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Abstract— Starting with the seminal work of Gupta and Ku-
mar (2000), there have been many interesting results that give
information theoretic outer and inner approximations to the rate
region for wireless networks. While these bounds are almost tight
for geometric random networks, not much is known about their
tightness for arbitrary wireless networks. In contrast, Leighton
and Rao (1988) established a powerful result that uniform multi-
commodity flow (UMCF) is within a factor of log n of the natural
min-cut capacity for any graph (equivalent to a wireline network)
of n nodes.

Our motivation is to obtain a similar simple and general
characterization for UMCF (shown to be equivalent to the
characterization for a much wider class of traffic models) for any
wireless network. In this paper, we apply and extend known results
to obtain such characterization for networks with Gaussian fading
channels. For channel state information (CSI) only at the receiver,
we establish that UMCF is within ∆2 log n factor of information
theoretic min-cut capacity for the wireless network, where∆ is
the max-degree of a sub-graph induced by the underlying wireless
network. For deterministic AWGN channels, we show that UMCF
is within square rootof min-cut bound for any network.

I. I NTRODUCTION

In their seminal paper [4], Gupta and Kumar considered a
wireless network formed byn nodes placed in a unit area (e.g.
disc) uniformly at random. Under the protocol model, they
showed that the maximal supportable rate per pair of nodes,
whenn source-destination pairs are chosen randomly, scales as
Θ(1/

√
n log n). Subsequent to this result, there have been many

interesting results that establish information theoretic upper and
lower bounds. Some upper bound results are by Leveque and
Telatar [10], Xie and Kumar [13], Xue, Xie and Kumar [14],
Jovicic, Viswanath and Kulkarni [5]; some lower bound results
are by Kulkarni and Viswanath [7], Franceschetti et. al. [3],
Xue, Xie and Kumar [14] and Madan and Shah [11]. Note that
this is a small illustrative subset of the known results.

Known results lead to a tight characterization of (information
theoretic) scaling of capacity for geometric random networks.
Though some of these results generalize to arbitrary networks,
we do not know of any result that quantifies the “tightness” of
upper and lower bounds in terms of the network parameters.
Let us mention here that the work of Xue, Xie and Kumar [14]
goes in this direction, but relies on strong assumptions on the
topology of the underlying graph and focuses on thetransport
capacityof the network. Our goal in this paper is to characterize
the uniform multi-commodity flow for wireless networks in
terms of cut-properties of the network graph induced by the
wireless network. In addition, we aim to obtain bounds that
can becomputed efficientlyfor any arbitrary wireless network.

0Author names appear in the alphabetic order of their last names. The work
of the first author was supported by Swiss NSF grant Nr PA002-108976.

We first present the channel and the traffic model. We then
present our main results followed by proofs. Finally, we present
applications that illustrate our results.

II. M ODEL

A. Channel Model

This is similar to the model in, for example, [5]. We have
V = {1, . . . , n} wireless nodes with transceiver capabilities
located arbitrarily in a plane. Node transmissions happen at
discrete times,t ∈ Z+. Let Xi(t) be the signal transmitted by
nodei at timet ∈ Z+. We assume that each node has a power
constraint1 such thatlim supN→∞

1
N

∑N
t=1 |X2

i (t)| ≤ P . Then
Yi(t), the signal received by nodei at time t, is given by

Yi(t) =
∑

k 6=i HikXk(t) + Zi(t), (1)

whereZi(t) denotes a complex zero mean white Gaussian noise
process with independent real and imaginary parts with variance
1/2 such thatZi(t) are i.i.d. across alli. Let rij denote the
distance between nodesi and j. Let Hik(t) be such that

Hik(t) =
√

g(rik)Ĥik(t),

whereĤik(t) is a stationary and ergodic zero mean complex
Gaussian process with independent real and imaginary parts
(with variance 1/2). It models channel fluctuations due to
frequency flat fading. Also,g(·) is a monotonically decreasing
function that models path loss withg(x) ≤ 1 for all x ≥ 0.
We assume thatE[|Ĥik(t)|2] = 1 and that theĤik(t)’s are
independent.

