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Abstract— Starting with the seminal work of Gupta and Ku- We first present the channel and the traffic model. We then

mar (2000), there have been many interesting results that give present our main results followed by proofs. Finally, we present
information theoretic outer and inner approximations to the rate applications that illustrate our results.

region for wireless networks. While these bounds are almost tight

for geometric random networks, not much is known about their

tightness for arbitrary wireless networks. In contrast, Leighton

and Rao (1988) established a powerful result that uniform multi- A Channel Model

commodity flow (UMCF) is within a factor of logn of the natural o )

min-cut capacity for any graph (equivalent to a wireline network) This is similar to the model in, for example, [5]. We have

of n nodes. V = {1,...,n} wireless nodes with transceiver capabilities
Our motivation is to obtain a similar simple and general |ocated arbitrarily in a plane. Node transmissions happen at

characterization for UMCF (shown to be equivalent to the discrete timest € Z+. Let X;(t) be the signal transmitted by

characterization for a much wider class of traffic models) for any dei . 7. W h h node h
wireless network. In this paper, we apply and extend known results N0d€z at imet € Z... We assume that each node has a power

to obtain such characterization for networks with Gaussian fading constraint such thatimsupy_, ., + Zivzl |XZ(t)] < P. Then
channels. For channel state information (CSI) only at the receiver, Y;(t), the signal received by nodeat timet, is given by

we establish that UMCF is within A% logn factor of information

theoretic min-cut capacity for the wireless network, whereA is Yi(t) = > g HinXi(t) + Zi(2), 1)

the max-degree of a sub-graph induced by the underlying wireless

network. For deterministic AWGN channels, we show that UMCF  whereZ;(t) denotes a complex zero mean white Gaussian noise
is within square rootof min-cut bound for any network. process with independent real and imaginary parts with variance
1/2 such thatZ;(t) are i.i.d. across ali. Let r;; denote the

. . . distance between nodésandj. Let H;.(t) be such that
In their seminal paper [4], Gupta and Kumar considered a

wireless network formed by nodes placed in a unit area (e.g. Hi(t) = /g(ra) Hix(t),

disc) uniformly at random. Under the protocol model, they R ) ) ]

showed that the maximal supportable rate per pair of nod&41ere Hix(t) is a stationary and ergodic zero mean complex

whenn source-destination pairs are chosen randomly, scalesza{Ssian process with independent real and imaginary parts

©(1/y/nlogn). Subsequent to this result, there have been ma(yylth variance 1{2). It model; channel flgctuatlons du_e to

interesting results that establish information theoretic upper afigauency flat fading. Alsog(-) is a monotonically decreasing

lower bounds. Some upper bound results are by Leveque dH@ction that models path loss wit(z) < 1 for all = > 0.

Telatar [10], Xie and Kumar [13], Xue, Xie and Kumar [14]We assume thak[|H;(t)|?] = 1 and that theH(t)'s are

Jovicic, Viswanath and Kulkarni [5]; some lower bound result§dependent.

are by Kulkarni and Viswanath [7], Franceschetti et. al. [313 Traffic Model

Xue, Xie and Kumar [14] and Madan and Shah [11]. Note that

this is a small illustrative subset of the known results. We now describe the traffic model considered in this paper.
Known results lead to a tight characterization of (informatioW/e refer the reader to [11] for proofs of results in this section. A

theoretic) scaling of capacity for geometric random networkgate matrix\ = [\;;] € R}*" is calledfeasible if information

Though some of these results generalize to arbitrary networkg be sent (possibly via multiple hops) from nede node; at

we do not know of any result that quantifies the “tightness” é¢fite \;; for each node paifi, j), 1 <i,j <n. LetA C R}*"

upper and lower bounds in terms of the network parame’[eﬁb_note the set of all feasible rate matrices. We also 4all

Let us mention here that the work of Xue, Xie and Kumar [14)e capacity region. Ideally, we would like to characterize

goes in this direction, but relies on strong assumptions on tHewever, it is hard to obtain a single-letter characterization of

topology of the underlying graph and focuses on tila@sport A that can be evaluated. Hence, we study the scaling of the

capacityof the network. Our goal in this paper is to characterizguantity p*(A) defined below.

the uniform multi-commodity flow for wireless networks in Definition 2.1 p*(A)): For any feasible) € A, let p()\)

terms of cut-properties o'f.the netwqu graph !nduced by theax; {31, Aik, Dopeq M}y L(x) = {X € RP™ & p(X)

wireless network. In addition, we aim to obtain bounds that}. Then, definep*(A) = sup{z € Ry : L(z) C A}.

can becomputed efficientlfor any arbitrary wireless network.

