) logn + K"\/an"(log n)3+°
2
1 € 1 %J’,E
Gl 6= s | m dy. < K=
! T () U (s 35)2 + )8

_ _ o _ _ . forall e > 0, by choosingy = 55

is non-ns:ganve defélnlte. ;l'hIS fact together with (12) implies
1D 5 : ; - :

thatG'™ + D°—G" — D" is a non-negative definite matrix. rhere remains to prove that there is concentration around

Recalling that thelogdet(-) is not only concave, but alsohe expectation and that the sublinear behavior of this upper

increasing on the set of positive definite matrices (see [)ond on sum-capacity takes place almost surely. Let us define

16.E) gives ®" to be the following real valued function of node locations
S,6 , ,
logdet (1 + VaPEy [G5]) O"(Ly,..., Ln) = logdet(I + VaPG*" {Li,...,Ln}).
s
< log det (I +VnPD°’ + VnPG'P ) We set out to prove the following proposition.

Proposition 3.1: For any > 0, we have

_ s _ . |®™(L1,...,Ly,) — E[®"(L1,...,Ly)]|

where the last inequality is due to the following entropy nh_{folo nite
relation for independent Gaussian vectdt§Y + X + Z) +
h(X) < WY + X) + h(X + Z). almost surely. y _

The second term in (13) resembles the upper bound (5) gov-B.emre the p.roof of Proposfuon 31 we introduce a concen-
erning linear networks except that'?” is nown; x ny with tration |nequaI|t.y due to McDiarmid [8]. : .
n1 < n. However, by the interlacing property of symmetric Theorem 3.1: Lei(.Ll,L%... ”L"). be a fam|!y of inde-
matrices (see [8, Thm 4.3.8]) tha largest eigenvalues of thependent random variables with, taking valugs na sell
matrix G'2°" that hasG12°™ as an upper left submatrix for each}c. Suppose that the real-valued functigrdefined on
dominate the eigenvalues 62" . Toghether with the fact [TAy, satisfies
that I + vnPG® has all its eigenvalues larger than 1, this  sup  |f(L1,...,Ly) — f(L1,..., Lk, .., La)| < ci.

< log det (I + \/ﬁpfs) + log det (I + \/ﬁGlDé) (13)

=0

implies L,y L, L,
logdet (1+VnPG'P"™) < K"(logn)***  (14) Then. foranyt >0
—2t2
almost surely for large.. |  P(|f(Ly.. . Ln) = E[f(Ls..... Ln))| > 1) < 2057
For the first term in (13), let us consider the expectation The proof of Proposition 3.1 is based on applying Theo-
over X, thus rem 3.1 to the functiondb™. The crucial step is to properly
Ex [log det (I n /TPD&)} bounq the amount of change.that occurs in the value of the
function ®" due to a change in one of its parameters. Note,
e de? however, thatb™ is unbounded since the;’s can be arbitrarily
=FEx Zlog (1 TV ”Pg(zwi)ﬂz)] close to zero which will make the corresponding diagonal
i=1

. elements of7%" go to infinity. The problem can be overcome

. /ﬁ 1 o (1 . @ nz=2n ) dr  (15) by showing thate;’s are all bounded away from zero with high
0 Vn 2 (22)%+2 probability asn goes to infinity and that under the condition

that they are all bounded away from zero, the amodiit

where (15) is obtai.ned by choosing= n"" with n > 0'_ can be affected from a change in one of the node positions is
We have the following lemma from [4] (Lemma 2.2) Wh'crbounded

states that for ang’, p > 0 anda > 1, there exists a constant Let us fix u > 0. The probability that any of thez;’s is
, i
K' > 0 such that for all sufficiently large, smaller thann—(3+1) is bounded above by

" Cn? .
/ dx log <1 + IZ) < K'n="logn P (mmm < n*%ﬂ”) <nP (ml < n*%ﬂ)) =n 7k
0 — )



since x;'s are uniformly and independently distributed orfor all A > 0. Choosingy > 1 and considering the Borel-
[0,/n]. On the other hand, under the condition thgt;, > Cantelli lemma completes the proof.

n~(tH (Ly, Ly, ..., Ly) is still a family of independent V. C
random variables where eadl is now uniformly distributed - CONCLUSION
on the set[n—(%+*‘)7\/ﬁ} % [0, /1] We established an improyed information theoretic upper
. L bound on the maximum achievable rate per communication
Conditioned onz,,;, > n~+", let (Ly,...,Ly_1,Ly)

pair in a two-dimensional random ad-hoc wireless network
when the medium is not absorptive and the attenuation is
moderate.

and(Ly,...,L,_1, L!,) be two configurations that differ only
in the last co-ordinate. Le#™~! be defined as the following
function of n — 1 node locations:

ULy, L) In order to prove that the matri%'?’ —G" is non-negative
L d,n—1 - )
= log det(I + VnPG {L1s-- s Ln—1})- definite, it is sufficient to show that
Now, we consider the difference in the value of the function 1D 5 1 1
®" for the two configurations Gk =G = (@ +21)’ () +2)? +y)}
J J k

|(I>n(L15"-aLn—1an)_q)n(Llw-'an—hL;z” . . _ . . 1D% ,
<on(L I L) — YL Lo )| is a non-negative definite matrix for eaghsinceG*~ — G
= 11’ co =l B Lo ”*1/ is a convex combination of matrices of this type. The proof is

+ 9" (L1, ..o, Ln1) = (L4, ..., Ln—1, Ly,)|. (16)  straight forward when the following equivalent expression for
Concentrating on the first term in (16), lag < --- < ), the entries ofG” is considered

be the eigenvalues of the x n symmetric matrix I + w2 o0 o0 _ s1
VPG {L1,...,Ly_1,L,}y and \; < --- < A,_1 be Gip = W/o dt/o d¢(§ sinht)

APPENDIX

)

the eigenvalues of thes — 1 x n — 1 symmetric matrix e—f(cosht)(wj+mk)cos(§y) (17)
I++vnPG®" Y {L,,...,L,_1}. Note that by the interlacing
property for symmetric matrices, we have wherel" is the Euler Gamma function. The expression is valid

for 6 > 0 and can be obtained by considering ([9], formulas
[.2.7 and I.18.290) and ([10], formula 9.6.23). Noticing that
Expressing the function®” and ¥"~' in terms of these the entries of'2° are obtained by substituting= 0 in (17)
eigenvalues and recalling that the logarithm function is mongields

tonically increasing yields

1< <A <A< <A1 < Aor < A

n—1

= znzlog)\,» — Zlog Ai < log Ay,.
i=1 i=1
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