B. Traffic Model

We now describe the traffic model considered in this paper.
We refer the reader to [11] for proofs of results in this section. A
rate matrixλ = [λij ] ∈ Rn×n

+ is calledfeasible, if information
can be sent (possibly via multiple hops) from nodei to nodej at
rateλij for each node pair(i, j), 1 ≤ i, j ≤ n. Let Λ ⊆ Rn×n

+

denote the set of all feasible rate matrices. We also callΛ
the capacity region. Ideally, we would like to characterizeΛ.
However, it is hard to obtain a single-letter characterization of
Λ that can be evaluated. Hence, we study the scaling of the
quantityρ∗(Λ) defined below.

Definition 2.1 (ρ∗(Λ)): For any feasibleλ ∈ Λ, let ρ(λ)
4
=

maxi {
∑n

k=1 λik,
∑n

k=1 λki}, L(x) = {λ ∈ Rn×n
+ : ρ(λ) ≤

x}. Then, defineρ∗(Λ) = sup{x ∈ R+ : L(x) ⊆ Λ}.

1For notational simplicity we assume that each node has the same power
constraint. The general case, where each node has different maximum average
power can be handled using identical techniques.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147922964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Thus the quantityρ∗(Λ) is a parametrization of an inner
approximation to the capacity regionΛ.

Definition 2.2 (Uniform multi-commodity flow):We say that
a rate matrixλ is a uniform multicommodity flowif λ = f1
for somef ∈ R+, where1 ∈ Rn×n

+ is a matrix with all entries
equal to 1. We will denote such a flow asU(f) = f1. Let
f∗ = sup{f ∈ R+ : U(f) is feasible}.
Next, we state equivalence between scaling of maximal UMCF,
f∗ and that ofρ∗(Λ) [11].

Lemma 2.3:In any network,f∗ = Θ(ρ∗(Λ)).
Hence, we will study scaling of thef∗ to determineρ∗(Λ).
Finally, we show that Gupta-Kumar capacity scaling model
is equivalent tof∗. In setup of Gupta-Kumar [4],n distinct
source-destination pairs are chosen at random such that each
node is source (destination) for exactly one destination (source)
and such pairing is done uniformly at random over all possible
pairings. Thus the traffic matrix corresponds to a randomly
chosen permutation flow which is defined as follows.

Definition 2.4: Let Sn denote the set of permutation matrices
in Rn×n

+ . We say that a traffic matrixλ is a permutation flow
if λ = fΣ for somef ∈ R+ andΣ ∈ Sn. We will denote such
a flow asλΣ(f) = fΣ, for Σ ∈ Sn.
In light of the above definition, all the previous works study the
scaling off̄ , wheref̄ is the maximum value such that for any
randomly chosen permutationΣ ∈ Sn, the permutation flow
λΣ(f̄) is feasible with probability at least1− 1/n2.

Lemma 2.5:If for Σ ∈ Sn chosen uniformly at random,
λΣ(nf) is feasible with probability at least1−n−1.5−α, α > 0,
then there exists a sequence of feasible rate matricesΓn such
that

‖Un(f)− Γn‖ = O(fn−α) → 0 asn →∞,

where‖ · ‖ denotes the Frobenius norm for matrices.
The proof of the above lemma can be found in [11]. It implies
that for any network,f̄ = Θ(nf∗). We focus our attention on
the scaling off∗ in this paper.

III. M AIN RESULTS

The main result of this paper is the characterization of
information theoretic relation between upper and lower bound
on UMCF for any general wireless networks. These characteri-
zations for Gaussian channels (with and without random fading)
are summarized in Corollaries 3.3 and 3.5. The proofs of the
lower bounds are constructive.

A. Deterministic AWGN Channels

First, we consider the case wherêHkj = 1 w.p. 1, ∀k, j =
1, . . . , n. This correspond to a standard additive white Gaussian
noise (AWGN) channel (no fading). Consider the following two
graphs: (1)Kn is the fully connected graph with node setV ,
and (2)Gr is the graph where each nodei ∈ V is connected
to all nodes that are within a distancer of i. Let Er denote
the edge set ofGr. Also, let r∗ = inf{r : Gr is connected}.
Let ∆(r) be the maximum vertex degree ofGr. We have the
following bounds onf∗.