1For notational simplicity we assume that each node has the same power
OAuthor names appear in the alphabetic order of their last names. The wodnstraint. The general case, where each node has different maximum average
of the first author was supported by Swiss NSF grant Nr PA002-108976. power can be handled using identical techniques.
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Thus the quantityp*(A) is a parametrization of an innerfollows?.

approximation to the capacity regian o loe(1 4 SPalr
Definition 2.2 (Uniform multi-commaodity flow)\Ve say that f* < min Yiesjese Sg(SC V' Pg(ri;))
a rate matrix\ is a uniform multicommodity flowif A\ = f1 scv |5115¢]
for somef € R, wherel € R’*" is a matrix with all entries 1
equal to 1. We will denote such a flow &&f) = f1. Let =0 sup
P —sup{f € R, : U(f) is feasibld, r2rt, 20 L+ AMAF(L+m)
i i i Pg(ri;) A(r(1+n))
Jl\tlf;tr,u\;v?h?fﬁ;?xl)\/i(el?ce between scaling of maximal UMCF, _— Zie&jESC:er log (1 + B G ) >
. C
Lemma 2.3:In any network,f* = ©(p*(A)). sev log n|S]|5¢|

Hence, we will study scaling of th¢* to determinep*(A). Next, we state the explicit relation between the upper and
Finally, we show that Gupta-Kumar capacity scaling mod&wer bound forf* under the following mild condition:

is equivalent tof*. In setup of Gupta-Kumar [4]n distinct %ondition 1: Let P < 1. Further, there exists an> 0 such
e

source-destination pairs are chosen at random such that the graph(c — v, EE) is connected, wherd* — (G, )

node is source (destination) for exactly one destination (sour Zej2
and such pairing is done uniformly at random over all possibl&® (1 v Pg(rij)) >n"7h
pairings. Thus the traffic matrix corresponds to a randomly Definition 3.2: Let r1(¢) > r* be such that for ali € V,
chosen permutation flow which is defined as follows. > eV o) Pa(rij) < sive.

Definition 2.4: Let S, denote the set of permutation matrices Corollary 3.3: Let ¢ > 0 be such that Condition 1 is
in R*™. We say that a traffic matrix is a permutation flow satisfied. Then
if A= fX for somef € R, andX € S,,. We will denote such n 9 .
a flow as\s(f) = [, for T € S,,. Q(As(m(e))logn @ ) <fr=e,
In light of the above definition, all the previous works study the
scaling of f, where [ is the maximum value such that for anyyhered — ming. =e5es <o PELHVIIG)
randomly chosen permutation € S,,, the permutation flow 151151
As(f) is feasible with probability at least— 1/n2. B. Random Fading
Lemma 2.5:If for ¥ € S, chosen uniformly at random, We now derive similar upper and lower bounds for UMCF for

Az (nf) is feasible with probability at least—n""""*, & > 0, Gaussian channel with random fading, as defined in Section II.
then there exists a sequence of feasible rate matfigesuch We make special note of Corollary 3.5 that shows that for

that receiver-only CStase, our bounds are quite tight for any graph.
|U.(f) = Twll = O(fn™*) — 0 asn — oo, First, we present general upper bounds.
Theorem 3.4: (1) With channel state information (CSI)
where|| - || denotes the Frobenius norm for matrices. only at receiversf* is bounded as follows
The proof of the above lemma can be found in [11]. It implies 9
that for any network,f = ©(nf*). We focus our attention on f* < min Yiesjese E(log(1 + PIH;i|"))
the scaling off* in this paper. scv 1S]]5¢]
F=Q 1 X mi
= min
[1l. MAIN RESULTS T‘ijﬂzo 1+ AMAF(L+7) « scv
The main result of this paper is the characterization of 1 Elo (1 P|Hj|>A(r(14n))
information theoretic relation between upper and lower bound Licsges: Logern Elos LnPg(r(+m) )
on UMCF for any general wireless networks. These characteri- log n|S||S€|

zations for Gaussian channels (with and without random fadin

are summarized in Corollaries 3.3 and 3.5. The proofs of th ) With CSI at both transmitters and receivefs,is bounded