Theorem 3.1:For a given placement of nodes, under the
Gaussian channel model with path loss functiong(·), the
maximal uniform multi-commodity flowf∗ is bounded as

follows2.

f∗ ≤ min
S⊂V

∑
i∈S,j∈Sc log(1 +

√
Pg(rij))

|S||SC |

f∗ = Ω

(
sup

r≥r∗, η≥0

1
1 + ∆(r)∆(r(1 + η))

× min
S⊂V

∑
i∈S,j∈Sc:rij≤r log

(
1 + Pg(rij)∆(r(1+η))

1+nPg(r(1+η))

)
log n|S||SC |

)
.

Next, we state the explicit relation between the upper and
lower bound forf∗ under the following mild condition:

Condition 1: Let P ≤ 1. Further, there exists anε > 0 such
that the grapĥGε = (V, Êε) is connected, wherêEε = {(i, j) :
log
(
1 +

√
Pg(rij)

)
≥ n−ε/2}.

Definition 3.2: Let r1(ε) ≥ r∗ be such that for alli ∈ V ,∑
j∈V :rij≥r1(ε)

Pg(rij) ≤ 1
n1+ε .

Corollary 3.3: Let ε > 0 be such that Condition 1 is
satisfied. Then

Ω
(

n

∆3(r1(ε)) log n
Φ2

)
≤ f∗ ≤ Φ,

whereΦ = minS⊂V

P
i∈S,j∈Sc:rij≤r1(ε) log(1+

√
Pg(rij))

|S||SC | .

B. Random Fading

We now derive similar upper and lower bounds for UMCF for
Gaussian channel with random fading, as defined in Section II.
We make special note of Corollary 3.5 that shows that for
receiver-only CSIcase, our bounds are quite tight for any graph.
First, we present general upper bounds.

Theorem 3.4: (1) With channel state information (CSI)
only at receivers,f∗ is bounded as follows

f∗ ≤ min
S⊂V

∑
i∈S,j∈Sc E(log(1 + P |Hji|2))

|S||Sc|

f∗ = Ω

(
sup

r≥r∗, η≥0

1
1 + ∆(r)∆(r(1 + η))

× min
S⊂V∑

i∈S,j∈Sc 1(i,j)∈Er
E log

(
1 + P |Hji|2∆(r(1+η))

1+nPg(r(1+η))

)
log n|S||SC |

)
(2) With CSI at both transmitters and receivers,f∗ is bounded

as follows.

f∗ ≤ min
S⊂V

∑
i∈S,j∈Sc 2 E(log(1 +

√
P |Hji|)

|S||Sc|
The lower bound for the receiver only CSI case is a (weak)
lower bound for this case as well.

The following corollary quantifies the gap between the upper
and the lower bound for the receiver-only CSI case if the
following condition holds.

Condition 2: Let P ≤ 1. Further, there exists anε > 0 such
that the grapĥGε = (V, Êε) is connected, wherêEε = {(i, j) :
E
[
log
(
1 + P |Hij |2

)]
≥ n−ε/2}.

2For the lower bound, we use theΩ notation in order not to have to write out
constants explicitly; we note that the constants are independent of the graph
structure andn [8].



Corollary 3.5: With CSI only at the receivers and under
Condition 2, we have

Ω
(

min-cutR
∆2(r1(ε)) log n

)
= f∗ = O(min-cutR),

wheremin-cutR = minS⊂V

P
i∈S,j∈Sc:rij≤r1(ε) E log(1+P |Hij |2)

|S||SC | .
Let us finally mention that another set of upper bounds can

be obtained by slightly modifying the proof of Theorem 3.4
(still relying on the method described in [5]).

Lemma 3.6: (1) If channel state information (CSI) is
known only at receivers, then

f∗ ≤ PP
i,j rij

∑n
i,j=1 rijg(rij).

(2) If CSI is known at the transmitters and the receivers, then

f∗ ≤ PP
i,j rij

∑n
i,j,k=1 min(rij , rkj)

√
g(rij)g(rkj).

IV. PROOFS

We now present proofs of the results for both determinisitic
and random fading channels.

A. Deterministic Channels

Proof: [Theorem 3.1] We prove the upper and lower
bounds separately. We will use the following result by Leighton
and Rao [9].

Theorem 4.1:[Essentially Theorem 12, [9]] Consider a
graph G = (V,E) with n nodes. For(i, j) ∈ E, let Rij

denote the communication rate over this link fromi to j. The
maximum uniform multi-commodity flowf∗ is upper and lower
bounded as

Ω
(

S
log n

)
= f∗ ≤ S,

whereS = supR={Rij}minS⊂V

P
(i,j)∈E:i∈S,j∈Sc Rij

|S||Sc| . and the
supremum is taken over all possible set of rates{Rij} simul-
taneously achievable with a given communication scheme.

Upper Bound: In order to bound the sum-rate across each
given cut, we refer to the proof of the max-flow min-cut lemma
in [13], which yields for anyS ⊂ V∑

i∈S,j∈Sc Rij ≤
∑

j∈Sc log(1 + E(|X̃j |2)),

whereX̃j =
∑

i∈S

√
g(rji) Xi. We therefore deduce that∑

i∈S,j∈Sc Rij

≤
∑

j∈Sc log[1 +
∑

i,k∈S

√
g(rji) g(rjk) |E(XiXk)|]

≤
∑

j∈Sc log[1 + P (
∑

i∈S

√
g(rji))2],

since|E(XiXk)| ≤
√

PiPk ≤ P . Finally, we obtain∑
i∈S,j∈Sc Rij ≤

∑
j∈Sc 2 log(1 +

√
P
∑

i∈S

√
g(rji))

≤
∑

i∈S,j∈Sc 2 log(1 +
√

Pg(rji)).

i.e. the desired upper bound forf∗.

Lower Bound: To establish the lower bound, we find a
transmission scheme for which the multicommodity flow is
greater than or equal to that in the lower bound. Forr ≥ r∗,
consider graphGr = (V,Er) on n nodes as above. We use
∆(r(1 + η)) to denote the maximum vertex degree of graph
Gr(1+η). Now, consider the following transmission scheme. A
node i can transmit to a nodej only if rij ≤ r. Also, when
a nodei transmits, no node within a distancer(1 + η) of the

receiver can transmit. Thus, when a link(i, j) ∈ Er is active,
at most∆(r(1 + η)) nodes are constrained to remain silent,
i.e., at most∆(r(1 + η))∆(r) links are constrained to remain
inactive. Hence, the chromatic number of the dual graph is at
most (1 + ∆(r(1 + η))∆(r)). In addition, we assume that the
signal transmitted by each node has a Gaussian distribution.
Then, subject to the maximum average power constraint, the
following average rate from a nodei to nodej, with (i, j) ∈ Er,
is achievable

Rij ≥
log
(
1 + Pg(rij)(∆(r(1+η))

1+nPg(r(1+η))

)
1 + ∆(r)∆(r(1 + η))

. (2)

Note that the interference is due to at mostn nodes and all the
interfering nodes are at least a distancer(1+η) away from the
receiver. The above simple time-division scheme gives rise to
a capacitated graph, for which by Theorem 4.1, the maximum
uniform multi-commodity flow is lower bounded as given in
the Theorem. This completes the proof of Theorem 3.1.

The proof of Corollary 3.3 will utilize the following two
inequalities.

Lemma 4.2:(1) Givenxi ∈ (0, 1), 1 ≤ i ≤ N ,∑N
i=1 log(1 +

√
xi) ≤

√
2N
√∑N

i=1 log(1 + xi).

(2) For anyx ≥ 0, α ∈ (0, 1), 1
α log(1 + αx) ≥ log(1 + x).

Proof of (1).For anyx ∈ (0, 1), x/2 ≤ log(1 + x) ≤ x, so∑N
i=1 log(1 +

√
xi) ≤

∑N
i=1

√
xi ≤

√
N
√∑N

i=1 xi (3)

≤
√

2N
√∑N

i=1 log(1 + xi),

where (3) follows from Cauchy-Schwarz inequality.
Proof of (2).Definef(x) = 1

α log(1 + αx)− log(1 + x). Note
that f ′(x) ≥ 0 for x ≥ 0 and f(0) = 0. This completes the
proof of (2).