. as follows.
lower bounds are constructive.
£* < min Zies,jesc 2E(log(1 + VP |Hjil)
A. Deterministic AWGN Channels ~scv [S]]5¢]
First, we consider the case Whefbgj =1wp.1,Vk j= The lower bound for the receiver only CSl case is a (weak)
1,...,n. This correspond to a standard additive white Gaussian lower bound for this case as well.

noise (AWGN) channel (no fading). Consider the following two , .
graphs: (1)K, is the fully connected graph with node Sét The following corollary quantifies the gap between the upper

and (2)G, is the graph where each nodes V is connected and the lower bound for the receiver-only CSI case if the
to all nodes that are within a distaneeof i. Let £, denote '°llowing condition holds.

the edge set of7,.. Also, letr* = inf{r : G, is connecte}l Condition 2: Let P < 1. Further, there exists an> 0 such
Let A(r) be the maximum vertex degree 6f.. We have the that the graptt:© = (V, £<) is connected, wher&* = {(i, j) :
following bounds onf*. E [log (14 P|H;;|?)] > n=¢/2},

Theorem 3.1:For a given placement of nodes, under the, o _
For the lower bound, we use tlenotation in order not to have to write out

Gau§5|an Channel mo_del with _path loss _funCt@@), the  constants explicitly; we note that the constants are independent of the graph
maximal uniform multi-commodity flowf* is bounded as structure and [8].



Corollary 3.5: With CSI only at the receivers and undereceiver can transmit. Thus, when a lifk j) € E,. is active,

Condition 2, we have at mostA(r(1 + n)) nodes are constrained to remain silent,
min-cut i.e., at mostA(r(1 4 n))A(r) links are constrained to remain
R * : . . . .
Q (A2(7'1(6)) logn) = f* = O(min-cutg), inactive. Hence, the chromatic number of the dual graph is at

most (1 + A(r(1 +n))A(r)). In addition, we assume that the
Yies.esciry <o Elog(1+PIH; ") signal transmitted by each node has a Gaussian distribution.

wheremin-cutg = mingcy . . X
N SIS Then, subject to the maximum average power constraint, the

Let us finally mention that another set of upper bounds ¢ . R
be obtained by slightly modifying the proof of Theorem 3.;?5%';%:&2619(3 rate from a nodéo nodej, with (i, j) € Er.,

(still relying on the method described in [5]).

Lemma 3.6: (1) If channel state information (CSI) is log (1 + %)
. R > i 2
known only at receivers, then 12 T AMAC ) (2)
< Zi,}:w Z;L,j=1 Ti;9(Tij)- Note that the interference is due to at mastodes and all the

] ] ] interfering nodes are at least a distam¢e+ ) away from the
(2) If CSlis known at the transmitters and the receivers, theBeejver. The above simple time-division scheme gives rise to

f* < E}?m ZZj,k:l min(ri;, 7x;) /9 (i )9 (rej )- a (_:apacitateql graph, f(_)r Which_by Theorem 4.1, the maximum
b uniform multi-commodity flow is lower bounded as given in
IV. PROOFS the Theorem. This completes the proof of Theorem 3.1m
We now present proofs of the results for both determinisitic The proof of Corollary 3.3 will utilize the following two
and random fading channels. inequalities.