Proof: [Corollary 3.3] Consider the upper bound of The-
orem 3.1. Letε > 0 be such that Condition 1 is satisfied.
Consider any cut defined by(S, Sc). Due to the symmetry of
the upper bound, without loss of generality, assume|S| ≤ n/2.
Now,

Cut(S, Sc) =
∑

i∈S,j∈Sc log(1 +
√

Pg(rij))

≤
∑

i∈S,j∈Sc:rij≤r1(ε)
log
(
1 +

√
Pg(rij)

)
+ |S|

n1+ε .(4)

From Lemma 4.2 (1), we haveX
i∈S,j∈Sc:rij≤r1(ε)

log
“
1 +

p
Pg(rij)

”
≤
s

∆(r1(ε))|S|
X

i∈S,j∈Sc:rij≤r1(ε)

log (1 + Pg(rij)). (5)

Condition 1 andÊε ⊂ Er1(ε) (from definition) imply∑
i∈S,j∈Sc:rij≤r1(ε)

log (1 + Pg(rij))

|S||Sc|
= Ω

(
1

n2+ε/2

)
. (6)

From (4), (5), (6) and some manipulations, we obtain that

Cut(S, Sc)

|S||Sc| = O

 r
4∆(r1(ε))

n

×

sP
i∈S,j∈Sc:(i,j)∈Er1(ε)

log(1 + Pg(rij)

|S||Sc|

1A . (7)



We recall that the upper bound of Theorem 3.1 is

min
S

Cut(S, Sc)
|S||Sc|

.

Now, consider the lower bound of Theorem 3.1. To obtain a
specific lower bound, consider choice ofr = r1(ε) andη = 0.
Notice that in the proof of Theorem 3.1, we upper bound the
power of interference bynPg(r(1 + η)), which is precisely
Iij =

∑
k∈V :rjk≥r1(ε)

Pg(rjk) for transmission fromi to j.
By definition of r1(ε), we haveI ≤ n−1−ε < δ < 1 for small
enoughδ and large enoughn. Now, by Lemma 4.2 (2), we
have

log
(
1 + Pg(rij)∆(r1(ε))

1+I

)
= Θ(log(1 + Pg(rij)∆(r1(ε)))) .

(8)
Using (8) with the modification of the lower bound of Theorem
3.1 for the choice ofr = r1(ε) and the simple fact that
∆(r1(ε)) ≥ 1, we obtain a new lower bound, sayLB, as
follows:

LB = Ω

 
min
S⊂V

P
i∈S,j∈Sc:rij≤r1(ε) log(1 + Pg(rij))

∆(r1(ε))2 log n|S||Sc|

!

= Ω

 „
min
S⊂V

Cut(S, Sc)

|S||Sc|

«2
n

∆(r1(ε))3

!
, (9)

where (9) follows from (7). This completes the proof.

B. Random Fading

Proof: [Theorem 3.4] (1)Receiver only CSI:

Upper Bound: Following the steps in the proof of Theorem 2.1
in [5] and using(1 +

∑n
i=1 αi) ≤

∏n
i=1(1 + αi) for αi > 0,

we obtain∑
i∈S,j∈Sc Rij ≤ max

QS�0,(QS)ii≤P
E[log det(I + HSQSH∗

S)]

≤
∑

i∈S,j∈Sc E
(
log(1 + P |Hji|2)

)
, (10)

so the upper bound onf∗ follows from Theorem 4.1.

Lower Bound: For the lower bound, we will use the time-
division scheme in the proof of Theorem 3.1 which schedules
every link in the network for a fractionα = 1

1+∆(r)∆(r(1+η)) of
the time. For any given link that transmits data at a particular
time, we treat all other simultaneous transmissions in the
network as interference. For the rest of the proof let us focus
on the link(1, 2) (without any loss in generality). We will show
that with receiver only CSI the following rate on link(1, 2) is
achievable.

R12 = αE log
(

1 + P |H21|2∆(r(1+η))(
1+nPg(r(1+η))

))
To show this we will use the following result, which follows
directly from Theorem 1 in [6].