A. Deterministic Channels Lemma 4.2:(1) Givenz; € (0,1),1 < < N,
Proof: [Theorem 3.1l We prove the upper and lower SN log(1+ ;) < \/ﬁ\/Zf\il log(1 + z;).
bounds separately. We will use the following result by Leight
and Rao [9].
Theorem 4.1:[Essentially Theorem 12, [9]] Consider aProof of (1).For anyz € (0,1), z/2 <log(1 + z) < x, so
graph G = (V, E) with n nodes. For(i,j) € E, let R;; N N ~
denote the communication rate over this link frérto j. The Yisilog(l+ @) < YL vEi < VN YL 2 (3)

0&) For anyz > 0, € (0,1), Llog(1 + az) > log(1 + z).

maximum uniform multi-commaodity flowf* is upper and lower N )
bounded as < \/W\/Zizl log(1 + z;),
Q (1o§n> = f*<S, where (3) follows from Cauchy-Schwarz inequality.

Proof of (2).Define f(z) = % log(1 + ax) — log(1 + x). Note

whereS = supp_p, .} mingcy Z(i’j)eféﬁssiﬂesc Rii and the that f'(x) >0forxz >0 aﬁd f(0) = 0. This completes the
supremum is taken over all possible set of raf@;} simul- Proof of (2). |
taneously achievable with a given communication scheme. _

Upper Bound: In order to bound the sum-rate across each 100 [Corollary 3.3] Consider the upper bound of The-
given cut, we refer to the proof of the max-flow min-cut lemmg"€M 3-1. Lete > 0 be such that Condition 1 is satisfied.
in [13], which yields for anyS c V Consider any cut defined b5, S¢). Due to the symmetry of

the upper bound, without loss of generality, assufie< n/2.

Siesjese Rij €3 ese log(1+E(|X;]2)), Now,
whereX; = 3. /9(r;:) X;. We therefore deduce that CUut(S, 5°) = Y e jese log(1 + /Py(ri;))
Zies,jesc Ry < Zies,jeSC:m,- <ri(e) log (1 + \/m) + nlﬂe (4)
< Zjesc log[1 + Zi,kes \/m ‘E(Xink)H From Lemma 4.2 (1), we have
< Yjeselogll + P(X s V9(rii)?l, 3 log (1 + \/W)

i€8,j€8¢:r;;<r1(e)

since|E(X;Xy)| < VPP, < P. Finally, we obtain
< \/Am(e)ns S log(L+ Py(ry). )

ZiGS,jGSC Ri; < Zjesc 2log(1 + \/FZieS V9(ri))

i€S,j€SCir;<r1(€)

< Yies jese 2108(1+ v/ Pg(rji))- Condition 1 and&* C E,, (. (from definition) imply
i.e. the desired upper bound fgF. S ies.jesei, <m (o 108 (1+ Pg(rij)) 1
Lower Bound: To establish the lower bound, we find a Jf|5||sc| = <n2+5/2> - (6)

transmission scheme for which the multicommodity flow i
greater than or equal to that in the lower bound. For r*,
consider graph, = (V, E,.) on n nodes as above. We use Cut(S, 5°) —O( 4A(r1(€))

Erom (4), (5), (6) and some manipulations, we obtain that

A(r(1 + n)) to denote the maximum vertex degree of graph ElIER
G (14n)- Now, consider the following transmission scheme. A \/Z
X

n

nodes can transmit to a nodg only if r;; < r. Also, when
a nodei transmits, no node within a distanc€l + ) of the

i€5.5€5:(1.)) €, (o) log(1 + Pg(ri;) @)
|S115¢| '



We recall that the upper bound of Theorem 3.1 is We consider a transmission scheme where the signal trans-
cut(s, 5°) mitted over each link, when active, is a complex zero mean
min 7’( . white circularly symmetric Gaussian with varian£e\ (r(1 +
s ]SS : " .

. ~ 7)) (note that this satisfies the average power constraint that
specific lower bound, consider choice ot r1(¢) andn = 0.  that the transmissions on all links are mutually independent.
Notice that in the proof of Theorem 3.1, we upper bound thest ¢, +, ... denote times at which link1,2) is scheduled.
power of interference by:.Pg(r(1 + 7)), which is precisely Hence, at any such timee {t;,1,, ...}, the received signal at
L = Zkev:mzm(e) Pg(rji) for transmission fromi to j. pode 2 is given by
By definition of r; (¢), we havel < n=17¢ < § < 1 for small
enoughd and large enough. Now, by Lemma 4.2 (2), we  Ya(t) = Ho1 () X1(t) + D541 o How(t) X (t) + Za(2).

have . . .
Using the mutual independence of transmissions and zero mean

log (1 + w> = O (log(1+ Pg(ri;)A(r1(€)))).  property along with the construction of the scheduling scheme,
(8) 2

Using (8) with the modification of the lower bound of Theorem IE) Hop(H) X5 (t) + Zo(t)| <14+ nPg(r(1+n)).