Theorem 4.3:Consider a complex scalar channel where the
outputY whenX is transmitted is given by

Y = hX + Z + S,

whereZ is a complex circularly symmetric Gaussian random
variable with unit variance, andS satisfiesE[S∗S] ≤ P̂ . Also,h
is zero mean spatially white and i.i.d during each channel use.
If X is a complex zero mean circularly symmetric Gaussian
random variable withE[X∗X] = P , then

I(X; (Y, h)) ≥ E log
(
1 + P |h|2

1+P̂

)
.

We consider a transmission scheme where the signal trans-
mitted over each link, when active, is a complex zero mean
white circularly symmetric Gaussian with varianceP∆(r(1 +
η)) (note that this satisfies the average power constraint that
each node can use maximum powerP .) Moreover, we assume
that the transmissions on all links are mutually independent.
Let t1, t2, . . . denote times at which link(1, 2) is scheduled.
Hence, at any such timet ∈ {t1, t2, . . .}, the received signal at
node 2 is given by

Y2(t) = H21(t)X1(t) +
∑

k 6=1,2 H2k(t)Xk(t) + Z2(t).

Using the mutual independence of transmissions and zero mean
property along with the construction of the scheduling scheme,

E
∣∣∣∑k 6=1,2 H2k(t)Xk(t) + Z2(t)

∣∣∣2 ≤ 1 + nPg(r(1 + η)).

From Theorem 4.3,

I(X1(t); (Y2(t),H21(t))) ≥ E log
(
1 + P |H21|2∆(r(1+η))

(1+nPg(r(1+η))

)
.

(11)
Since the channel is assumed to be i.i.d. during each use, a
random coding argument can be used to achieve this rate with
a probability of error which goes to zero as the block length
goes to infinity.

Combining this with the time-sharing between different sets
of links (described above), it follows that

R12 ≥ αE log
(

1 +
P |H21|2∆(r(1 + η))
1 + nPg(r(1 + η))

)
.

(2) Full CSI: The upper bound follows again from the proof of
Theorem 2.1 in [5], from which we deduce that∑

i∈S,j∈Sc Rij ≤ E[maxQ�0,Qii≤P log det(I + HSQSH∗
S)]

≤
∑

j∈Sc E[maxQ�0,Qii≤P log(1 + hjQSh∗j )],

where hj is the jth row of H. Since hjQSh∗j is maximum
when (QS)ik ≡ P for all i, k ∈ S, we obtain, following the
steps of the proof of Theorem 3.1,∑

i∈S,j∈Sc Rij ≤
∑

j∈Sc E log(1 + P (
∑

i∈S |Hij |)2]
≤

∑
j∈Sc 2 E log(1 +

√
P
∑

i∈S |Hij |)]
≤

∑
i∈S,j∈Sc 2 E(log(1 +

√
P |Hij |),

and the upper bound onf∗ follows from Theorem 4.1.

Proof: [Corollary 3.5] The general scheme of the proof is
the same as that of Corollary 3.3. Using the upper bound in
Theorem 3.4,f∗ can be further bounded above as

f∗ ≤ minS

P
i∈S,j∈Sc:rij≤r1(ε) E(log(1+P |Hji|2))

|S||Sc| + O
(
n−2−ε

)
= min-cutR + O

(
n−2−ε

)
= O(min-cutR) (12)

where the first inequality follows from Condition 2. Next, we
consider the lower bound obtained via the lower bound in
Theorem 3.4 and (11). Specifically, we consider the choice
of r = r1(ε) and η = 0. Notice that in (11), we used the
term nPg(r(1 + η)) as a bound on the interference power.
However, for our case, the actual intereference isIij =∑

k∈V :rjk≥r1(ε)
Pg(rjk) for a transmission fromi to j. By

definition of r1(ε), we haveI ≤ n−1−ε < δ < 1 for small



enoughδ and large enoughn. Now, by Lemma 4.2 (2), we
have

E
[
log
(
1 + Pg(rij)∆(r1(ε))

1+I

)]
= Θ(log(1 + Pg(rij)∆(r1(ε)))) .