3.1 for the choice ofr = ri(¢) and the simple fact that 2tz Hon (1) X (1) 2 )’ N glril +n))

A(ri(e)) > 1, we obtain a new lower bound, s&yB, as Erom Theorem 4.3,

follows:
2A(r
B = 0f miy Ziesseserysro 08l + Pglriy) I(X1(t); (Ya(t), Ha1(t))) = Elog (1 + %) :
scv A(ri(€))? logn|S||S¢| (11

N Since the channel is assumed to be i.i.d. during each use, a

. Cut(S, 5°) n . . . '
= Q min TS| A7 | (9) random coding argument can be used to achieve this rate with

< ! a probability of error which goes to zero as the block length

where (9) follows from (7). This completes the proof. B goes to infinity.
Combining this with the time-sharing between different sets

B. Random Fading of links (described above), it follows that

Proof: [Theorem 3.4] (1)Receiver only CSI:

2
Upper Bound: Following the steps in the proof of Theorem 2.1 Ris > aElog (1 + P|Hx["A(r(1 + 77))> )
in [5] and using(1 + 37, ;) < [T, (1 + a;) for a; > 0, 1+nPg(r(1+mn))

we obtain

(2) Full CSI: The upper bound follows again from the proof of

Y iesjese Rij < max Ellog det( + HsQsHg)] Theorem 2.1in [5], from which we deduce that
\J Qs570,(Qs)ii <P

Siesjese E(log(L+ PlH;|?), (10)  2iesjese fij < Elmaxgroq.<plogdet(l + HsQsHy)]

< Y. .E plog(1+h;Qsh?)],
so the upper bound ofi* follows from Theorem 4.1. S Yjese Blmaxgro.gu<plog(l+h;Qshj)]

Lower Bound: For the lower bound, we will use the time-where h; is the j'* row of H. Since h;Qgh? is maximum
division scheme in the proof of Theorem 3.1 which scheduleghen (Qs);, = P for all i,k € S, we obtain, following the
every link in the network for a fraction = m of steps of the proof of Theorem 3.1,
the time. For any given link that transmits data at a particular )
time, we treat all other simultaneous transmissions in theZieS,jGSC Ri; < ZjeSuElOg(l—i_P(zieS‘HijD ]
Qﬁtrﬁ?rnﬁfnﬁf? without any loss rne;teg:ertglet r;r?/(\)/; il show 2 jese 2Elog(L+ VP Y ics [Hijl)]

i ,2) (without any i ity). wi W -
that with receiver only CSI the following rate on lir&, 2) is s jese 2Elog(1+ VP |Hil),

achievable. and the upper bound ofi* follows from Theorem 4.1. =

IN
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2
Ri2 = aElog (1 + W) Proof: [Corollary 3.5] The general scheme of the proof is

1+npg(r(1+n))) the same as that of Corollary 3.3. Using the upper bound in
To show this we will use the f0||OWing result, which fO"OWSTheorem 34J’* can be further bounded above as

directly from Theorem 1 in [6]. ( )
. Zies‘ jeSCir;; <ry(e) E lOg(l—‘rPlHji‘ ) _2_
Theorem 4.3:Consider a complex scalar channel where the' < ming - : \15||5c\ +0 (%)

outputY when X is transmitted is given by = min-cutg + O (n—2—6) = O(min-cutp) (12)

V=hX+Z+5, where the first inequality follows from Condition 2. Next, we
where Z is a complex circularly symmetric Gaussian randorionsider the lower bound obtained via the lower bound in
variable with unit variance, anfl satisfies£[S*S] < P. Also,, Theorem 3.4 and (11). Specifically, we consider the choice
is zero mean spatially white and i.i.d during each channel us$.” = ri(€) andn = 0. Notice that in (11), we used the

If X is a complex zero mean circularly symmetric Gaussid8m nPg(r(1 + 7)) as a bound on the interference power.
random variable witiE[X* X] = P, then However, for our case, the actual intereferenceljs =

Pl > kevirsr (o) P9(rjx) for a transmission from' to j. By
I(X;(Y,h)) > Elog (1 + T F ) definition of r1(¢), we havel < n='=¢ < § < 1 for small




enoughd and large enough. Now, by Lemma 4.2 (2), we C. Computation for Generic Wireless Networks

have

E {bg (1 " W)} = O (log(1 + Pg(rij)A(rl(E)l)?z)) .

boundLB is bounded below as follows:

ieS.jeseirs <m (o) B (log(1 + P|Hj;l?
B - O minZES’JES'”Sl() (log( |Hjil?))
5 |S]1S¢|A(r1 (€))% logn
min-cutp
= Q——-———— 14
(soroPir) 4

where we have used the fact thatr (¢)) > 1. This completes
the proof of the scaling law for the receiver-only CSI case.

V. APPLICATIONS
A. Grid Network - AWGN channels

We illustrate the bounds in Theorem 3.1 for a grid ne

work of n nodes, where nodes are placed (atj) for all

All the bounds obtained in the paper involve computation
of UMCF over graphs (not networks), which is done through
solving a linear program, therefore in polynomial time. Again,

Using (13) and (12) along with the lower bound obtained Vi%ue to space constraints, we do not provide more details here.

time-division scheme that led to (11), we obtain that the lower

VI. CONCLUSION

In this paper, we obtained bounds on uniform multi-
commodity flow in a wireless network in terms of the cut
properties of the underlying graphs. The bounds are applicable
to any arbitrary wireless network.

The min-cut capacity is a fundamental entity in wireless
networks; many flavors of the min-cut max-flow result are
known (see e.g. [2, Chapter 14], [5], [14]). Analogous to [8],
an implication of our results is that we can now compute
bounds on the min-cut capacity (which is hard to compute in
general) of graphs induced by a wireless network, using linear
programming.

fA_\. Open Questions

This paper naturally gives rise to a couple of questions.

i,j =1,...,y/n. Similar bounds can be obtained for fading « What are the implications of the fact that the min-cut ca-

channels as well. The minimum value ©f such thatG,- is

connected is* = 1. We obtain upper bounds and lower bounds

to characterize the scaling ¢f*. We takeg(r) = e™".
Upper Bound. We have

Zz‘es,jesc 2log(1 + +/Py(ri;))

< 2log(1 + v/Pg(r))

Sev 1S[1S°]
. Zies,jesc,(@j)em 2log(1+ v/ Pyg(ri;))
-+ min .
scv |S1]S¢]

Taker = Jlogn, where§ > 0. Then2log(1l + /Pg(r)) =
log(14++v/Pe~"/?) = O(log(1+¢)) for anye > 0. Now consider
a cut that such that all nodes with< \/n/2 are inS. Then

Yiesjese (igyen, 1081+ /Py(ri;))
< 2y/nlog(l+ -£5) + 4y/n(logn)?log(1 + £).

Hence, the upper bound in Theorem 3.1 giyés= O( (1‘;%7?3 ).

Lower Bound. Consider the lower bound in Theorem 3.1. Take

r=r*=1andr(l4+n) = (1+9)logn, for somes > 0. Then
A(r*) =4, A(n) <4(146)*(logn)?,
Pe™""

1+ Pne—(1+5) logn

EiGS,jESC:rij <r*
tog n]S7]5°)

.
— Pe™" |

1
—o(—— ).
<n1~510gn>

as n — oo,

and min

Using the above relations in the lower bound in Theorem 3.1,

we getf* = Q(

Tl
nl-5(logn)3 /"

B. Geometric Random Network - Random Fading

pacity of a wireless network can be computed efficiently?
For example, in [9], it was shown that the computation
of the min-cut of a graph is crucial for many different

engineering problems.

o Our proof techniques are very simple. One would imagine
that it is possible to tighten the bounds in this paper using
more complicated arguments. One direction worth explor-
ing is to design more sophisticated achievable schemes.
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