(13)
Using (13) and (12) along with the lower bound obtained via
time-division scheme that led to (11), we obtain that the lower
boundLB is bounded below as follows:

LB = Ω

(
min

S

∑
i∈S,j∈Sc:rij≤r1(ε)

E
(
log(1 + P |Hji|2)

)
|S||Sc|∆(r1(ε))2 log n

)

= Ω
(

min-cutR
∆(r1(ε))2 log n

)
, (14)

where we have used the fact that∆(r1(ε)) ≥ 1. This completes
the proof of the scaling law for the receiver-only CSI case.

V. A PPLICATIONS

A. Grid Network - AWGN channels

We illustrate the bounds in Theorem 3.1 for a grid net-
work of n nodes, where nodes are placed at(i, j) for all
i, j = 1, . . . ,

√
n. Similar bounds can be obtained for fading

channels as well. The minimum value ofr∗ such thatGr∗ is
connected isr∗ = 1. We obtain upper bounds and lower bounds
to characterize the scaling off∗. We takeg(r) = e−r.
Upper Bound. We have

min
S⊂V

∑
i∈S,j∈Sc 2 log(1 +

√
Pg(rij))

|S||SC |
≤ 2 log(1 +

√
Pg(r))

+ min
S⊂V

∑
i∈S,j∈Sc,(i,j)∈Er

2 log(1 +
√

Pg(rij))

|S||SC |
.

Take r = δ log n, whereδ > 0. Then 2 log(1 +
√

Pg(r)) =
log(1+

√
Pe−r/2) = O(log(1+ε)) for anyε > 0. Now consider

a cut that such that all nodes withi <
√

n/2 are inS. Then∑
i∈S,j∈Sc,(i,j)∈Er

log(1 +
√

Pg(rij))

≤ 2
√

n log(1 + P
e1/2 ) + 4

√
n(δ log n)3 log(1 + P

e ).

Hence, the upper bound in Theorem 3.1 givesf∗ = O( (log n)3

n1.5 ).
Lower Bound. Consider the lower bound in Theorem 3.1. Take
r = r∗ = 1 andr(1+η) = (1+δ) log n, for someδ > 0. Then

∆(r∗) = 4, ∆(n) ≤ 4(1 + δ)2(log n)2,

P e−r∗

1 + Pne−(1+δ) log n
→ Pe−r∗ , as n →∞,

and min
S⊂V

∑
i∈S,j∈Sc:rij≤r∗

log n|S||Sc|
= Ω

(
1

n1.5 log n

)
.

Using the above relations in the lower bound in Theorem 3.1,
we getf∗ = Ω( 1

n1.5(log n)3 ).

B. Geometric Random Network - Random Fading

Let us consider a geometric random network (i.e. with nodes
are located at the vertices of a geometric random graph), with
random fading and receiver CSI only. A geometric random
graph has a constant node density:n nodes are placed uniformly
at random in a torus of arean. Using Lemma 3.6, it is possible
to infer thatf∗ is upper bounded asO(1/n3/2) with probability
1− ε for any fixedε > 0, but the proof is omitted here due to
space constraints.

C. Computation for Generic Wireless Networks

All the bounds obtained in the paper involve computation
of UMCF over graphs (not networks), which is done through
solving a linear program, therefore in polynomial time. Again,
due to space constraints, we do not provide more details here.

VI. CONCLUSION

In this paper, we obtained bounds on uniform multi-
commodity flow in a wireless network in terms of the cut
properties of the underlying graphs. The bounds are applicable
to any arbitrary wireless network.

The min-cut capacity is a fundamental entity in wireless
networks; many flavors of the min-cut max-flow result are
known (see e.g. [2, Chapter 14], [5], [14]). Analogous to [8],
an implication of our results is that we can now compute
bounds on the min-cut capacity (which is hard to compute in
general) of graphs induced by a wireless network, using linear
programming.

A. Open Questions

This paper naturally gives rise to a couple of questions.
• What are the implications of the fact that the min-cut ca-

pacity of a wireless network can be computed efficiently?
For example, in [9], it was shown that the computation
of the min-cut of a graph is crucial for many different
engineering problems.

• Our proof techniques are very simple. One would imagine
that it is possible to tighten the bounds in this paper using
more complicated arguments. One direction worth explor-
ing is to design more sophisticated achievable schemes.
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